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Model of time-varying linear systems and Kolmogorov
equations

ASSEN V. KRUMOV

In the paper an approximate model of time-varying linear systems using a sequence of time-
invariant systems is suggested. The conditions for validity of the approximation are proven with
a theorem. Examples comparing the numerical solution of the original system and the analytical
solution of the model are given. For the system under the consideration a new criterion giving
sufficient conditions for robust Lagrange stability is suggested. The criterion is proven with a
theorem. Examples are given showing stable and non stable solutions of a time-varying system
and the results are compared with the numerical Runge-Kutta solution of the system. In the
paper an important application of the described method of solution of linear systems with time-
varying coefficients, namely analytical solution of the Kolmogorov equations is shown.
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1. Model of time-varying linear systems

1.1. Introduction

It is known that the analysis, synthesis and implementation of the dynamical and
control systems, described with linear differential equations with time-dependent pa-
rameters are much more difficult then the application of time-invariant systems. In some
cases, the conditions of which are described and proven with a theorem in the paper,
the time-varying system can be replaced by approximate model containing a sequence
of time invariant linear systems, derived from the original system using the methods of
the functional analysis. In the present paper a new criterion for Lagrange stability is sug-
gested, which uses only g(t−τ), which is the response of one-dimensional time-invariant
system to the Dirac function δ(t) [1], or the Green matrix GGG(t − τ) of a time-invariant
system, approximating the original system. The difference between the original and the
approximating system is considered as perturbation.

An important application of the described above method is the analytical solution of
the Kolmogorov equations, shown in the paper.
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1.2. Analytical model of time-varying linear systems

In the general case the linear time-varying control systems can be described in a
matrix form

dXXX
dt

= AAA(t,P1)XXX +BBB(t,P2)UUU(t), (1)

where P1 and P2 are sets of parameters. If P3 is the set of initial values of the variables
xi which forms the matrix X , then the set of all parameters P can be defined as Decart
product of P1, P2, P3 : P = P1 ×P2 ×P3. UUU(t) is the matrix of the control inputs, BBB(t,P2)
is the matrix of coefficients. When the system (1) is one-dimensional of the order n and
UUU(t) = u(t) in the general case it can always be transformed into system (1) [1]., thus in
the sequel only system (1) will be considered.

The matrix AAA(t,P1) can always be represented in the following way

AAA(t,P1) = AAAC(P1)+AAA∗(t,P1)
(2)

ai j(t,P1) = ai jc(P1)+a∗i j(t,P1)

where the matrix AAAC(P1) is time-invariant and is defined in a such way that the norm of
the difference between the original and the approximating systems

||AAA∗(t,P1)||= ||AAA(t,P1)−AAAC(P1)|| (3)

is minimized, which will improve the convergence of the solution, as will be shown. An
easy (but not always optimal ) way of calculating AAAC(P1) is by finding the mean values of
ai j(t,P1) for the necessary time interval and considering ai jc(P1) equal to them. Taking
into account (3) the equation (1) can be transformed:

dXXX
dt

= AAAC(P1)XXX +FFF(t,P2)+µAAA∗(t,P1)XXX (4)

where FFF(t,P2) = BBB(t,P2)UUU(t) and the time-varying part is multiplied by the ‘big’ pa-
rameter µ [2]. Obviously, when µ = 1 equation (4) is identical to (1). The time-varying
part µAAA∗(t,P1)XXX can be considered as perturbation. The sets P, P1, |P2 , P3 are taken into
account only when it is necessary – usually for the estimation of the norms. For the ap-
plication of the functional analysis [3], [4], [7] it is necessary to represent (4) in operator
form

Q(XXX ,µ) = 0, Q(XXX0,µ0) = 0, (5)

transferring dXXX/dt to the right part of (4). It is convenient to put Čµ = µ0 ∼= 0 and in
this case XXX0 can be found as solution of

dXXX0

dt
= AAAC(P1)XXX0 +FFF(t,P2) (6)

using the Green matrix GGG(t − τ) [5] for the time invariant part of (4)

XXX0(t) = GGG(t)XXX(0)+
t∫

0

GGG(t − τ)FFF(τ)dτ (7)
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with initial conditions: XXX(0) = XXX0(0). The operators C11, C01, C−1
01 , which will be used

further, can be found as continuous Gateaux derivatives of Q(XXX ,µ) [4], [6], [7]:

Cpq =
1

p!q!
Qp+q

µpXq(XXX0,µ0)

C01 =
∂

∂XXX
Q(XXX0,µ0) =

∂
∂c

Q(XXX0 + cHHH,µ0)c=0 =−dHHH
dt

+AAACHHH (8a)

C11(HHH) =
∂2

∂µ∂c
Q(XXX0 + cHHH,µ0)c=0 = AAA∗(t)HHH (8b)

Γ01 =C−1
01 =

[
∂
∂c

Q(XXX0 + cHHH,µ0)c=0

]−1

(8c)

The operator C−1
01 has the following integral form

H =C−1
01 (y) =−

t∫
0

GGG(t − τ)y(τ)dτ. (9)

For the assessment of the norms in the space C[a,b] the following relations and inequal-
ities are useful [6]:

||C11||= sup
||HHH||=1

||C11(HHH)||= sup
||HHH||=1

||AAA∗(t)HHH||¬ ||AAA∗(t)|| (10)

||C01|¬ sup
||y||=1

||y||

∣∣∣∣∣∣
∣∣∣∣∣∣

t∫
0

|GGG(t − τ)|dτ

∣∣∣∣∣∣
∣∣∣∣∣∣
=

∣∣∣∣∣∣
∣∣∣∣∣∣

t∫
0

|GGG(t − τ)|dτ

∣∣∣∣∣∣
∣∣∣∣∣∣ . (11)

The concrete norm (11) can be chosen between those, given in [5] and taking into ac-
count, that after integrating the matrix it consist of elements

∫ t
0 |gik(t − τ)|dτ.

1.3. Approximate model of the time-varying system

Theorem 7 The sufficient conditions for the approximation of the solution XXX(t) of the
original time-varying system (1) with the first m elements of the series

XXX(t) = XXX0(t)+XXX1(t)+XXX2(t)+ · · ·+XXXm(t)+XXXm+1(t)+ . . . , (12)

namely:

XXX(t) = XXX0(t)+
t∫

0

GGG(t − τ1)AAA∗(τ−1)XXX0(τ1)dτ1+

t∫
0

GGG(t − τ2)AAA∗(τ2)

τ2∫
0

GGG(τ2 − τ1)AAA∗(τ1)XXX0(τ1)dτ1dτ2 + . . . (13)
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t∫
0

GGG(t − τm)AAA∗(τm)

τm∫
0

GGG(τm − τm−1) . . .dτ1 . . .dτm

with error less than a priori given value δ are:

||P11||¬ ||C−1
01 || · ||C11||< 1, (14)

||XXX0||(||P11||)m+1

1−||P11||
< δ, (15)

P11 =C−1
01 (C11). (16)

Proof If the operator Q(XXX ,µ) allows the finding of operators C10, C11, C01 as Gateaux
derivatives (8) the following presentation is possible

Q(XXX ,µ) = Q(XXX0,µ0)+(µ−µ0)C10 +(µ−µ0)C11(XXX −XXX0)+C01(XXX −XXX0). (17)

If the infinite series of the solution

XXX = XXX0 +(µ−µ0)XXX1 +(µ−µ0)
2XXX2 + . . . (18)

is replaced in (17), the parts containing (µ− µ0), (µ− µ0)
2 . . . , (µ− µ0)

m, form the fol-
lowing equations

XXX1 =−C−1
01 [C10] C10 = AAA∗(t)XXX0, (19a)

hence C10 =C11(XXX0), taking into account (8b)

XXXm =−C−1
01 [C11(XXXm−1)], m = 1,2,3, . . . , (19b)

which corresponds to the integral presentation (13) because the inverse operator C−1
01 has

the form (9).
From (19b) it follows that

||XXXm||¬ ||P11|| · ||XXXm−1|| (20)

The convergence of the series (12) for Čµ0 ∼= 0, Čµ = 1 will exist if the norm of its
sum

||XXX −XXX0||¬ ||XXX1||+ ||XXX2||+ · · ·+ ||XXXm||+ · · ·¬ ||P11|| · ||XXX0||
1−||P11||

(21)

is finite, the sufficient condition of which corresponds to (14). Of course, the norm of
the first element XXX0 should be also finite, if the matrix AAAC is defined correctly and the
process in its nature is not unstable. The majorant estimation of the norm of the error
XXXerr if only the first m elements of the series (12) are taken into account is

||XXXerr||¬ ||XXXm+1||+ ||XXXm+2 + · · ·¬ XXX0 (P11)
m+1

1−||P11||
(22)
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which confirms the sufficient condition (14). Obviously if the sufficient condition (14) is
proven and XXX0 is finite there always exist m for which the condition (15) will be satisfied.
So the theorem is proven.

The solution (7), (12), (13) of the original time-varying system (1) is illustrated in
Fig.1 for the case of 3 elements −XXX(t) ≈ XXX0(t)+XXX1(t)+XXX2(t). There L.S. is the time
invariant part of (4) with Green matrix GGG(t − τ).

An alternative to the described in the paper approximation method are the methods of
order reduction of large linear systems [9] or application [10] of Grobner basis algorithm,
but there are no explicit rules for their application, which is achieved in the described
here method, according to Fig.1. On the other hand the direct application of numerical
method [11]-[13] to the system (1) does not give an analytical solution and therefore is
not appropriate for synthesis of linear systems or algorithms for fast real time control or
optimization.

Figure 1: Approximate solution X(t)≈ X0(t)+X1(t)+X2(t) of the time-varying system
(1).

Example 3 In the following example of one-dimensional linear system (23) the condi-
tions for convergence of the approximate model (12), (13) will be investigated analyti-
cally and numerically:

d2x
dt2 +3

dx
dt

+2x−µA∗(t)x = 0.76. (23)

The solution can be found without transforming (23) into a system of two differential
equations of first order, which is trivial. Using simple analogy operators C10, C01, C11
for µ0 = 0, µ = 1 can be obtained from (8), (8a), (8b), (8c) as derivatives of equation
(23), taking into account that C10, C11 form external signal to the system described by
operator C01

C10 =−A∗(t)x0, C11(H) =−A∗(t)H, (24)

C01(H) =
d2H
dt

+3
dH
dt

+2H. (25)
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The Green function, corresponding to the operator C01 is

g(t − τ) = e−(t−τ)− e−2(t−τ) (26)

and can be found as Laplace original of the transfer function of the time-invariant part
of (23). For zero initial condition x0 can be found from (23) and µ = 0

x0(t) =
t∫

0

[0.76g(t − τ)]dτ = 0.38(e−2t −2e−t +1). (27)

For the Banach space C[a,b] the norms of the operators C01 and C11 are:

||C−1
01 ||¬

∣∣∣∣∣∣
∣∣∣∣∣∣

t∫
0

|g(t − τ)|dτ

∣∣∣∣∣∣
∣∣∣∣∣∣= (28)

= max
0¬t¬T

|e
−2t −2e−t +1

2
< 0.5, (29)

where equality to 0.5 corresponds to T → ∞. If it is considered that A∗(t) = e−t , then

||C11||¬ ||A∗(t)||= max
0¬t¬T

∣∣e−t
∣∣¬ 1. (30)

So P11 < 0.5 and (14) is satisfied. The element x1 is found analytically, according to the
second element of (13)

x1(t) = 0.38e−t [t(2e−t +1)+2e−t +0.5e−2t −2.5
]
. (31)

The element x2(t) is found solving numerically the 3-th element of (13), which can be
written more simply

x2(t) =
t∫

0

[g(t − τ)A∗(τ2)x1(τ2)]dτ2. (32)

In Tab. 1 the numerical solution of (23) is compared with the approximation x= x0+x1+
x2. The approximation is excellent for the whole interval t ∈ [0,∞], because for t → ∞,
x → 0.38.

1.4. Criterion for Lagrange stability

The Lagrange stability means that the solution of the system estimated by its norm
is bounded [8], i.e. limited for the time interval t ∈ [0,∞). The sufficient conditions for
Lagrange stability of the original time-varying system (1) are described and proven in
the following theorem.
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Table 4: Comparison of analytical solution and Runge-Kutta solution

t, s 0.25 1 1.5 2 3 5 10

x0 + x1 + x2 0.01867 0.1574 0.2417 0.3012 0.3609 0.3818 0.38009

Runge-Kutta 0.01867 0.1574 0.2416 0.3013 0.3609 0.3818 0.3801

Theorem 8 The sufficient conditions for Lagrange stability of a time-varying linear sys-
tem (1) with a norm of the bounded solution

||XXX ||¬ ||XXX0||
1−P11

(33)

are:

a) There exist a time-invariant system (6), approximating the original time-varying
system (1), the norm of the solution of which XXX0 is bounded, i.e. Lagrange stable.

b) There exists the inequality

||P11||¬ ||C−1
01 || · ||C11||< 1. (34)

Proof If the operator Q(XXX ,µ) allows the finding of operators C10, C11, C01 as Gateaux
derivatives (8) the presentation (17) is possible and if the assumed infinite series of the
solution (18) is replaced in (17), the parts containing (µ− µ0), (µ− µ0)

2, . . . , (µ− µ0)
m

form the equations (19a), (19b). Hence (20) is valid. The convergence of the series (18)
for µ0 = 0, µ = 1 will exist if the norm of its sum XXX is finite. From (21) follows:

||XXX ||− ||XXX0||¬ ||XXX −XXX0||¬ ||XXX1||+ ||XXX2||+ . . .

· · ·+ ||XXXm||+ · · ·¬ ||P11|| · ||XXX0||
1−||P11||

.

Hence

||XXX ||¬ ||XXX0||+
||P11|| · ||XXX0||

1−||P11||
=

||XXX0||
1−||P11||

. (35)

Obviously, when the norm of the solution of the approximating system ||XXX0|| is bounded
and condition (34) is satisfied then the norm of the solution ||XXX || of the original system
is also bounded, which proves the theorem.

The operator formulas (33)-(35) are valid and can be used not only for t ∈ [0,∞) but
also for t ∈ [0,T ], where T ̸= ∞. For the technical systems [14], [15] it is very interesting
and important the solution to be limited by its norm for a limited time interval t ∈ [0,T ].
Such property can be named limited Lagrange stability for a given time.
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Corollary 1 The sufficient conditions for limited Lagrange stability in the space C[a,b]
for the time interval t ∈ [0,T ] are:

a) ||XXX0|| is limited, (36a)

b) T <
1

||GGG(t)|| · ||AAA∗(t)||
. (36b)

Proof The norm (11) can be written as follows:∣∣∣∣∣∣
∣∣∣∣∣∣

t∫
0

|GGG(t − τ)|dτ

∣∣∣∣∣∣
∣∣∣∣∣∣= max

0¬t¬T

∣∣∣∣∣∣
t∫

0

|GGG(t − τ)|dτ

∣∣∣∣∣∣¬
T∫

0

max
0¬t¬T

|GGG(t)|dt ¬ T ||GGG(t)||. (37)

Hence the corollary is proven.
According to the terminology in [8] with (36b) is assessed the ‘escape time’ of the

solution.

Example 4 Let investigate the stability of one-dimensional linear system (23) of second
order. For the calculation of stability two variants are considered:

Variant 1 Here A∗(t) = e−t

Taking into account (34), (29), (30) for t ∈ [0,∞), ||P11|| ¬ 0.5, the condition for
Lagrange stability (34) is satisfied.

Variant 2 Here A∗(t) = 0.4t and ||P11|| ¬ 1 only for the time interval t ∈ [0,5] and the
sufficient conditions for limited solution, i.e. limited Lagrange stability exist only for
this interval. However analyzing (23) it is not difficult to conclude that for t → in f ty,
x → in f ty, but ||XXX || is limited for greater time interval than t ∈ [0,5], as the numerical
Runge-Kutta solution shows in Tab. 2. The principle reason for such a difference is that
the applied criterion gives only sufficient conditions for stability mainly because of the
majorant estimation of the norms.

If (33) is applied for the time interval t ∈ [0,3] then the norm of the solution can be
estimated:

||P11||¬ 0.5 ·1.2 = 0.6,

||x0||¬ 0.38,

||x||¬ 0.38
1−0.6

= 0.95.

This result is correct but obviously it is majorant, compared with the numerical solution
in Tab. 2, which can be expected. The corollary can also be applied calculating the norm
of g(t) = e−t − e−2t and replacing it in (36b). The result is T < 3.16. The described in
this section criterion concerns the stability of the linear dynamical system. On the other
hand exist the problem of stability of numerical methods [16], which does not exist for
the methods in this paper.



MODEL OF TIME-VARYING LINEAR SYSTEMS AND KOLMOGOROV EQUATIONS 209

Table 5: Example of unstable process.

t, s 0.25 1 3 5 7 10 12.5

Runge-Kutta 0.01867 0.154 0.445 0.776 1.49 6.05 32.64

2. Analytical method for solving Kolmogorov equations

In this subchapter will be shown an important application of the described in the
previous subchapter method of solution of linear systems with time-varying coefficients,
namely analytical solution of the equations of Kolmogorov [17].

Finding the analytical solution for such a system, in general, is extremely difficult.
Of course it is not a problem the finding of the numerical solution of these equations.
Analytical solution, however, has a number of advantages especially in the case when is
sought optimization of semi-Markovian processes, because in this case optimization of
a function, not optimization of the slow numerical solution of the system of differential
equations will be sought.

In the general case the Kolmogorov equations are [18]:

dP1(t)
dt

= ∑
j

λ1 jP1(t)+λ21P2(t)+ · · ·+λn1Pn(t)

... (38)
dPn−1(t)

dt
= λ1,n−1P1(t)+λ2,n−1P2(t)+ · · ·−∑

j
λn−1, jPn−1(t)+λn,n−1Pn(t)

dPn(t)
dt

= λ1,nP1(t)+λ2,nP2(t)+ · · ·−∑
j

λn, jPn(t)

where Pi(t) is the probability that the system at time t is in state Si and the sum of the
probabilities of the system to be in all possible states for each moment of time (including
the initial time t = 0) is 1.

The intensities of the transitions from state i to state j, which for the semi-Markovian
processes are functions of the time are λi j. For the system (38) is known that [18] the
right side of the (38) is linear dependent, but the unknown variables should be subject to
the additional condition

n

∑
j=1

Pi(t) = P1(t)+P2(t)+ · · ·+Pn(t) = 1. (39)
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For this purpose one of the unknown P+1(t), . . . ,Pn(t) should be eliminated (for exam-
ple Pn(t)) and as result (38) is reduced to n−1 order:

dP1(t)
dt

=−

[
∑

j
λ1 j +λn1

]
P1(t)+ [λ21 −λn1]P2(t)+

· · ·+[λn−1,1 −λn1]Pn(t)λn1

... (40)
dPn−1(t)

dt
= [λ1,n−1 −λn,n−1]P1(t)+ [λ2,n−1 −λn,n−1]P2(t)+

· · ·−

[
∑

j
λn−1, j +λn,n−1

]
Pn−1(t)+λn,n−1.

In matrix form system (40) is

dP(t)
dt

= AAA(t)PPP(t)+FFF(t). (41)

The particular type of the matrix elements ai j(t) can be determined relatively simply by
comparing (40) and (43). The resulting system (41), (42), (43) is a linear system with
variable parameters in time, finding the analytical solution of which is very difficult,
even for systems of low order.

PPP(t) =

∣∣∣∣∣∣∣∣∣∣
P1(t)
P2(t)

...
Pn−1(t)

∣∣∣∣∣∣∣∣∣∣
,FFF =

∣∣∣∣∣∣∣∣∣∣
λn1(t)
λn2(t)

...
λnn−1(t)

∣∣∣∣∣∣∣∣∣∣
, (42)

AAA(t) =

∣∣∣∣∣∣∣∣∣∣
a11(t) a12(t) . . . a1,n−1(t)
a21(t) a22(t) . . . a2,n−1(t)

...
... . . .

...
an−1,1(t) an−1,2(t) . . . an−1,n−1(t)

∣∣∣∣∣∣∣∣∣∣
. (43)

Without loss of generality AAA(t) can be represented as a sum of 2 parts, analogically to
(2):

AAA(t) = AAAC +AAA∗(t), (44)

ai j(t) = ai jc(t)+a∗i j(t), (45)

where AAAC is time constant matrix, the elements of which is desirable to be equal to the
average of the elements for the considered time interval. Deviation from this average



MODEL OF TIME-VARYING LINEAR SYSTEMS AND KOLMOGOROV EQUATIONS 211

values would worsen the convergence of the solution, without leading to an incorrect
result. Under these assumptions (41) will be written

dPPP(t)
dt

= AAACPPP(t)+FFF(t)+µAAA(t)PPP(t), (46)

where the ‘inconvenient’ non-stationary element is multiplied in (46) by a numerical
parameter µ. This will eventually lead to no change in the initial system of differential
equations, since the solution of (46) will be sought in a series

PPP(t) = XXX0 +(µ−µ0)XXX1 +(µ−µ0)
2XXX2 + · · ·+(µ−µ0)

mXXXm (47)

where Čµ0 = 0, Čµ = 1. Obviously, in this conditions (46) is identical to (41). The first
element of the series of the solution (47) can be determined, using the impulse response
matrix of Green for the time-invariant part of (46):

XXX0(t) = GGG(t)PPP(0)+
t∫

0

GGG(t − τ)FFF(τ)dτ (48)

where
PPP(0) = XXX0(t = 0), XXX1(t = 0) = 0, . . . ,XXXm(t = 0) = 0. (49)

It is known that the Green function of one-dimensional systems can be obtained as orig-
inal of the transfer function in Laplace presentation. When the system is multidimen-
sional and of high order it will be needed to find numerically the eigenvalues of the
matrix, to obtain analytical form of GGG(t − τ). For this purpose can be used the formula
of Sylvester [5] or another method.

The other elements of the solution (47) are found from the operator equations, ac-
cording to (19a), (19b):

C10 = AAA∗(t)XXX0 (50)
−C01(XXX1) =C10 (51)
−C01(XXX2) =C11(XXX1) (52)
...
−C01(XXXm) =C11(XXXm−1) (53)

Taking into account that. (8a), (8b), (8c), (9), the operator equations (51), (52), (53) can
be represented in differential form:

dXXX1

dt
−AAACXXX1 = A∗ (t).X0(t) = AAA∗(t)XXX0(t), (54)

dXXX2

dt
−AAACXXX2 = A∗ (t).X0(t) = AAA∗(t)XXX1(t). (55)
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By analogy can be found elements XXX1, XXX2, . . . , XXXm in integral form, applying the general
formulas (13), given in the previous subchapter. The result is:

XXX1(t) =
t∫

0

GGG(t − τ)AAA∗(τ)XXX0(τ)dτ,

XXX2(t) =
t∫

0

GGG(t − τ)AAA∗(τ)XXX1(τ)dτ,

... (56)

XXXm(t) =
t∫

0

GGG(t − τ)AAA∗(τ)XXXm−1(τ)dτ.

Hence the solution (47) is

PPP(t) = XXX0(t)+XXX1(t)+XXX2(t)+ · · ·+XXXm(t), (57)

the elements of which can be calculated using formulas (48), (54), (55) or (48), (56).
The convergence of the solution and the error XXXerr if only the first m elements of the

series (57) are taken into account are investigated in the previous section.

3. Conclusion

• The approximation method shows excellent accuracy, gives analytical solution and
therefore can be used for synthesis of control circuits, high speed computer control
and computer optimization of dynamical systems.

• The criterion for Lagrange stability can be applied relatively easily to all time-
varying systems without theoretical obstacles. It can give assessment of robust
Lagrange stability for a given subset of parameters.

• The shown method allows the analytical solution of a linear nonstationary system
with time-variable parameters be reduced to solving a linear system with constant
parameters, which task is far more simple and has long been known methods for
solving (e.g. Green matrix).

• The method can be used in semi-Markovian random processes described by non-
stationary system of differential equations of Kolmogorov.

• In practice finite number of the elements of the solution (19) are taken into ac-
count, but there are methods for estimation of error and convergence, so that ac-
curacy requirements are met.
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