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ANALYSIS OF BEAM ELEMENTS OF CIRCULAR CROSS SECTION
USING THE ABSOLUTE NODAL COORDINATE FORMULATION

The beam elements, which are widely used in the absolute nodal coordinate
formulation (ANCF) can be treated as isoparametric elements, and by analogy to the
classical finite element analysis (FEA) are integrated with standard, spatial Gauss-
Legendre quadratures. For this reason, the shape of the ANCF beam cross section is
restricted only to the shape of rectangle.

In this paper, a distinct method of integration of ANCF elements based on
continuum mechanics approach is presented. This method allows for efficient analysis
of the ANCF beam elements with circular cross section. The integration of element
vectors and matrices is performed by separation of the quadrature into the part that
integrate along beam axis and the part that integrate in the beam cross section. Then,
an alternative quadrature is used to integrate in the circular shape of the cross section.
Since the number of integration points in the alternative quadrature corresponds to
the number of points in the standard Gaussian quadrature the change in the shape of
the cross section does not affects negatively the element efficiency.

The presented method was verified using selected numerical tests. They show
good relatively agreement with the reference results. Apart from the analysis of the
beams with the circular cross section, a possibility of further modifications in the
methods of the element integration is also discussed. Due to the fact that locking
influence on the convergence of the element is also observed, the methods of locking
elimination in the proposed elements are also considered in the paper.

1. Introduction

Absolute nodal coordinate formulation (ANCF) [1] is one of the methods
for static and dynamic analysis of the flexible multibody systems which un-
dergo large displacements and deformations. This formulation is based on the
finite element analysis (FEA) and one of its characteristic is the lack of pure
rotational degrees of freedom. Instead of rotations global slopes are used
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in nodes as the nodal coordinates. As a consequence the ANCF elements
usually have more coordinates than standard FEA elements but single ANCF
element can model more complex deformation modes [2].

In the ANCEF, all parameters and shape functions are described with
respect to the global, inertial reference frame. The global shape functions
must have a complete set of rigid body modes that can describe an arbitrary
rigid body translational and rotational displacements. Therefore, element dis-
placement field represents both rigid and flexible body motion. Furthermore
the ANCEF leads to exact modeling of the rigid body inertia and does not lead
to the linearization of the equations of motion as in the case of incremental
formulations [3]. ANCF elements are characterized by constant mass matrix
and constant gravity force vector and the inertial and centrifugal forces are
equal to zero. However, elastic forces are highly nonlinear functions of the
body parameters, even in the case of the planar analysis [4].

Moreover, in the ANCF formulation beam and plate elements can be
treated as isoparametric elements, which usually do not occur in the case
of the classic FEA elements. There are two methods which can be used to
formulate the elastic forces in the absolute nodal coordinate formulation. The
first method consists in the use of a standard continuum mechanics approach,
while in the second method the technical beam theory is used [5].

In the literature many ANCF elements have been proposed. Among them
one can found various types of the beam elements, both two-dimensional [6]
and three-dimensional [2], as well as different types of the plate elements
[7, 8]. Among beam elements in some of the formulations beam kinematics
description is used to develop elastic forces [9]. In such a case a shape of the
beam cross section can be freely chosen, since appropriate seconds moments
of the cross section area appears in the equations. However, the use of the
elements that are based on beam kinematics leads to inconsistent definition
of the stiffness and mass matrix. Furthermore ANCF beams that are based
on the continuum approach allow for capturing the coupled deformation
modes including Poisson modes that cannot be captured using existing beam
formulations [10]. However, in the absolute nodal coordinate formulation,
beams are treated as volumes, so their cross section is usually rectangular.
On the other hand, in engineering practice is often necessary to analyze
beams with various cross sections. This paper presents the results of a case
study when spatial beam element with circular cross section is used. Circular
shape of the cross section is chosen because it often occurs in practice. It is
also possible to extend this method to the use for other cross section shapes.

This paper is organized as follows. Section 2 shows the spatial beam el-
ement used in the paper. Basic kinematic relations of the ANCF formulation
are shown as well as the equations of motion in independent coordinates. Sec-
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tion 3 presents the consideration associated with integration of the elements
with the arbitrary cross section. In addition the method of the integration for
circular cross section is shown in detail. Details of the implementation of the
presented algorithms are presented in section 4. Section 5 presents several
numerical tests, which are used for verification of the presented method. The
last section contains short summary of the paper.

2. Equations of motion of the ANCF beam element

centerline

Fig. 1. ANCF beam element

In Fig. 1 the three-dimensional ANCF beam element with two nodes A
and B is depicted. The position of the arbitrary point P of the element is
described in the global reference frame I1°. The origin of the local frame IT
is placed in beam node A and coordinate x is located along beam axis, while
coordinates y and z are perpendicular to the x coordinate.

The presented beam element is fully parametrized [2], so the vector of
nodal coordinates contains all three slopes vectors:

T T T T
e = [ O LA LA R ] 1)
ox ay 0z
where vector e; contains nodal parameters of the i node, vector r; is the
global position vector of the i/ node, while vectors dr;/0k for k = x,y,z are

gradients of the position vector (slopes) in the i node. Then vector of the
nodal coordinates for single element may be given as follows:

e= [ esl ep’ ]T (2)
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Using the vector of nodal coordinates from Eq. 2, one can get the position
of the arbitrary point on the element:

r=Se 3)

where § = S(x,y,z) is the matrix that contains element shape functions.
Matrix S depends only on the spatial coordinates and it may be given in the
form [2]:

S = [S]I SQI S3I S4I S5I S6I S7I Sgl] (4)
where I is the identity matrix of size 3x3, whereas functions s; fori = 1,...,8
are given by:

s1=1-38+28, 5 =1¢ 26"+ &),
s3 = 10 — €n), sa = U - €0),

55 =3¢ =287, s6 = 1(=&> + &),

57 = Ién, sg = 1L

(&)

where [ is the length of the element in the undeformed state, while &, n and
{ are the element natural coordinates, given by:

_x y
f‘l

n== é’:

<
! !

(6)

The kinetic energy of the single element may be written by the following
formula:

2

where p and V are, respectively, density and volume of the element while
M is mass matrix of the element. After differentiation of Eq. 3 with respect
to time, mass matrix can be written as follows:

1 1
T=—j}ﬂmv=—JMé (7)
v 2

M= f oSTSdV 8)
14

The mass matrix of ANCF beam element is constant.

In the absolute nodal coordinate formulation, Coriolis, tangential, cen-
trifugal as well as other forces resulting from differentiation of the kinetic
energy are equal to zero. Thus, the nonzero terms in system equations of
motion come from the vectors of the elastic and external forces. The elastic

forces are given by:
au,\"
022 .

Oe
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where Uj is the energy of the elastic deformation. Elastic energy is written as
a function of the Green-Lagrange strain vector € and second Piola-Kirchhoff
stress vector o, as follows:

1
Us = = f elodv (10)
2y

While, for the model of linear-elastic material, we have the following relation
between strain and stress vectors:

o =Eeg (11)

where E is a matrix of the material constants.
Therefore, to calculate the vector of elastic forces it is necessary to
calculate only the strain vector:

1
Em = E(JTJ -1 (12)

where g, is symmetric Green-Lagrange strain tensor associated with the
strain vector & and J is a matrix of deformation gradient:

_8r

T=3x

(13)

Egs. 10 and 11 can be substituted into Eq. 9 to obtain:

de\"
Qszﬂ(&) EegdV (14)

Vector of the external forces, which include the gravitational forces, can be
derived using the principle of virtual work as follows:

oW, = Q,7 e (15)
where 0W, is the virtual work of the external forces and Q, is the vector of
the generalized external forces.

Finally, one can write the equations of motion in the independent coor-
dinates for the three-dimensional ANCF beam as follows [11]:

Mé+Q, =0, (16)
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3. Integration of the element matrices for beam element with circular
cross section

Equations of motion for ANCF beam element were derived without any
assumption about the shape of the beam i.e. they are valid theoretically for
the arbitrarily shaped beam elements. However due to the limited degree of
the approximating polynomials the full freedom of the element shape choice
is not desirable. For the beam elements, it is especially important to have a
leading dimension (length) but shape of the cross section may be changed.

In the case of the classic FEA beam elements integration of the matrices
for the equations of motion is performed only along the beam axis. The inertia
of the cross section is taken into account with the use of the appropriate
moments of area. In the ANCF the shape of the element is taken into account
through appropriate integration of the integrals of Eqgs. 8 and 14. ANCF
beams can be integrated like the volumetric FEA elements by means of a
spatial Gauss-Legendre quadrature [5]. In the classical FEA quadratures for
tetrahedral and solid (prism) shapes are used. For the beam elements, only
the quadrature for solid shape may be used and therefore the shape of the
cross section of ANCF elements in undeformed state is limited only to the
shape of rectangle. Consequently, in order to allow for other cross section
shapes, it is necessary to introduce different formulations for the quadrature.

To integrate expressions in three dimensions with Gaussian quadrature,
one dimensional integration formulas may be apply successively in each
direction [5]:

by b) b3
G- fv &m0V = f f f §(&.m. O)dédndl

wi(Owa(PNws(k)glE @), n(f), LK) (17)

j=1 k=1

S S

~
~

i=1
where ay, b, and wy, for h = 1,2,3 are, respectively, lower and upper inte-
gration limits and the quadrature weights; £(i), n(j) and (k) are quadrature
points, while m, n and o are quadrature orders in direction of the &, n and
{ axis, respectively. In turn, g(&,7n,{) is the integrand dependent from the
element natural coordinates. In general, g may be a vector or matrix function.

If in Eq. 17 g is a polynomial function, the Gaussian quadrature gives
the exact result for a polynomial degree up to 2p — 1, where p is the order
of the quadrature. In general, in the FEA and ANCF we are dealing with

polynomials so quadrature orders are chosen in such a way that integration
1S accurate.
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Using Eq. 17 one can split integration into appropriate parts:

b m
G = f fA 8(&,m, OdAdE ~ " wi(0) fA glé@),n, {1dA,  dA = dnd{
“ i=1

(18)
where A is the cross section area. In the case when standard Gaussian quadra-
ture is applied, the cross section is rectangular. However, one can apply
integration schema for another cross sectional shape. For the circular shape
of the cross section, the following quadrature may be applied [12]:

fA h(p, OdA ~ %Z D wlohln(, k), LG L, A={m.0) P + < 1)
=1 k=1
] (19)
where h(n, () = gl£(@0),n, ] for a fixed &, while s is the order of the quadra-
ture. The presented quadrature for the circle uses s> for even s and s* — s + 1
for odd s integration points. If function A, which appear in Eq. 19 is a
polynomial, then using the presented quadrature one can accurately integrate
it up to the degree of 2s — 1.
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Fig. 2. Quadrature points for s =2 and s = 3

Fig. 2 presents quadrature integration points from Eq. 19 for the unit
circle and quadrature orders equals to 2 and 3.

In Tab. 1 the values of weights w and parameters r, ¢t and g are shown.
Using the values of the r, ¢ and g, one can evaluate quadrature points from
Eq. 19 as:

n(s k) = q(prk), {0, k) = 1()rk) (20
4. Implementation

The method for modeling beams with circular cross section was applied
to the spatial beam [2] shown in Fig. 1. Elastic force for this element can
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Quadrature points

Table 1.

Order r t q w
1 0 0 1 1
V2 V2 V2 1

2 +— +— - =
2 2 2 2

1

0 0 1 =

3 4
V6 V3 1 3

+— +— = =

3 2 2 8

. 3+ V3 . 2+ 12 2-12 1

4 - 6 - 4 4 4
. 3-43 . 2-12 2+ V2 1

- 6 - 4 4 4

be calculated using Eq. 14. In the computation of the elastic forces the
exact integration is performed with 5, 3 and 3 quadrature points in &,
and ¢ directions, respectively. However, one can speeds up the computations
without apparent loss of accuracy if the number of integration points is
reduced by one, to 4, 2 and 2 in &, 7 and ¢ directions, respectively [13]. This
gives a four integration points in the cross section.

Similarly, using the quadrature for circular cross section of the Eq. 19 the
exact integration is performed with third order quadrature which gives seven
integration points in section. Numerical tests show, however, that without
apparent loss of accuracy the order of the quadrature can be reduced to two
which gives four integration points. Therefore, regardless of the kind of beam
being analyzed, with rectangular or circular cross sections, the same number
of quadrature points is used. Eq. 19 presents quadrature for circular section
with unit radius. In order to integrate equations with arbitrary radius R, one
may use the following relationship:

a2 S & ' .
[ nnpaa~ T2 NS wonrnG . el

j=1 k=1
A={n.0): " +* <R} (21
where I' = R/I.

The relationships derived above were implemented in the computer pro-
gram written in the MATLAB language [14]. In order to integrate the equa-
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tions of motion, the Newmark procedure was used [5]. Two versions of the
Newmark procedure were implemented — in the first one the time step was
fixed during integration and in the second one the time step was chosen in
an adaptive way with error control [15]. The results of the numerical test
were compared with known analytical solutions and with simulation results
performed with a commercial FEA package [16].

5. Numerical tests

In order to verify the proposed solution, several static and dynamic nu-
merical tests were performed.

5.1. Static bending

In the first test, we analyzed the displacements of the clamped beam.
The beam was loaded at the free end with the constant bending moment.
The exact value of the bending moment is known when the beam takes the
shape of the perfect circle [17]:

2nEl
l

where E is the Young’s module of the beam, while / is the second moment
of beam area according to the axis parallel to the direction of moment vector.

M =

(22)
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Fig. 3. Static bending of the beam

Fig. 3 shows the results for bending of the beam of 1m length and
bending stiffness EI = 2.513 x 10* Nm? (for E = 2 x 10!! Pa and R = 0.02
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m). To avoid volumetric locking problems, the Poisson ratio was set to zero
[18]. The analysis was performed with twenty ANCF elements. Such a large
number of elements was used to avoid problems with other lockings, mainly
the shear locking. The results presented in Fig. 3 shows that the beam tooks
an almost perfect circular shape. The end point is shifted about a 8.3 mm
with respect to the clamped point. Like in the case of the standard beam
element with rectangular cross section the correct result is obtained only for
moderately thick beams.

5.2. Physical pendulum

The next simulation examined the movement of a physical pendulum in
the gravitational field. The pendulum was placed horizontally at the initial
position. The pendulum is one meter long with the Young’s module E =
2 x 10"Pa, Poisson ratio v = 0.3 or 0, density p = 7200kg/m> and with the
circular cross section with the radius R = 0.01m. In the simulations, six to
ten ANCEF finite elements were used.

The simulation results performed with ANCF beam elements are com-
pared with the results of simulations carried out in the FEA package [16]
using two node beam element BEAM188 which may include any shape of
the cross section. In the classical FEA simulation, ten finite elements were
used.

0.2, T T T 0.2, T T T
~—FEA 10el —FEA 10el
~——ANCF 6el ——ANCF 6el

~—ANCF 10el ~—ANCF 10el|

05 15 2 0 0.5

1 1
tis] tis]

Fig. 4. Displacements of the physical pendulum (for v = 0.3 and v = 0)

In Fig. 4 the displacements of the end of the pendulum versus time
are presented. All the results show good agreement but during last 0.5s of
the simulation the results obtained using ten ANCF elements are in better
agreement with FEA then the results obtained with only six elements. Also
simulations in which the Poisson ratio is set to zero (right figure) lead to a
better agreement with the FEA solution. This happen probably due to the
Poisson locking phenomenon. It may be also noticed (Fig. 4) that the rate of
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convergence in the case of the third-order ANCF beam element is similar to
that of the linear FEA beam element. The slow convergence is the result of
the presence of locking, especially shear locking [19].

—Total energy
—Kinetic energy

— Potential energy
10 — Elastic energy

-10-

0.5 1 1.5 2
t[s]

Fig. 5. Total energy of the physical pendulum

Fig. 5 presents the plot of the total energy for the pendulum moving
in the gravitational field. As one can see, energy is preserved for whole
simulation time.

To solve equations of motion Newmark algorithm with error control and
automatized integration time step selection [15] was used. Attempts were
made to solve those equations with fixed step Newmark method but the
solution did not converge, despite the fact that in similar simulations for
a beam with rectangular cross section such problems were not observed.
Consideration of this issue may require additional attention.

5.3. Dynamic bending of the clamped beam

The last example presents dynamic bending of the beam clamped on the
one end and loaded by variable force on the free end. Like in the previous
simulations, the beam has the length / = Im and density p = 7200kg/m®.
Young’s module is increased to E = 2 x 10''Pa and the radius is reduced to
R = 2.5mm. The force acting on the free end is perpendicular to the beam
axis, in the undeformed state, and changes linearly in its magnitude from 0
to 1IN during one-second simulation. Results of the tests are compared with
the analogous simulations performed in FEA package. As in the previous
example, the BEAM188 beam element was used.

Displacements of the beam are shown in Fig. 6. As one can see when the
Poisson ratio is set to zero (bottom plot), the simulations using ANCF and
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Fig. 6. Displacements of the clamped beam (v = 0.3 and v = 0)

FEA formulations are in very good agreement, irrespective of the number
of used elements. On the other hand, the upper plot shows huge differences
between the results. Even when number of the elements increases for ANCF
simulations, one can be notice that the results converge to the wrong solution.
It is very likely that these convergence problems are caused by Poisson
locking.

6. Conclusions

The paper presents a method for analyzing three dimensional ANCF
beam element with circular cross section based on the continuum mechanics
approach. The selected method of integration for this shape of the cross
section is discussed and the possibility of inclusion of beams with other
cross section shapes is also shown. Through further modifications of the
integration schema additional properties of the element can be introduced,
such as taper cross section, occurring in the BEAM188 element.

For the verification of the results, several numerical test were performed.
A good agreement with the reference solutions is observed in cases where
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influence of the element locking is small. In other cases, there is a clear
difference between ANCF and reference results as presented in the literature
[19, 18]. In order to eliminate locking effects, various standard techniques
may be applied to the element proposed in this paper, such a higher order
elements, selective reduced integration or the assumed strain method [13].
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Analiza elementow belkowych o kotowym ksztalcie przekroju poprzecznego z zastosowaniem
opisu w globalnych wspélrzednych wezlowych

Streszczenie

Elementy belkowe, ktére sa czesto stosowane w sformulowaniu w globalnych wspétrzed-
nych weztowych (GWW), moga by¢ traktowane jak elementy izoparametryczne, zatem przez
analogie do elementéw klasycznej metody elementéw skoriczonych (MES) sa calkowane z za-
stosowaniem standardowej, przestrzennej kwadratury Gaussa-Legendre. Z tego powodu, ksztalt
elementéw belkowych GWW jest ograniczony do ksztattu prostokata.

W artykule przedstawiono alternatywna metod¢ catkowania macierzy w elementach GWW,
w ktorych sily sprezystosci sa liczone z zastosowaniem zaleznosci konstytutywnych teorii sprezys-
todci. Opisywana metoda pozwala na wydajna analiz¢ elementéw z kotowym przekrojem poprze-
cznym. Calkowanie wektoréw oraz macierzy elementéw przeprowadzono poprzez rozdzielenie
kwadratury na czeg$¢ catkujaca wzgledem osi elementu oraz cze$¢ catkujaca w przekroju poprze-
cznym elementu. Nastepnie zastosowano alternatywng kwadrature do kotowego ksztattu przekroju
poprzecznego. Liczba punktéw catkowania zastosowanej kwadratury jest réwna liczbie punktéw
catkowania standardowej kwadratury Gaussa, przez co zmiana ksztaltu przekroju poprzecznego nie
wplynela negatywnie na wydajno$¢ elementu. Przedstawiona metoda zostata zweryfikowana z zas-
tosowaniem wybranych testow numerycznych. Testy pokazaly dobra zgodnos$¢ z wynikami referen-
cyjnymi. Obok analizy elementéw z kotowym przekrojem poprzecznym, przeprowadzono dyskusje
dalszych modyfikacji schematu catkowania elementéw. Ze wzgledu na zaobserwowanie negaty-
wnego wplywu blokad na zbiezno$¢ rozwigzania elementéw, w artykule przedstawiono metody ich
eliminowania.



