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Abstract. The heat produced in metal cutting process has negative influence on the cutting tool and the machined part in many aspects. This 
paper deals with measurement of cutting temperature during single-point dry machining of the AISI 4140 steel, using an infrared camera. Various 
combinations of cutting parameters, i.e. cutting speed, feed rate and depth of cut lead to different values of the measured cutting temperature. 
Analysis of the measured data should explain the trends in temperature changes depending on changes in the cutting regimes. Furthermore, 
the temperature data is modelled using response surface methodology and fuzzy logic. The models obtained should determine the influence 
of cutting regimes on cutting temperature. The main objective is the reduction of cutting temperature, i.e. enabling metal cutting process in 
optimum conditions.
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Total amount of heat produced in metal cutting process can 
be calculated as a sum of heat produced by the three mentioned 
sources:

Q = QS1
 + QS2

 + QS3
,� (1)

where: Q – total amount of generated heat, QS1
 – amount of heat 

generated by heat source S1, QS2
 – amount of heat generated by 

heat source S2, QS3
 – amount of heat generated by heat source S3.

The heat balance during metal cutting process can be ex-
pressed as follows:

Q = QS1
 + QS2

 + QS3
 = Q1 + Q2 + Q3 + Q4,� (2)

where: Q1 – amount of heat carried away in the chips, Q2 
– amount of heat remaining in the cutting tool, Q3 – amount of 
heat passing into the work-piece, Q4 – amount of heat radiated 
to the surrounding air.

1.	 Introduction

Cutting temperature is a primary factor affecting the cutting tool 
wear. It can also induce thermal damage to the machined surface 
since high temperature causes oxidation of the machined sur-
face. Not only do intensive temperatures during the machining 
limit the tool life, but they also impair the machined surface 
by inducing tensile residual stresses, micro-cracks and thermal 
damage [1]. The affected layer has worse mechanical properties 
than the base material, and it also causes dimensional errors in 
the machined surface. The cutting tool elongates because of 
increased temperature, and the position of cutting tool edge 
shifts toward the machined surface. The result of this process 
is a dimensional error. The cutting fluid improves the tool life, 
surface conditions of the work-piece and the process as a whole. 
It also helps in carrying away the heat and the debris produced 
during the machining [2].

One of the most commonly analyzed modes of cutting is 
the orthogonal cutting (two dimensional cutting), in which the 
depth of the cut is constant and the cutting edge is a straight 
line, perpendicular to the direction of the relative motion be-
tween the edge and the specimen [3]. Nearly all the energy 
consumed in plastic deformation is converted into heat, which 
raises the temperature in the cutting area. Three main sources 
of heat (Fig. 1) can be defined in metal cutting process:

●	 plastic deformation by shearing in the cutting zone (heat 
source S1),

●	 plastic deformation by shearing and friction between the 
cutting tool and the chip (heat source S2),

●	 friction between the cutting tool and the machined sur-
face (heat source S3).

Fig. 1. Heat generation zones during metal cutting process
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According to empirical investigations, 60–86% of the heat 
is carried away in the chips and the percentage is growing with 
increasing of the cutting speed. For turning operations, this pro-
portion is as follows: 50–86% of the heat is removed in the 
chip, 10–40% remains in the cutting tool, 3–9% heats up the 
work-piece and about 1% radiates into the surrounding air. If 
a coolant fluid is used during cutting, the heat carried away by 
the chip can even reach 90% of the total heat [4]. Experimental 
results show that in high speed machining, the heat transferred 
onto the work-piece is low.

Taking into consideration the thermo-visco-plastic law [5], in 
the case of large plastic deformations the temperature T, along 
with the effective plastic strain e and the effective plastic strain 
rate ε are the main factors in defining the flow stress – σeq:
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where: 0ε  – reference strain rate, Tamb – room temperature, Tf 
– melting temperature, A, B, C, n and m – rheological param-
eters to be identified.

One of the most frequently used methods for measuring 
temperature in metal cutting process is measuring with ther-
mocouples. Basically, there are two types of thermocouples: 
embedded thermocouples and dynamic thermocouples [6]. The 
embedded thermocouple is a relatively cheap method which can 
be used to establish the distribution of temperature at different 
points in a cutting tool. The dynamic thermocouple can measure 
the temperature at the interface surface between the tool and 
the work-piece. In that way, two bodies in relative motion are 
used as the two elements of thermocouples.

The cutting temperature and the temperature distribution 
along the rake face of the cutting tool and the work-piece are 
essential factors in the study of machining processes due to their 
effect on the quality of the surface, the tool life, tolerances, met-
allurgical behavior and chip-removing rate. Davoodi and Hos-
seinzadeh [7] used an infrared high-speed sensor with specially 
designed software to measure the transferred heat to the work-
piece during the high speed machining (HSM) of bronze alloys.

Sutter et al. [8] presented an experimental setup which is 
able to determine the temperature field in the cutting zone 
during an orthogonal machining operation, performed with 
a gas gun developed on the principle of pyrometry in the visi-
ble spectral range by using an intensified CCD camera.

The infrared method can be utilized to measure the tem-
perature which occurs on the rake face of the cutting insert in 
a transient cooling process after the feed motion is halted [9].

Measuring techniques based on the projection of the infrared 
radiation from the tool chip interface onto the scanner of a high 
resolution thermographic camera allow for the determination 
of absolute temperature and its distribution in the contact zone 
between the tool and the chip flow ‘in-situ’, whilst avoiding 
real time mechanical contact [10].

The most important temperature from metal cutting process 
point of view is the maximum temperature of the cutting tool. 
This temperature directly affects cutting characteristics of the 
tool, deformation of the tool and work-piece, as well as the 
quality of the machined surface. It is obvious that the measur-
ing of the rake face of the cutting insert in which maximum 
temperature occurs is not possible to achieve using an infrared 
camera because of continual presence of the chip covering the 
area of interest. When the values of the chip’s top temperature, 
the cutting depth and the physical properties of the work-piece 
are known, it is then possible (using finite-difference model, 
FEM analyses, or some other method) to calculate the maxi-
mum cutting tool temperature [11–14].

In this work, the chip’s top temperature was adopted as 
a relevant output parameter. This temperature was measured 
using the infrared camera during a turning operation, without 
using any coolant.

The methodology proposed was applied to a specific testing 
stand and the specific material used in the cutting process (steel). 
Hence, various material characteristics, such as yield stress, heat 
conductivity, specific heat, etc. are not included in this demon-
stration analysis. However, the methodology presented can be 
expanded onto a wider data set; it also offers the possibility of 
including various materials along with their characteristics.

The results of the experimental investigations have been 
presented and analyzed, leading to conclusions about the depen-
dence between cutting regimes and corresponding temperatures. 
Next, cutting temperature data was modelled using response 
surface methodology (RSM) and fuzzy logic (FL). The RSM 
and FL models are able to predict cutting temperature for un-
known cutting regimes in experiment space.

2.	 Experiment design, tool and material

The lathe used for examining and measuring is located in the 
Laboratory for Production Engineering, at the Mechanical En-
gineering Faculty in Niš, Serbia. The work-piece material is 
steel, with AISI designation 4140. The basic characteristics of 
this steel are shown in Table 1. This steel belongs to the group 
of doped, decent cold drown steels. The work-piece is in the 
form of a metal rod, with dimensions f45 x 250 mm.

Table 1 
Basic characteristics of AISI 4140 steel

Chemical composition [%]
Tensile strength

Rm [N/mm2]
Hardness

HB
Thermal conductivity

K [W/mK]
Specific heat

c [J/kgK]

C Cr Mo Mn Si P S
1050 205 41,9 460,5

0.40 1.00 0.20 0.90 0.25 0.03 0.01
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The component relations, information flow of material han-
dling system and the linked information system for processing 
the data obtained are shown in Fig. 2.

3.	 Results of temperature measuring 
experiments

Cutting temperature depends on the cutting environment con-
ditions, as well as on cutting regimes. A large number of ex-
periments were performed in order to model this parameter. 
At the beginning of the metal cutting process, the temperature 
rises until it reaches the maximum value. That is why the mea-
surement should be done very shortly after the beginning of the 
process [15]. Following the rising and the arrangement of the 
temperature at the beginning of the process with an infrared 
camera, it is concluded that a period of about 60 seconds is 
enough for stabilizing the temperature measured. The thermo-
grams are submitted to a PC memory card and analyzed. The 
maximum cutting temperature which occurs on the top of the 
chip is relevant to the measurement included in this experiment.

The ambient temperature during experimental investigations 
was 25°C. According to the literature, manufacturer recommen-
dations and empirical knowledge, the following input param-
eters were adopted:

●	 cutting speed V (takes values of 80; 95; 110; 125 and 
140 m/min),

●	 feed rate s (takes values of 0.071; 0.098; 0.196 and 0.321 
mm/rev),

●	 depth of cut a (takes values of 0.5; 1; 1.5 and 2 mm).
The measured values of the cutting temperature – T has been 

divided into four groups, as it is the only way to present it in 
a three-dimensional diagram.
	 I group	 –	� temperature data obtained during cutting with 

feed rate of 0.071 mm/rev;
	 II group	 –	� temperature data obtained during cutting with 

feed rate of 0.098 mm/rev;
	 III group	 –	� temperature data obtained during cutting with 

feed rate of 0.196 mm/rev;
	 IV group	 –	� temperature data obtained during cutting with 

feed rate of 0.321 mm/rev.

3.1. Cubic polynomial interpolation of measured data. In 
order to model the temperature data, a surface fitting tool with 

Fig. 2. Component relations and information flow between linked 
subsystems
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SANDVIK Coromant cutting tool has been chosen: tool 
holder PCLNR 32 25 P12 in combination with the cutting in-
sert CNMG 12 04 08 (grade 235), according to the recommen-
dations of the manufacturer and empirical knowledge.

Jenoptik Varioscan 3021-ST infrared camera has been used 
for temperature measuring. Varioscan high resolution is a scan-
ning thermovisics measured system for wave lengths outside 
of the vision spectrum – from 8 µm to 12 µm, i.e. in the area 
of infrared emission. Signal from this spectrum is amplified, 
digitalized with 16 bites and visualized. All colors on the ther-
mogram represent particular temperatures. Temperature resolu-
tion of this system is 0.03°C, while the operating range of this 
camera is –40 to +1200°C.

The experiment setup and the sample of the obtained ther-
mogram are shown in Fig. 3.

Fig. 3. Experiment setup and sample of thermogram
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Table 2 
Coefficients of the cubic polynomial interpolation equations

V a V2 V ∙a a2 V3 V2∙a V ∙a2 a3

I group -0.58 19.98 -2.79 -127.70 -37.98 50.49 299.80 86.58 108.10 -166.00

II group 1.33 -24.40 -9.68 202.20 92.87 49.36 -495.50 -419.40 39.04 -148.30

III group -1.33 45.49 -7.06 -403.30 12.70 61.26 1189.00 -53.25 37.93 -179.90

IV group 0.59 0.56 -7.20 -20.29 23.99 56.57 128.90 -78.95 -11.63 -143.50

Fig. 4.  a) Measured values of cutting temperature, I group of data b) Polynomial interpolation of the measured values

a) b) 

 

Fig. 5.  a) Measured values of cutting temperature, II group of data b) Polynomial interpolation of the measured values
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Fig. 6.  a) Measured values of cutting temperature, III group of data b) Polynomial interpolation of the measured values

 T [°C] 

a [mm] V [m/min] 

T [°C] 

a [mm] V [m/min] 

a) b) 



439Bull.  Pol.  Ac.:  Tech.  64(2)  2016

Application of response surface methodology and fuzzy logic based system for determining metal cutting temperature

a cubic polynomial interpolation has been used. The interpola-
tion equation is

T = �b0 + b1∙V + b2∙a + b11∙V 2 + b12∙V ∙a + b22∙a2 + 
� (4)
+ b111∙V 3 + b112∙V 2∙a + b122∙V ∙a2 + b222∙a3

The coefficients of the cubic polynomial interpolation equa-
tions for all groups of data are presented in Table 2.

The measured data, along with the interpolated values of 
the cutting temperatures are presented in Figs. 4–7. In order to 
evaluate the goodness of the fit, four statistical characteristics 
have been analyzed:

●	 sum of squares due to error (SSE),
●	 R – square,
●	 adjusted R – square,
●	 root mean squared error (RMSE).
The value of statistic characteristics, i.e. goodness of fit, for 

all groups of data is presented in Table 3.

Table 3 
Goodness of fit statistics

SSE R – square Adjusted  
R – square RMSE

I group 0.001911 0.9869 0.9751 0.01383

II group 0.002157 0.9831 0.9678 0.01469

III group 0.002205 0.9662 0.9358 0.01485

IV group 0.001581 0.9760 0.9545 0.01257

3.2. Main remarks. The lowest measured cutting temperature 
during experimental investigations was 214.82ºC, obtained 
during cutting with the following regime: cutting speed 80 m/
min, feed rate 0.071 mm/rev and depth of cut 0.5 mm (expected 
data, since the values of the input parameters are on minimum 
level). The highest measured cutting temperature was 594.02ºC, 
obtained for the cutting regime: cutting speed 140 m/min, feed 
rate 0.321 mm/rev and depth of cut 2 mm (also expected data, 
taking into consideration the fact that these are maximum values 
of the input parameters).

Fig.  7.a) Measured values of cutting temperature, IV group of data b) Polynomial interpolation of the measured values
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The rising of the feed rate also increases cutting tempera-
ture, which can be concluded from Fig. 8. This phenomenon is 
especially expressed at low cutting speeds. For example, during 
the machining with constant cutting speed of 80 m/min, and 
increasing the feed rate in the range from 0.071 to 0.321 mm/o, 
cutting temperature increases by about 89%, while, in the same 
conditions during machining with the constant cutting speed of 
140 m/min and increasing feed rate in the range from 0.071 to 
0.321 mm/rev, the cutting temperature increases by about 29%. 
In all experiments the depth of cut was kept at a constant level, 
a = 0.5 mm.

Fig. 8. Cutting temperature increase depending on the feed rate, 
a = 0.5 [mm]

Cutting speed
V [m/min]

Cutting temperature increase 
s = 0.071 ÷ 0.321 [mm/rev]

80 89%

95 36%

110 48%

125 25%

140 29%

 T [°C] 

s [mm/rev] 

V=80 [m/min] 

V=95 [m/min] 

V=110 [m/min] 

V=125 [m/min] 

V = 80 [m/min]V = 180 [m/min]
V = 195 [m/min]
V = 110 [m/min]
V = 125 [m/min]
V = 140 [m/min]

Larger values of the depth of cut cause larger values of 
the resistant forces, which leads to the increase in the cutting 
temperature. Nevertheless, in this case, the percentage of the 
cutting temperature increase does not depend very much on the 
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the chip formation and the shaping of the surface roughness. 
A theoretical approach is always based on simplifications and 
idealizations. It does not take into account any imperfections 
of the cutting process and neglects the effects of many process 
factors, as well as the environment factors (noise). Therefore, 
various theoretical models that have been proposed are not ac-
curate enough and can be applied only to a limited range of 
processes and cutting conditions. For these reasons, most re-
searchers mainly use empirical research [17–20].

As mentioned before, cutting temperature depends on 
a large number of factors, and it is almost impossible to in-
clude all of them in an integral mathematical model. Taking 
into consideration the fact that the most influential factors 
which affect cutting temperature are cutting speed, feed rate 
and depth of cut, cutting temperature can be presented in the 
following way:

( ) asV kkk asVKasVfT ⋅⋅⋅== ,, ,� (5)

where: T – cutting temperature, V – cutting speed, s – feed rate, 
a – depth of cut, K – free coefficient, kV, ks, ka – exponents.

4.1. The response surface methodology (RSM) modelling. 
Response surface methodology (RSM) is a process of adjusting 
predictor variables to move the response in a desired direction. 
The model usually includes an intercept, linear terms, quadratic 
interaction terms, and squared terms. The linear terms produce 
models with the response surfaces – hyperplanes. The addition 
of interaction terms allows for warping of hyperplanes. The 
squared terms produce models in which the response surface 
has a maximum or a minimum value. In general, this model 
can be denoted as:

Fig. 9. Cutting temperature increase depending on the depth of cut, 
V = 125 [m/min]

Feed rate  
s [mm/rev]

Cutting temperature increase
a = 0,5 ÷ 2 [mm]

0.071 44%

0.098 41%

0.196 27%

0.321 32%

T [°C]

feed rate. This is shown in Fig. 9. Cutting temperature increase 
is relatively uniform. For example, during the machining with 
the constant cutting speed of 125 m/min, with the feed rate of 
0.071 mm/rev, increasing in the depth of the cut from 0.5 to 2 
mm the cutting temperature increases by about 44%, while, at 
the feed rate of 0.321 mm/rev, the increase in the cutting tem-
perature is about 32%. Thus, the conclusion is that the cutting 
temperature increase directly depends on the depth of cut, re-
gardless of cutting speed.

Cutting temperature also depends on the cutting speed, and 
cutting speed increase causes an increase in the cutting tem-
perature. This phenomenon is obvious at low values of feed 
rate. According to the Saglam et al. [16], when cutting speed 
is raised, the cutting forces are reduced but the temperature 
is increased. At the increased positive rake angle, the cutting 
forces are decreased, which means less force is required for 
the machining. However, the increase in cutting temperature 
does not depend much on the depth of cut. While cutting with 
the constant depth of cut a = 0.5 mm, increase in cutting speed 
from 80 to 140 m/min with feed rate of 0.071 mm/rev caus-
es an increase of cutting temperature by about 70%, while 
cutting with feed rate of 0.321 mm/rev causes an increase in 
cutting temperature by about 16%. This occurrence is shown 
in Fig. 10.

4.	 Modelling of metal cutting temperature

The extraordinary complexity of the mechanical, tribological, 
and thermodynamic phenomena in cutting zone does not allow 
for determination of a reliable and a comprehensive theoretical 
model which could explain the essence and the mechanism of 

Fig. 10. Cutting temperature increase depending on the cutting speed, 
a = 0.5 [mm]

T [°C]

Feed rate  
s [mm/o]

Cutting temperature increase
V = 80 ÷ 140 [m/min]

0.071 70%

0.098 42%

0.196 15%

0.321 16%
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where: y – response (output variable), a0, ai, aii, aij... – unknown 
(adjustable) coefficients, n – number of model parameters, xi 
– model parameters (input variables), e – random error.

The response surface model is a multivariate polynomial 
model which can be used to determine the correlation among 
different indicators of the metal cutting process on one side and 
the different cutting regimes on the other side [21]. In that way, 
it is possible to understand the quantitative relationship among 
the large number of input and output parameters [22].

In order to model the data using the RSM modelling tool, 
it is necessary to first perform the following transformations:

lnT = ln(K ∙ VkV ∙ sks ∙ aka) = � (7)
= lnK + kV ∙ lnV + ks ∙ lns + ka ∙ lna.

Cutting temperature’s dependence on cutting speed, feed 
rate and depth of cut should be presented with a linear mathe-
matical model. According to the previous equation, the first step 
in the RSM modelling should be the calculation of the values: 
lnT, lnV, lns and lna. From the obtained linear mathematical 
model, the coefficients from (12) can be calculated.

In this consideration, after the RSM modelling, the fol-
lowing coefficients are obtained: K = 42.93214, kV = 0.5509, 
ks = 0.1687 and ka = 0.2242. Finally, the RSM model for the 
considered experiment setup can be expressed in the following 
form:

2242.01687.05509.0 asV93214.24T ⋅⋅⋅= .� (8)

The validation of the obtained model was performed over 
the whole data set, i.e. all four groups of data. The minimum er-
ror between the measured and the modelled data is 0.255%, the 
maximum error is 22.415%, while the average error is 6.14%. 
The conclusion is that the measured and the modelled values 
are in good accordance.

As it is well known, the design of experiment (DOE) involves 
a small sample size, i.e. a small number of experimental units. 
Using the two-level full factorial design, the number of runs can 
be reduced to 2n (in this case 23  = 8) experimental units [23]. 
This data represents geometrically the vertices of a cube in a cho-
sen experimental space. The data used for modelling can be found 
in Table 4, while the experimental space is shown in Fig. 11.

The reduced experiment setup gives the following model:

2419.02178.05884.0 asV29591.04T ⋅⋅⋅= .� (9)

The validation of the reduced model was also performed 
on the whole data set (data obtained from 80 experiments). 
Minimum error in this case is 0.12%, while maximum error is 
20.51%. The average error for this model is 7.14%.

The maximum and minimum errors of the reduced model 
are even smaller, but the average error has a slightly larger value 
than the average error of the model which uses the whole data 
set. Taking into consideration the fact that the reduced model 
requires only 10% of the overall number of experiments, it can 
be concluded that the reduced model is very promising. The 
time needed for data acquisition and data modelling is reduced 
in that way, thus reducing the overall cost of the experimental 
investigations.

4.2. Modelling of the cutting temperature using fuzzy logic. 
Mathematical and empirical modelling are tools very often used 
for predicting machining parameters. However, these techniques 
could be very complicated, demanding and time-consuming. 
Thus, some artificial intelligence based methods such as fuzzy 
logic, artificial neural networks, genetic algorithms, etc. can be 
employed for modelling tasks. Fuzzy logic is a mathematical 
theory of imprecise reasoning, which allows modelling of the 
human thinking by using linguistic terms. Detailed explanation 
of fuzzy logic theory is available in the literature [24–27]. There 
are many attempts to use fuzzy logic in optimizing metal cutting 
parameters in milling [28, 29], drilling [30, 31] and tapping 
processes [32]. Another goal of the FL based systems could be 
supporting decisions made by a human expert using dedicated 
fuzzy controllers [33, 34].

The correlations among cutting regimes and unknown cut-
ting parameters (cutting forces, temperatures, etc.) are modelled 
using fuzzy rules extracted from the machinists’ handbooks, as 
well as the skills and knowledge of the experienced machinists. 
In this case, the model has three input values: x1 – depth of 
cut (a), x2 – feed rate (s) and x3 – cutting speed (V). The fuzzy 
system has one output value: y – cutting temperature (T), as 
shown on Fig. 12.

Table 4 
Design of experiment for the extreme values of cutting regimes

25 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 4 
Design of experiment for the extreme values of cutting regimes 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Design parameters 
(natural levels) VX 1  sX 2  aX 3   

 
asV kkk asVKTy   

 
High level 140 0.321 2.0 
Low level 80 0.071 0.5 

                   Coded levels  
    Run no. 1x  2x  3x  Experimental results 

y  yln  
1 +1 +1 +1 594.02 6.38691 
2 - 1 +1 +1 499.41 6.21343 
3 +1 - 1 +1 556.14 6.32102 
4 - 1 - 1 +1 350.58 5.85959 
5 +1 +1 - 1 472.56 6.15816 
6 - 1 +1 - 1 407.02 6.00886 
7 +1 - 1 - 1 366.03 5.90272 
8 - 1 - 1 - 1 214.82 5.36980 

38 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11. Experiment space with extreme values of the cutting parameters 
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Fig. 11. Experiment space with extreme values of the cutting parameters
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The ranges of the input and the output values are defined 
first. The minimum, the middle and the maximum values of the 
process parameters are given in Table 5.

The input and the output variables of the fuzzy system have 
different number of fuzzy membership functions. Each of the 
input parameters is defined with three fuzzy membership func-
tions: low, medium and high for the cutting speed, as well as: 
small, medium and big for the depth of cut and the feed rate. 
The output variable (cutting temperature) has five membership 
functions: extremely low, low, medium, high and extremely 
high, as shown in Fig. 14.Fig. 12. Fuzzy inference system
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Table 5 
The minimum, the middle and the maximum values  

of the cutting parameters

Minimum 
value

Middle 
value

Maximum 
value

Depth of cut a [mm] 0.5 1.25 2

Feed rate s [mm/rev] 0.071 0.196 0.321

Cutting speed V [m/min] 80 110 140

Cutting temperature T [°C] 214 404 594

Interface for fuzzification converts the crisp input value in 
the number between 0÷1 using the fuzzy membership func-
tion, which describes the degree of membership of input value 
to fuzzy set. Fuzzy membership functions can have various 
shapes, e.g., triangular, trapezoidal, Gaussian etc. Each fuzzy 
set is defined by a different membership function. Membership 
functions used in this work are of Gaussian type, depending on 
two parameters: c ands.
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where: c – mean value (center) and s – standard deviation 
(width of the Gaussian curve).

Figure 13 shows the fuzzification of input variable “cutting 
depth”. Let us assume that the cutting depth is 1.5 mm. Fuzzi-
fication in the fuzzy set “cutting depth is large” gives the result 
0.15, while the fuzzification in the fuzzy set “cutting depth is 
small” gives the result 0. All of the input and output variables 
must be fuzzified in different fuzzy sets before applying fuzzy 
rules.

Fig. 14. Fuzzy membership functions of input and output variables: 
a) depth of cut, b) feed rate, c) cutting speed, d) cutting temperature

Fig. 13. Fuzzification of the input value in different fuzzy sets
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Human knowledge used by the fuzzy system is captured in 
the fuzzy IF-THEN rules. The IF part of the fuzzy rule is called 
the antecedent, while the THEN part of the rule is called the 
consequent. If the antecedent of the fuzzy rule has more than 
one part, fuzzy operators must be applied. The result is a unique 
value which represents the whole antecedent. Hence, inputs in 
fuzzy operator are different values than the membership func-
tions (µ) of the fuzzified input values. AND type fuzzy operator 
based on the extracting minimum value is applied subsequently. 
Graphical interpretation of one fuzzy rule is shown in Fig. 15.
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The rule base for determining cutting temperature consists 
of 27 fuzzy rules, which are presented in Table 6.

Fuzzy inference is based on the common sense and it is 
very easy to understand. Using the proposed base of rules, the 
input values are mapped into the corresponding output value.

The consequent is first reshaped using a number given by 
the antecedent. The input for the implication process is a single 
number, while the output is a fuzzy set. Implication is imple-
mented for each rule. The common implication methods are: 
min (minimum), which truncates the output fuzzy set, and prod 
(product), which scales the output fuzzy set. In this case, the 
min implication method is employed.

The fuzzy sets obtained by the implication of each rule are 
combined into a single fuzzy set. This process is known as the 
aggregation and it occurs once for each output variable. The 
input of the aggregation process is truncated output function 

returned by the implication process. The aggregation process 
produces one fuzzy set for each output variable. The most fre-
quently used aggregation methods are: max (maximum), probor 
(probabilistic OR) and sum (the sum of each rule’s output set). 
The max aggregation method, which calculates the union of the 
combined fuzzy sets, was used in this study.

The final step is defuzzification, i.e. converting the fuzzy 
set obtained by the aggregation into a single number. Fuzziness 
helps the rule evaluation during the intermediate steps, but the 
final output is a single number. There are several methods for 
defuzzification, such as: centroid, bisector, middle of maximum 
(the average of the maximum value of the output set), largest of 
maximum, smallest of maximum... The defuzzification method 
used in this paper is the centroid, which calculates the center 
of the area enclosed by the resulted curve, and this number 
represents the defuzzified value.

Fig. 15. Graphic interpretation of one fuzzy rule
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Fig. 15. Graphic interpretation of one fuzzy rule 

Result of the fuzzy 
operator 

0,4  

Cutting speed is low 
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0,5 

Cutting depth is big 

cutting depth = 1,7 

0,4 

Antecedent 

Fuzzy operator 
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 Cutting temperature is high 

Consequent 

Implication 

IF cutting speed is low AND feed rate is big AND cutting depth is big THEN cutting temperature is high IF cutting speed is low AND feed rate is big AND cutting depth is big THEN cutting temperature is high

Table 6 
Fuzzy rules for determining cutting temperature

Cutting speed

L M H

Feed rate 
Depth of cut

S M B S M B S M B

S EL L M L M M M M H

M L M M M M H M H H

B M M H H H H EH EH EH

L – low, M – medium, H – high, S – small, B – big, EL – extremely low, EH – extremely high
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The same set of data which was used for testing the RSM 
model is used for testing the FL model. The surface that rep-
resents modelled values of the cutting temperature is shown 
in Fig. 16.

Measured and modelled values of the cutting temperature 
are shown in Fig. 17. The minimum error obtained by the FL 
system is 0.243%, while the maximum error is 18.372%. The 
average error of the whole data set is 6.258%. This result is 
slightly better than the result obtained by the RSM for a model 
using extreme values of cutting parameters, proving in that way 
that the systems based on fuzzy logic can be successfully used 
in modelling of metal cutting parameters.

5. Conclusion
In this work, a large number of experiments have been per-

formed in order to model cutting temperature. Measured values 

have been presented and interpolated using cubic polynomial 
interpolation. The indicators of the quality of fit show good 
interpolation and prediction capabilities of the temperature 
models. The main remarks about the dependence of cutting 
temperature on input cutting parameters have been made. The 
response surface model was created after that as a multivariate 
polynomial model of cutting temperature in order to establish 
the correlation among cutting temperature and cutting regimes. 
Finally, the system based on fuzzy logic was presented in order 
to model temperature data according to cutting regimes chang-
es. The results are in good accordance with the experimental-
ly obtained data, confirming the effectiveness of the proposed 
models in the modelling of cutting temperature. Comparing 
experimentally obtained data with the RSM and FL modelled 
data proves that the fuzzy system shows a slightly better per-
formance.

Fig. 17. Measured and modelled values of cutting temperature

Fig. 16. Cutting temperature modelled values by fuzzy logic system
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