
BULLETIN OF THE POLISH ACADEMY OF SCIENCES

TECHNICAL SCIENCES, Vol. 63, No. 4, 2015

DOI: 10.1515/bpasts-2015-0112

The average time complexity of probabilistic algorithms

for finding generators in finite cyclic groups

T. ADAMSKI1 and W. NOWAKOWSKI2∗

1 Institute of Electronic Systems, Warsaw University of Technology, 15/19 Nowowiejska St., 00-662 Warsaw, Poland
2 Institute of Mathematical Machines, 34 Krzywickiego St., 02-078 Warsaw, Poland

Abstract. Generators of finite cyclic groups play important role in many cryptographic algorithms like public key ciphers, digital signatures,

entity identification and key agreement algorithms. The above kinds of cryptographic algorithms are crucial for all secure communication in

computer networks and secure information processing (in particular in mobile services, banking and electronic administration). In the paper,

proofs of correctness of two probabilistic algorithms (for finding generators of finite cyclic groups and primitive roots) are given along with

assessment of their average time computational complexity.

Key words: probabilistic algorithm, average time complexity, group generator, cyclic groups, primitive roots, primitive polynomials.

List of Symbols

N – set of natural numbers,

Z – set of integers,

〈n, m〉 – subset of the set of integers 〈n, m〉
df
={k ∈ Z :

n ≤ k ≤ m},

Fq – finite field with q elements,

GF (pn) – finite field with pn elements,

Zn – ring of integers modulo n,

Zp – field of integers modulo p, where p is a prime,

Z∗

n – multiplicative group of the ring Zn,

F ∗

q – multiplicative group of the finite field F ∗

q ,

Cn – cyclic group of the order n,

G1 × G2 – direct product of groups G1 and G2,

(Ω,M, P) – probabilistic space,

ϕ – the Euler’s function,

E(X) – expected value of the random variable X,

D2(X) – variance of the random variable X,

GCD(n, m) – greatest common divisor of n and m,

#G – number of elements of a finite set G, order of

the group G,

o(a) – order of the group element a,

〈A〉 – subgroup of a group G generated by a subset

A ⊆ G,

〈a〉 – subgroup of a group G generated by an element

a ∈ G,

d|n – d divides n,

ker f – kernel of a homomorphism f ,

Zp[x] – ring of all polynomials with coefficients in the

field Zp,

Zp[x]/(f(x)) – quotient ring of polynomials modulo f(x).

1. Introduction

If G is a group and there is an element g ∈ G that G =
{gk; k ∈ Z} then we say that g is a generator of the group G

and G is called a cyclic group. Cyclic groups can be finite or

infinite.

Example 1.1. A natural number 3 is a generator of the mul-

tiplicative group Z∗

7 . It is easy to verify because we have for

consecutive powers of 3: 31 (mod7) = 3, 32 (mod 7) = 2,

33 (mod7) = 6, 34 (mod7) = 4, 35 (mod7) = 5, 36 (mod
7) = 1.

Computation of generators in cyclic groups is important

for pseudorandom number generators, error correcting codes,

and many cryptosystems like:

• ElGamal and Massey-Omura public key ciphers,

• Diffi-Hellmann key agreement protocol,

• DSA, ElGamal and Nyberg-Rueppel digital signatures.

There is no efficient algorithm known for the problem of

finding generators for a cyclic group G unless the prime fac-

torization of #G = qk1

1 · qk2

2 · ...qkr
r is given. Even in this

special case we must resort to the use of probabilistic algo-

rithms. On the other hand, factoring an integer in general is

believed to be a very difficult problem. So it may not be easy

to compute the prime factorization of #G.

In the sequel we describe and analyze two algorithms

which compute from the input data (i.e. factorization of the

number #G and definition of group multiplication) genera-

tors of a finite cyclic group. In particular (in the case of the

multiplicative group Z∗

p) the input data are: a prime p and the

factorization of the number p−1.

The main aim of the paper is assessment of the average

computational complexity of two analyzed algorithms.

2. Probabilistic algorithms for finding

a cyclic group generator

A simple probabilistic algorithm (version #1) for finding gen-

erators of the finite cyclic group G is the following (see

Fig. 1).

∗e-mail: t.adamski@ise.pw.edu.pl

989

T. Adamski and W. Nowakowski

Algorithm: Probabilistic algorithm for finding generators of the

finite cyclic group G (version #1).

Input Data:

1.Definitions of the set G and group multiplication in G and the

order #G of the group G

2. The canonical factorization of the number #G i.e. pairwise dif-

ferent primes q1, q2, .., qr , r number of primes and natural numbers

k1, k2, ..., kr ∈ N that #G = qk1
1 · qk2

2 · ... · qkr
r

Output Data: A generator g of the cyclic group G

1. Choose at random (with the uniform probability distribution on

G) an element g ∈ G

2. for i := 1 to r do; In the loop we verify if for every

i ∈ 〈1, r〉, we have g#G/qi 6= 1.

If that condition is true then

g ∈ G is a generator of the group G
and we finish the algorithm.

begin

a := g#G/qi ;

if a = 1 then goto; 1. If the condition: for every

i ∈ 〈1, r〉, g#G/qi 6= 1 is

not true then we go to the

point 1.

end

3. write (a is a group generator)

Fig. 1. Algorithm for finding a generator g of the finite cyclic

group G (version #1)

Algorithm: Probabilistic algorithm for finding generators of the

finite cyclic group G (version #2)

Input data:

1.Definitions of the set G and group multiplication in G and the

order #G of the group G

2. The canonical factorization of the number #G i.e. pairwise dif-

ferent primes q1, q2, ..., qr , r number of primes and natural num-

bers k1, k2, ..., kr ∈ N that #G = qk1
1 · qk2

2 · ... · qkr
r

Output data: g ∈ G generator of the cyclic group G

g := 1;

for i := 1 to r do begin

repeat

Choose at random an element a ∈ G (with uniform probability

distribution); we are seeking an element of the order qki
i in the

cyclic group G.

b := a(p−1)/(qi)(modp);

until (b 6= 1);

c := a(p−1)/(q
ki
i

)(modp); we compute an element of the order

qki
i

g := g ∗ c(modp); we compute a product of elements of orders:

qk1
1 , qk2

2 , . . . , qkr
r

end;

write (“generator =”, g);

Fig. 2. Probabilistic algorithm for finding generators of a cyclic

group G (version #2)

A probabilistic algorithm for efficient finding generators

of the finite cyclic group G is shown in Fig. 2. The algorithm

computes a generator from the input data i.e. a number #G
and the factorization of the number #G.

The simplest algorithm for finding generators in a cyclic

group G is the following:

1. Choose at random an element a ∈ G.

2. Compute consecutive powers a1, a2, ..., a#G.

3. Verify if {a1, a2, ..., a#G} = G
4. If this equation is fulfilled the element a is a generator of

the cyclic group G, if not go to the point 1.

The above algorithm is simple but the point 2 has the ex-

ponential complexity and for large group orders is intractable.

3. Correctness of the algorithm

for finding generators in version #1

Correctness of the probabilistic algorithm (in version #1) for

finding generators follows immediately from the Theorem 3.1.

Theorem 3.1. Assume G is a finite cyclic group, r ∈ N and

#G = qk1

1 · qk2

2 · ... · qkr
r , where q1, q2, ..., qr are primes and

q1 < q2 < ... < qr, k1, k2, ..., kr ∈ N . If g ∈ G then g is a

generator of the group G, if and only if, for every i ∈ 〈1, r〉
we have g#G/qi 6= 1.

Proof. 1. Implication ⇒. If an element g is a generator of

the multiplicative group G then o(g) = #G. Hence for every

i ∈ 〈1, r〉 we have gp#G/pi 6= 1.

2. Implication ⇐. If g is not a generator of the group

G then there is the smallest exponent s ∈ 〈1, p − 2〉, that

gs = 1 (then s is the order of the element g). It follows

from the Lagrange theorem that the order of an element of

a finite group is always divisor of the group order. Then we

have s|#G i.e. s| qk1

1 · qk2

2 · ... · qkr
r and there are exponents

k′

1, k
′

2, ..., k
′

r ∈ N ∪ {0} that for every i ∈ 〈1, r〉, k′

i ≤ ki and

we have:

s = q
k′

1

1 · q
k′

2

2 · ... · q
k′

r
r .

Because s < #G then there is such j ∈ 〈1, r〉, that

k′

j < kj . It follows from the equality gs = 1, that g#G/pj = 1.

Hence it is not true, that for every i ∈ 〈1, r〉 we have

g#G/pi 6= 1, which proves implication left.

4. Correctness of the algorithm

for finding generators in version #2

Crucial for the correctness of the algorithm (in version #2,

see Fig. 2) described in the Sec. 2 are the following theorems

from the group theory.

Theorem 4.1. Every subgroup H of the cyclic group G is a

cyclic group.

Proof. Assume g ∈ G is a generator of the group G. Every

element of the group G can be written as gk, where k ∈ Z . If

a subgroup H = {1} or H = G then of course, the subgroup

H is cyclic. Assume, that the subgroup H is not equal to

H = {1} then there is in the subgroup H an element differ-

ent from 1. Denote by n such a smallest natural number, that

gn ∈ H . We prove in the sequel, that gn is a generator of the

990 Bull. Pol. Ac.: Tech. 63(4) 2015

The average time complexity of probabilistic algorithms for finding generators in finite cyclic groups

group H . Indeed, for an arbitrary h ∈ H , h 6= 1 then there

is an integer m ∈ Z , m 6= 0 that we have h = gm. There are

integers k and r ∈ 〈0, n−1〉 that m = k ·n+r. Then we have

h = gm = gk·r+r = (gn)k · gr and multiplying both sides of

this equality by (gn)−k we obtain gr = (gn)−k · h. Because

gn, h ∈ H then gr ∈ H . The number r as a remainder from

division by r then 0 ≤ r < n and we have to have r = 0.

Finally, we can write h = gm = gn·k = (gn)k, then gn is a

generator of the group H and H is a cyclic group.

Theorem 4.2. If G is a finite cyclic group and a natural num-

ber d is a divisor of the G order then there is exactly one

subgroup of the order d of the group G.

Proof. 1. Existence. Denote by g ∈ G a generator of the group

G, then G = {g, g2, ..., gn}, (where gn = 1). If n = d · m,

then the element gm is of the order d, then a subgroup gen-

erated by the element gm i.e. 〈gm〉 is also a group of the

order d.

2. Uniqueness. Assume A and B are different subgroups

of the group G with the same order d. Every subgroup of a

cyclic group is cyclic then there are elements a, b ∈ G, that

A = 〈a〉 and B = 〈b〉. The subgroup 〈a, b〉 of the group

G has more than k elements because 〈a, b〉 contains as sub-

groups two groups A = 〈a〉 and B = 〈b〉, which are different.

Every cyclic group is abelian. Hence for every element of the

subgroup 〈a, b〉 there are integers i, j ∈ Z that this element

can be written as aibj . Every element aibj raised to the power

d gives as a result 1 then there is no element in the subgroup

〈a, b〉 with the order equal to #〈a, b〉. Then we come to the

conclusion that the group 〈a, b〉 is not cyclic which is not true

(see Theorem 4.1). Assumption, that there are two different

subgroups of the order d contradicts with the Theorem 4.1.

From the above theorem we obtain immediately the fol-

lowing corollary.

Corollary 4.3. If G is a finite cyclic group, d ∈ N and d|#G
then there is an element of the order d in the group G.

Theorem 4.4. Assume G is a group and a ∈ G. If for a prime

p and a number e ∈ N we have

ape

= 1, (1)

ape−1

6= 1, (2)

then the element a has the order pe.

Proof. If m is the order of the element a ∈ G then because

ape

= 1, we have m |pe . Then there is f ∈ 〈0, e〉 that m = pf .

If f < e then apf

= 1 and also ape−1

= 1 which contradicts

with the assumption that ape−1

6= 1. Then f = e and the

element a is of the order pe.

The second crucial fact for the algorithm correctness is

given by the following Theorem 4.5.

Theorem 4.5. Assume G is an Abelian group. If

g1, g2, ..., gn ∈ G and si is an order of the element gi for

s1, s2, ..., sn are relatively prime in pairs) then the order of

the product g1 · g2 · ... · gn is equal to s1 · s2 · ... · sn.

Proof. It is sufficient to prove the theorem for n = 2 and

then apply the finite induction method. Assume 1 is a unit of

the group G. If there is an integer k that (g1 · g2)
k = 1 then

(g1 · g2)
k·si = 1 for i = 1, 2. Therefore we have gk·s2

1 = 1
and gk·s1

2 = 1. As a result we obtain s1| k · s2 and s2| k · s1.

Because GCD(s1, s2) = 1 then we have s1|k, s2| k and

s1s2| k. Hence the order of the product g1 · g2 is also divis-

ible by s1 · s2. But we have (g1 · g2)
s1·s2 = 1 then the order

of the product g1 · g2 is equal to s1 · s2.

From the Theorems 4.1 and 4.2 it follows, that for the

cyclic group G and for every divisor d of the number #G =
qk1

1 ·qk2

2 ·...·qkr
r there is an element of the order d in particular

an element of the order qki

i .

In the loop repeat. . . until for every k = 1, 2, ..., r we are

looking for an element of the order qki

i (using the method

proposed in the Theorem 4.5). Such an element exists in the

cyclic group G for every i = 1, 2, ..., r because qki

i is a divi-

sor of the number #G = qk1

1 · qk2

2 · ...qkr
r (#G is the order

of the group G). The loop repeat. . . until which detects an

element of the order qki

i is then finishing with probability 1.

From the Theorem 4.4, we obtain that: if bi =

a(p−1)/(qi) 6= 1 then the element bi = a(p−1)/(q
ki
i

) of the

group G has the order equal to qki

i .

The integers qk1

1 , qk2

2 , ..., qkr
r are relatively prime in pairs

then from the Theorem 4.5 it follows, that the element:
r
∏

i=1

b
(p−1)/(q

ki
i

)
i has the order equal to qk1

1 · qk2

2 · ... · qkr
r which

proves the correctness of the algorithm.

5. Number of different generators

of the cyclic group

Theorem 5.1. If G is an arbitrary group and x ∈ G is an

element of the order n ∈ N then for every k ∈ Z we have:

xk = 1 if and only if n| k.

Proof. 1. For n = 0 the thesis is true. Assume then, that

n ≥ 2.

2. ⇐ If n|k then there is r ∈ Z , that k = r · n. Hence

xk = xr·n = (xn)r = 1.

3. ⇒ There are two numbers q ∈ Z and r ∈ 〈0, n − 1〉,
that k = q ·n+ r (division with remainder). Then from prop-

erties of raising to a power in groups we have: 1 = xk =
xq·n+r = (xn)q ·xr = xr. But r has to be equal to 0, because

r ∈ 〈0, n− 1〉 and n is order of x. Hence k = q ·n and n| k.

Theorem 5.2. If G is a group and x ∈ G is an arbitrary

group element of the order n ∈ N (and o(x) denotes order of

the element x i.e. o(x) = n) then for every k ∈ Z we have:

o(xk) = m, where m =
n

GCD(k, n)
.

Proof. Denote d = GCD(k, n), then there is r ∈ Z , that we

have n = d · m and k = d · r. Then we have:

(xk)m = (xd·r)m = xd·r·m = (xd·m)r = (xn)r = 1.

It follows from the Theorem 5.1 that xk = 1 iff n|k. We have

that o(xk) |m . If we denote o(xk) by s then 1 = (xk)s = xk·s

and we obtain n |(k · s) or equivalently (d · m) |(d · r · s).

Bull. Pol. Ac.: Tech. 63(4) 2015 991

T. Adamski and W. Nowakowski

Then m |(r · s) and m |s because m and r are relatively

prime. Finally, we have that s = m i.e. o(xk) = m.

Theorem 5.3. If G is a group and x ∈ G is an arbitrary group

element of the order n ∈ N then for every k ∈ Z we have:

〈x〉 = 〈xk〉 if and only if GCD(k, n) = 1,

where 〈a〉 denotes a subgroup of the group G generated by

the element a ∈ G.

Proof. Thesis of the theorem is a direct conclusion from the

Theorem 5.2, which says that o(xk) =
n

GCD(k, n)
.

The number of different generators of a cyclic group can

be counted with the following theorem.

Theorem 5.4. If G is a finite cyclic group of the order n and

g is a generator of G then for every k ∈ 〈1, #G〉 gk is a

generator of the group G if and only if GCD(k, n) = 1.

Proof. Thesis of the theorem is an immediate consequence

of the Theorem 5.3. If we assume that x = g then from the

Theorem 5.3 we obtain, that gk is a generator of the group G
if and only if GCD(k, n) = 1.

It follows from the Theorem 5.4 that the number of all gen-

erators of the finite cyclic group Gis equal to ϕ(#G), where

ϕ is the Euler function. The quotient
ϕ(#G)

#G
allows to assess

probability of finding a generator, when we choose elements

from G at random with the uniform distribution on G. The

following examples illustrate this result.

Example 5.1. Additive group Zn is a finite cyclic group of

the order n then it has ϕ(n) different generators. For exam-

ple additive group Z101 is a finite cyclic group of the order

n = 101, then it has ϕ(101) = 100 different generators and

the probability
ϕ(#Zn)

#Zn
=

100

101
.

Example 5.2. If p is a prime then the multiplicative group

Z∗

p is a finite cyclic group of the order ϕ(p) = p− 1 and has

ϕ(ϕ(p)) = ϕ(p − 1) different generators. For example 101

is a prime and a multiplicative group Z∗

101 is a finite cyclic

group of the order ϕ(101) = 100. Then the multiplicative

group Z∗

101 has ϕ(ϕ(101)) = 40 different generators and the

probability
ϕ(#Z∗

101)

#Z∗

101

=
40

100
.

Example 5.3. Assume n ∈ N and n ≥ 2. If the multiplica-

tive group Z∗

n is cyclic then it has ϕ(n) elements and ϕ(ϕ(n))
generators (called also primitive roots from n) and the prob-

ability
ϕ(#Z∗

n)

#Z∗

n

=
ϕ(ϕ(n))

ϕ(n)
. In particular case if p is an

odd prime and k is a natural number then for n = pk prim-

itive roots from n (i.e. generators of Z∗

pk) always exist and

#Z∗

pk = ϕ(pk). In this case number of primitive roots is even

to ϕ(ϕ(pk)) = ϕ(pk−1 · (p − 1)).

Example 5.4. The multiplicative group F ∗

q of the finite field

Fq is always a cyclic group of the order q−1 and has exactly

ϕ(q − 1) generators and probability
ϕ(#F ∗

q)

#F ∗

q

=
ϕ(q − 1)

q − 1
.

It is easy to prove that the Euler’s function ϕ is “irreg-

ular” i.e. lim sup
n→∞

ϕ(n)

n
= 1 and lim inf

n→∞

ϕ(n)

n
= 0. It means

that for arbitrary N0 ∈ N and ε > 0 there are n1, n2 ∈ N ,

n1, n2 > N0 that
ϕ(n1)

n1
< ε and

∣

∣

∣

∣

ϕ(n1)

n1
− 1

∣

∣

∣

∣

< ε. Then the

quotient
ϕ(#G)

#G
i.e. probability of choosing (at random with

uniform probability) a generator from the cyclic group G can

be very small or near to 1.

6. The average time complexity of the algorithm

for finding group generators in version # 1

In this section we assess the average complexity of the proba-

bilistic algorithm (in version #1) for finding group generators

of the cyclic group G (see Fig. 1). We assume that G is a

finite cyclic group, r ∈ N and #G = qk1

1 · qk2

2 · ... · qkr
r ,

where q1, q2, ..., qr are primes, q1 < q2 < ... < qr and

k1, k2, ..., kr ∈ N . Then we know factorization of the order

#G = qk1

1 · qk2

2 · ... · qkr
r of the group G.

If we compute the power g#G/qi for every i ∈ 〈1, r〉 using

fast squaring algorithm (see for example Menezes [6]) then

time Tver devoted for verification, that for every i ∈ 〈1, r〉,
we have g#G/qi 6= 1 can be assessed with the following in-

equality

Tver ≤ r · (⌊log2 #G⌋ + 1)∆t,

where ∆t is execution time of the group multiplication and r
denotes number of different primes in #G factorization.

Analyzed algorithm from Fig. 1 realizes a sequence of

Bernoulli trials with probability of success equal to q =
ϕ(n)

n
.

The first success i.e. fulfilling the condition:

for every i ∈ 〈1, r〉, we have g#G/qi 6= 1,

means that a generator g of the group G was found and the

algorithm is finished.

In a sequence of Bernoulli trials with probability of suc-

cess equal to q ∈ (0, 1), a waiting time for the first success

is described by a random variable with geometric distribu-

tion. A discrete random variable X : Ω → N defined on a

probabilistic space (Ω,M, P) and with values in the set of

natural numbers has (from definition) geometric distribution

if for every k ∈ N we have:

P (X = k) = (1 − q)k−1q,

where a parameter q ∈ (0, 1). The mean value and variance

of the random variable X are even to:

E(X) =
1

q
, D2(X) =

1 − q

q2
.

Then in the case of our algorithm E(X) =
#G

ϕ(#G)
. Final-

ly, the average time Tave devoted for execution of the whole

algorithm can be assessed by the following inequality:

Tave ≤ E(X)·Twer ≤
#G

ϕ(#G)
·r ·(⌊log2 #G⌋+1)·∆t. (3)

992 Bull. Pol. Ac.: Tech. 63(4) 2015

The average time complexity of probabilistic algorithms for finding generators in finite cyclic groups

As we mentioned the coefficient E(X) =
#G

ϕ(#G)
is “irreg-

ular” as a function of the group order #G because we have:

lim sup
n→+∞

ϕ(n)

n
= 1 and lim inf

n→+∞

ϕ(n)

n
= 0.

3. The number r of different primes in factorization of

the number #G can be easily assessed by an inequality

r ≤ log2 #G then from (3) we obtain:

Tave ≤ E(X) · Twer

≤
#G

ϕ(#G)
· (log2 #G) · (⌊log2 #G⌋ + 1) · ∆t.

Hence we can say that the average time complexity of the al-

gorithm is equal to O(log2
2 #G), when we assess number of

squarings in the group G. Usually group multiplication has

square time bit complexity i.e. ∆t = O(log2
2 #G) then to-

tal average time bit complexity of the algorithm is even to

O(log4
2 #G).

7. The average time complexity of the algorithm

for finding group generators in version #2

The average computational time complexity is the most impor-

tant parameter of any algorithm. In the sequel we assess the

average time computational complexity of the algorithm from

Fig. 2 assuming that the discrete random variable (which de-

scribes random choosing of elements from the cyclic group G
inside of the loop repeat. . . until) has the uniform probability

distribution on G.

Theorem 7.1. (on group homomorphism).

Assume we have two groups G1 and G2. If H is a nor-

mal divisor of the group G1, f : G1 → G2 is a homomor-

phism of the group G1 onto the group G2 and the inclusion

H ⊆ ker f is fulfilled then there is exactly one homomor-

phism f0 : G1/H → G2, that f0κ = f , where κ is a canoni-

cal homomorphism of the group G1 onto the quotient group

G1/H . In other words there is exactly one homomorphism

f0 : G1/H → G2, that the following diagram

is commutative. In case, when H = ker f the homomorphism

f0 is an isomorphism.

Proof. see. V. Shoup [1], Cz. Bagiński [3], A. Białynicki [10].

Corrollary 7.2. Assume G1 is a finite group and H ⊆ G1

is a normal divisor of the group G1. If a random variable

X : Ω → G1 defined on the probabilistic space (Ω,M, P)
(with values in a measurable space (G1, 2

G1)) has the uniform

distribution on G1 then

1. random variable κ◦X with values in the measurable space

(G1/H,F), (where F = 2G1/H and κ : G1 → G1/H
is the canonical homomorphism onto the quotient group

G1/H) has the uniform distribution on the quotient group

G1/H and for every k = 1, 2, ...,
#G1

#H
we have:

P (κ ◦ X = Hk) =
#H

#G1
,

where Hk is k-th coset of the quotient group G1/H .

2. If additionally we have a finite group G2 and a homo-

morphism f : G1 → G2 of the group G1 onto G2 and

ker f = H then the random variable f(X) has the uni-

form distribution on G2.

Proof. The first part of the theorem thesis follows from the

fact that every coset of the quotient group G1/H has the same

number of elements (i.e. exactly #H elements). The second

part of the theorem thesis is an immediate consequence of the

Theorem 7.1 on the group homomorphism.

The following theorem is useful in the proof of the The-

orem 5.4.

Theorem 7.3. If G is a finite group and a ∈ G then a#G = 1.

Proof. It follows immediately from the Lagrange theorem

from group theory.

Theorem 7.4.

Assume G is a finite cyclic group and #G = qk1

1 · qk2

2 ·
... · qkr

r . If we define a function fi : G → G given for every

a ∈ G and for every i ∈ {1, 2, ..., r} by the following formula:

fi(a) = a
#G
qi

then fi is a homomorphism of the group G into the group G
and fi(G) is a cyclic subgroup of the order qi of the cyclic

group G.

Proof. 1. It is easy to verify, that fi is a homomorphism of

the group G into the group G.

Indeed, because G as a cyclic group, G is an abelian group

and we have for every a, b ∈ G

fi(a · b) = (a · b)#G/qi = a#G/qi · b#G/qi = fi(a) · fi(b).

2. A homomorphic image of a group is a group then fi(G) is

a subgroup of the group G. Of course fi(G) is a cyclic group

as a subgroup of a cyclic group.

3. We can in a simple way assess the order of the group

fi(G). If g is a generator of the group G then the following

elements belong to the group fi(G):

fi(g
1), fi(g

2), ..., fi(g
#G)

therefore for consecutive 1, 2, . . ., qi powers of the generator

g we have the following qi values:

g#G/qi·1, g#G/qi··2, ..., g#G/qi·qi ,

which are pairwise different (because exponents are different

and g is the generator of the group G). It is easy to com-

pute powers of g#G/qi for consecutive integer exponents s ∈
{qi+1, qi+2, ..., #G}. For every s ∈ {qi+1, qi +2, ..., #G}

Bull. Pol. Ac.: Tech. 63(4) 2015 993

T. Adamski and W. Nowakowski

there are such k ∈ N , and z ∈ {0, 1, ..., qi − 1〉, that we have

s = z + k · qi.

Because g#G = 1 (see Theorem 7.3) then we have

g#G/qi·s = g#G/qi·(k·qi+z) = g#G/qi·z and all powers of

g for exponents s ∈ {qi + 1, qi + 2, ..., #G} belong to the

following qi element set

{g#G/qi·1, g#G/qi··2, ..., g#G/qi·qi}.

In short, fi(G) is a subgroup of the order qi of the cyclic

group G.

Assume now, that G1 = G and G2 = fi(G), and take

as a surjective homomorphism of the group G1 onto G2 the

homomorphism fi. If a discrete random variable X has the

uniform probability distribution on G then from the Corol-

lary 7.2 we obtain, that the random variable fi(X) has the

uniform distribution on the subgroup G2 ⊆ G of the or-

der qi.

Then for every i ∈ 〈1, r〉 probability that after the first

pass of the internal loop repeat . . . until we go out from the

internal loop (probability of success) is equal to

P (fi(X) 6= 1) = P (X#G/qi 6= 1) =
qi − 1

qi
.

Assume (Xj)
∞

j=1 is a sequence of independent discrete ran-

dom variables with values in the cyclic group G and with

uniform probability distribution on G (consecutive draws of

the element a ∈ G are independent). In other words (Xj)
∞

j=1

is a discrete white noise with uniform probability distribu-

tion. It is a stochastic process describing draw of consecutive

elements a ∈ G inside of the loop repeat . . . until.

Conditions of the going out from the i-th loop repeat . . .

until are described by the stochastic process:

(sgn(fi(Xj) − 1))∞j=1. (4)

If sgn(fi(Xj)− 1) = 0 then the condition of going out from

the loop repeat . . . until is not fulfilled (lack of success) and

we have

P (sgn(fi(Xj) − 1) = 0) =
1

qi
.

If sgn(fi(Xj)− 1) = 1 then the condition of going out from

the loop repeat . . . until (success) is fulfilled and we have

P (sgn(fi(Xj) − 1) = 1) =
qi − 1

qi
.

In the algotithm we go out from the loop repeat . . . until

immediately after the output condition is fullfilled (the first

success).

The stochastic process (4) is an infinite sequence of

Bernoulli trials with probability of success equal to
qi − 1

qi
.

Denote by Yi a function defined on the probabilistic space

(Ω,M, P) and with values in the set N∪{+∞} in the follow-

ing way: for every k ∈ N and every ω ∈ Ω Yi(ω) = k if and

only if the trajectory (sgn(fi(Xj(ω))− 1))∞j=1 of the process

(sgn(fi(Xj)−1))∞j=1 is the following: sgn(fi(X1(ω))−1) =
0, sgn(fi(X2(ω)) − 1) = 0, ..., sgn(fi(Xk−1(ω) − 1) = 0,

sgn(fi(Xk(ω))−1) = 1 i.e. the first success (the first 1 in the

sequence) occurs exactly in the k-th trial and Yi(ω) = +∞

if and only if the trajectory (sgn(fi(Xj(ω)) − 1))∞j=1 is a

sequence of zeroes.

It can be easily proved that the defined on the probabilistic

space (Ω,M, P) as above function Yi is a random variable.

The random variable Yi has the geometric distribution with

the probability of success equal to
qi − 1

qi
i.e. for every k ∈ N

we have

P (Yi = k) =

(

1

qi

)k−1

·
qi − 1

qi
.

The random variable Yi = k, if and only if, from the i-th ex-

ecution of the internal loop repeat . . . until we go out exactly

after the k-th draw of a inside of this loop.

The expected value of the random variable Yi (i.e the av-

erage time till going out from the internal loop during the

i-th pass of the external loop) is equal to
qi

qi − 1
then we

have:

E(Yi) =
qi

qi − 1
≤ 2

and the variance:

D2(Yi) =
qi

(qi − 1)2
≤ 2.

Then the average time of execution of r repeat

. . . until loops is described by a random vari-

able

Z = Y1 + Y2 + ... + Yr

and is even to

E(Z) =

r
∑

i=1

E(Yi) =

r
∑

i=1

qi

qi − 1
≤ 2 · r. (5)

Random variables Y1, Y2, . . . , Yr are independent then the

variance of the random variable Z = Y1 + Y2 + ... + Yr is

even to:

D2(Z) = D2(Y1 + Y2 + ... + Yr) =

r
∑

i=1

D2(Yi)

=
r

∑

i=1

qi

(qi − 1)2
.

If #G = qk1

1 · qk2

2 · ...qkr
r is the canonical factorization of #G

then we have

log2 #G ≥ log2(q
k1

1 · qk2

2 · ...qkr
r)

=

r
∑

i=1

ki log2 qi ≥ r

and r < log2 #G. Then because r ≤ log2 p, we obtain

from (5)

E(Z) =

r
∑

i=1

E(Yi) ≤ 2 · r ≤ 2 log2(#G).

Therefore, if we use inside of the loop the well-known fast

algorithm for raising to a power in the group (having com-

plexity O(log2 #G)) then the average number of group mul-

tiplications inside of all r loops repeat . . . until has com-

994 Bull. Pol. Ac.: Tech. 63(4) 2015

The average time complexity of probabilistic algorithms for finding generators in finite cyclic groups

plexity O((log2 #G)2) (we assess number of group multi-

plications). We treat log2 #G as the dimension of the input

data.

In similar way we can assess number of group multipli-

cations on the outside of the loops repeat . . . until. If we

use the fast algorithm for raising to a power in the group,

this number can be also assessed by O((log2 #G)2). Finally,

we obtain that the average computational complexity of the

analyzed algorithm is even to O((log2 #G)2).

In many particular cases the group multiplication has bit

computational complexity even to O((log2 #G)2) then the

average bit complexity of the analyzed algorithm is even to

O((log2 #G)4).

8. Generators of the multiplicative groups

of finite fields

In this chapter we consider two particular cases of cyclic

groups frequently used in cryptography.

Assume p is a prime and k ∈ N then from the following

Theorem 8.1 we obtain that multiplicative groups Z∗

p (with

multiplication modulo p as a group operation) and GF ∗(pk)
(with multiplication of polynomials modulo an irreducible

polynomial of the degree k as a group operation) are cyclic

groups.

Theorem 8.1. If p is a prime and k ∈ N then every multi-

plicative group GF ∗(pk) of the finite field GF (pk) is a cyclic

group of the order pk − 1.

Proof. The multiplicative group GF ∗(pk) = GF (pk)\{0}
then the order of the group GF ∗(pk) is equal to pk − 1.

The fact that GF ∗(pk) is cyclic is proved for example in

N. Koblitz [2], C. Bagiński [3].

The described algorithms can be applied in both cases. For

Z∗

p we have to know factorization p − 1 = qk1

1 · qk2

2 · ... · qkr·
r

and assume to avoid triviality that p is an odd prime.

For GF ∗(pk) we have to know factorization pk − 1 =
qk1

1 ·qk2

2 ·...·qkr·
r and assume to avoid triviality that pk−1 ≥ 2.

In cryptography our goal is to construct a large prime p
together with a generator g for Z∗

p . The specific prime p is not

so important. Then if we do not know the prime factorization

of the number p − 1 we can:

1. generate a random factored number n in some range n =
qk1

1 · qk2

2 · ... · qkr
r and next;

2. test n + 1 for primality (using for example the well-known

Miller-Rabin algorithm);

3. if n + 1 is not a prime we repeat the point 1, if n + 1 is

a prime we have (denoting n + 1 by p) a prime p and the

factorization of p − 1.

A probabilistic algorithm (in version # 2) for efficient find-

ing generators of the multiplicative group Z∗

p is shown in the

Fig. 3. The algorithm computes a primitive root from p (i.e.

a generator of the group Z∗

p) from the input data i.e. a prime

p and the factorization of the number p − 1.

Algorithm: Probabilistic algorithm for primitive root mod p gen-

eration

Input data:

1. An odd prime p

2.The canonical factorization of the number p − 1 i.e. r ∈
N , different in pairs primes q1, q2, .., qr and natural numbers

k1, k2, ..., kr ∈ N that p − 1 = qk1
1 · qk2

2 · ... · qkr
r

Output data: g ∈ Z∗

p generator of the multiplicative group Z∗

p

g := 1;

for i := 1 to r do begin

repeat

Choose at random a number a ∈ Z∗

p (with uniform probability

distribution); we are seeking an element of the order qki
i in the

group Z∗

p .

b := ap−1/qi(modp);

until (b 6= 1);

c := ap−1/q
ki
i (modp); we compute an element of the order qki

i

g := g ∗ c(modp); we compute a product of elements of orders:

qk1
1 , qk2

2 ,. . . ,qkr
r

end;

write (“generator =”, g);

Fig. 3. Probabilistic algorithm for primitive root modulo p compu-

tation (version #2)

9. Primitive roots modulo n

The multiplicative group Z∗

n of the ring Zn, where n ∈

N , n ≥ 2 is defined as a set Z∗

n
df
={k ∈ N ; k <

n, GCD(n, m) = 1} along with the multiplication modulo n
as a group operation.

A primitive root g from a natural number n (or as we say

primitive root modulo n) is (from definition) a generator g of

the multiplicative group Z∗

n where n ∈ N , n ≥ 2.

The multiplicative group Z∗

n (for n ∈ N , n ≥ 2) can be

cyclic or not. Then the primitive root from n exists or does not

exist. The problem is explained in detail by the following three

theorems. The first describes a structure of the multiplicative

group Z∗

n, the second says when Z∗

pk is a cyclic group, the

last answers the question when primitive roots exist.

Theorem 9.1.

If n = pk1

1 · pk2

2 · ...pkr
r , where p1, p2, .., pr are different in

pairs primes and k1, k2, .., kr ∈ N (i.e. n = pk1

1 · pk2

2 · ...pkr
r

is a canonical factorization of n) then the multiplicative

group Z∗

n is isomorphic with the direct product of groups

Z∗

p
k1
1

× Z∗

p
k2
2

× ... × Z∗

pkr
r

i.e.

Z∗

n
∼= Z∗

p
k1
1

× Z∗

p
k2
2

× ... × Z∗

pkr
r

.

Proof. The theorem is a direct conclusion from the Chinese

remainder theorem.

Then to know the structure of the multiplicative group Z∗

n

it is sufficient to know the structure of of the multiplicative

group Z∗

pk .

Bull. Pol. Ac.: Tech. 63(4) 2015 995

T. Adamski and W. Nowakowski

Theorem 9.2.

1.If p is an odd prime then the multiplicative group Z∗

pk

is cyclic for every k ∈ N .

2. Multiplicative groups Z∗

2 and Z∗

4 are cyclic and their

order is equal appropriately to 1 and 2.

3. The multiplicative group Z∗

2k for k ≥ 3 is isomorphic

with a direct product of a cyclic group of the order 2 and the

cyclic group of the order 2k−2 i.e. Z∗

2k
∼= C∗

2 × C
∗

2k−2 .

Proof. see. [1, 2].

From the Theorem 9.1 and 9.2. we obtain the following

Theorem 9.3 on existence of primitive roots modulo n.

Theorem 9.3. (on existence of primitive roots modulo n)

The multiplicative group Z∗

n (where n ∈ N , n ≥ 2) is a

cyclic group if and only if n = 2, 4, pk, 2pk, where p is an

odd prime jest and k ∈ N .

Proof. see for example W. Narkiewicz [8].

The analyzed algorithms for finding generators works cor-

rectly for every n for which primitive root exists.

So far it is not solved the problem of the least primitive

root for a prime p. If we denote by r(p) the least primitive

root for a prime p then we can assess r(p) with the following

inequality: r(p) < p
1
4
+ε for arbitrary ε > 0. More details

concerning assessment of the least primitive root for a natural

number n can be found in monographs [4] (W. Narkiewicz)

and [10] (A. Paszkiewicz).

10. Primitive polynomials

Described in the section 2 algorithms in a version for G =
GF (pn) after small modifications can be applied to verify if

a given polynomial f(x) ∈ Zp[x] is a primitive polynomial.

The primitive polynomial f(x) ∈ Zp[x] it is (from defini-

tion) such a irreducible polynomial in the ring Zp[x] that a

polynomial g(x) = x, where (g(x) ∈ Zp[x]) is a generator of

the multiplicative group of the field Zp[x]/(f(x)) (or in other

words an element of the order pm − 1 in the multiplicative

group of the field Zp[x]/(f(x))). Primitive polynomials are

used for example in LFSR (Linear Feedback Shift Register)

to design LFSR with maximal number of possible states.

The following Theorem 10.1 is a polynomial version of

the Theorem 3.1 proved in the Sec. 3.

Theorem 10.1.

Assume p is a prime and pm−1 = qk1

1 ·qk2

2 ·...·qkr
r , where

m ∈ N , q1 < q2 < ... < qr are primes and k1, k2, ..., kr ∈ N .

If f(x) ∈ Zp[x] is an irreducible polynomial of the degree

equal to m then f(x) is a primitive polynomial, if and only

if, for every i ∈ 〈1, r〉: xpm
−1/qi(modf(x)) 6= 1.

Proof. The thesis of the theorem follows immediately from

the Theorem 3.1 and the Theorem 8.1.

The algorithm which verifies if a polynomial f(x) ∈
Zp[x] is primitive is the following.

Algorithm: Verification if a polynomial f(x) ∈ Zp[x] is primitive

Input data: 1. A prime p, m ∈ N and factorization pm − 1 =
qk1
1 · qk2

2 · ... · qkr
r , where q1 < q2 < ... < qr are primes and

k1, k2, ..., kr ∈ N

2. Irreducible polynomial f(x) ∈ Zp[x] of the degree equal to m

Output data: answer if f(x) ∈ Zp[x] is a primitive polynomial

for i := 1 to r do begin

l(x) := xpm
−1/qi(modf(x));

if l(x) := 1 then begin write (‘f(x)) is not a primitive polyno-

mial’); goto end label end

end

write (‘f(x)) is a primitive polynomial’);

end label:

Fig. 4. Algorithm for verification if an irreducible polynomial f(x) ∈
Zp[x] is primitive

11. Conclusions and comments

In the paper correctness of two probabilistic algorithms for

group generator finding were proved and their average compu-

tational complexity was assessed as equal to O((log2 #G)2).
It means that the average computational complexity of ana-

lyzed algorithms is in the polynomial class. Both considered

in the paper algorithms can be also in natural way parallelized.

If we know only a partial prime factorization of the num-

ber #G i.e. we have #G = qk1

1 · qk2

2 · ... · qkr·
r · a, where

q1, q2, ..., qr are pairwise different primes and k1, k2, ..., kr,

a ∈ N then both algorithms after small modifications can

be used to find an element of the order qk1

1 · qk2

2 · ... · qkr·
r .

Frequently for cryptographic algorithms we seek only ele-

ments of sufficiently large order and we do not need to have

obligatory a generator. The modified algorithm #2 works cor-

rectly under assumption that the finite group G is abelian

(see Theorem 4.5). The algorithm #1 works correctly also for

noncommutative groups.

REFERENCES

[1] V. Shoup, A Computational Introduction to Number Theory and

Algebra, University Press, Cambridge, 2008.

[2] N. Koblitz, A Course in Number Theory and Cryptography,

Springer, New York, 1994.

[3] C. Bagiński, Introduction to Group Theory, SCRIPT, Warszawa,

2002, (in Polish).

[4] W. Narkiewicz, Number Theory, PWN, Warszawa, 1990, (in Pol-

ish).

[5] A. Menezes, P. Oorschot, and S. Vanstone, Handbook

of Applied Cryptography, CRC Press Inc., London, 1997,

(http://cacr.math.uwaterloo.ca/hac).

[6] D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic

Curve Cryptography, Springer, New York, 2004.

[7] S. Yan, Number Theory for Computing, Springer, Berlin, 2002.

[8] J. Pieprzyk, T. Hardjono, and J. Seberry, Fundamentals of Com-

puter Security, Springer, Berlin, 2003.

[9] A. Białynicki-Birula, Algebra, PWN, Warszawa 2009, (in Pol-

ish).

996 Bull. Pol. Ac.: Tech. 63(4) 2015

