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REAL-TIME PARAMETER ESTIMATION STUDY FOR INERTIA
PROPERTIES OF GROUND VEHICLES

Vehicle parameters have a significant impact on handling, stability, and rollover
propensity. This study demonstrates two methods that estimate the inertia values of
a ground vehicle in real-time.

Through the use of the Generalized Polynomial Chaos (gPC) technique for prop-
agating the uncertainties, the uncertain vehicle model outputs a probability density
function for each of the variables. These probability density functions (PDFs) can
be used to estimate the values of the parameters through several statistical methods.
The method used here is the Maximum A-Posteriori (MAP) estimate. The MAP
estimate maximizes the distribution of P(β |z) where β is the vector of the PDFs of
the parameters and z is the measurable sensor comparison.

An alternative method is the application of an adaptive filtering method. The
Kalman Filter is an example of an adaptive filter. This method, when blended with the
gPC theory is capable at each time step of updating the PDFs of the parameter dis-
tributions. These PDF’s have their median values shifted by the filter to approximate
the actual values.

1. Introduction

Vehicle control systems are designed to be robust, capable of dealing with
inaccurate parameter values. These inaccurate parameter values are caused
by the loading (objects, etc.) and unloading (fuel, etc.) of the vehicle. For
most systems this is not very detrimental to their function, however vehicle
rollover prevention is not one of these. Owing to the fact that vehicle rollovers
are highly discontinuous events, the more accurate the measurements of the
parameters, the more effectively the control systems can operate.
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The goal of this study is to estimate these changes and to provide updates
for the onboard systems. There are several problems to be considered. The
first is to choose the type and method of data acquisition. The second is
to choose a model that requires as little information as possible while still
maintaining the ability to estimate the parameters of interest.

This paper presents two methods by which one can extract the mass and
inertia properties for a two dimensional vehicle model (pitch and roll) in
operation, without requiring a terrain profile. The methods employed are an
application of Bayesian statistics, and blending of the Extended Kalman Filter
to the mathematical technique of Generalized Polynomial Chaos (gPC). The
Generalized Polynomial Chaos technique gives a computationally efficient
method for quantifying the uncertainty in the parameters [4, 12, 23, 24].

2. Review of Literature

The range of methods for estimating parameter values are as varied as
the fields that they span. The parameters in question could be properties of
electrical devices [11]. The method of estimation could be Kalman Filtering,
Least Square Error, Lyapunov Stability, Genetic Algorithms, and many others
[1, 13, 14, 17, 21].

Estimation of parameters, in general, is a difficult task, and it is no dif-
ferent in vehicle dynamics [6]. The uncertain parameters can be the mass of
the vehicle, the inertia, the aerodynamic drag coefficient, the spring stiffness,
the damping of the suspension, and many others.

There are several methods employed in estimating the vehicle mass and
inertia. An example for mass estimation employs the vehicle engine torque,
drive train inertia, wind resistance, rolling resistance and road grade [7, 13,
21]. The problem as addressed by [21], is that the parameter estimation is
highly sensitive to the estimation of the rolling resistance of the vehicle, a
parameter which changes non-trivially over time.

A method by which several parameters of a vehicle can be estimated is
demonstrated in [17]. In this study, the authors solve for the vehicle CG in
the horizontal plane, the mass and the inertia of the vehicle in pitch and roll.
The problem with this estimation technique is that it requires the road noise
to be Gaussian white noise, which is not always the case. A terrain profile
is needed, and due to the method by which the estimations are made, errors
in the assumed parameters can cause non-trivial estimation errors.

There are several methods that employ the gPC theory as a technique to
propagate the uncertainty in the parameters [3, 9, 20]. Unfortunately, because
they only include sprung mass dynamics [9, 16] they have to run the system
over relatively flat terrain where the pitch and roll dynamics are not heavily
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excited. Expansions to these methods are shown in [2, 15] that add in either
pitch or roll plane dynamics for the parameter estimation. These studies form
the foundation of for this work, and motivate the expansion to include the
roll dynamics of the vehicle for estimation of the roll inertia in an effort to
be as thorough as possible.

3. Vehicle Dynamics

A common model used in vehicle dynamics is a seven degree of freedom
(DOF) base excitation model, such as the one presented in Figure 1. This
model consists of a chassis (denoted as the sprung mass) and the suspension
systems and wheels on the four corners (denoted as unsprung masses). The
model uses the terrain profile to excite the unsprung masses through the tire
dynamics; it then propagates the forces up through the suspension elements
to excite the sprung mass dynamics. In the present study the terrain profile
requirement has been removed; in addition to vertical bounce and pitch DOFs
considered in [15], the model in this study includes the roll DOF. This is
very important since without including the roll motion of the vehicle, the roll
inertia of the vehicle would be ignored, and thus not possible to estimate it.

Fig. 1. The dynamics of the seven degree of freedom vehicle model

The parameters m1, m2, m3, m4 are the mass values of the four un-
sprung masses. The parameter kt is the tire stiffness value. The parameters
a, b, r, l, L, B are the geometric properties of the sprung mass (a is the
distance from the front axle to the center of mass of the sprung mass, b is
the distance from the rear axle to the center of gravity of the sprung mass, r
is the distance from the right side of the vehicle to the center of gravity of the
sprung mass, l is the distance from the left side of the vehicle to the center
of gravity of the sprung mass, L is the wheelbase and B is the trackwidth of
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the vehicle). The parameters k f , b f , kr , br are the stiffness and damping of
the front and rear wheels.

The modified model of the seven DOF system uses the four vertical
acceleration motions of the wheels as inputs. This reduces the computational
complexity, as well as removes the need for knowledge about the unsprung
masses’ stiffnesses, weights, and damping and knowledge about the terrain
profile. Thus, the modified model, illustrated in Figure 2, has three DOF:
vertical bounce, pitch rotation and roll rotation of the sprung mass.

Fig. 2. The dynamics of the three degree of freedom model

This model has been developed based on the following assumptions:
small lateral velocity, small yaw velocity, small longitudinal acceleration,
small lateral acceleration, small roll angle, small pitch angle, linear sus-
pension elements, symmetry of front suspension elements, as well as rear
elements: k f r = k f l = k f .

The system uses two “centers”, one for the sprung mass, and one for the
ensemble of the unsprung masses. For the sprung mass, the center is defined
as the height, pitch, and roll of the center of mass. For the unsprung masses,
the center is defined as the geometric average height, zu,cg, roll, θu,cg, and
pitch, φu,cg, for each body, making this an adaptation of a quarter car model;
the center for the ensemble of the unsprung masses in vertical bounce, pitch,
and roll are thus described as:

zu,cg = (L − a)
B − l
L B

z f l + (L − a)
l

L B
z f r + a

B − l
L B

zrl + a
l

L B
zrr (1)

θu,cg =

[
−

(
r z f l + l z f r

)
+ (r zrl + l zrr)

]

L B
(2)

φu,cg =

[(
b z f l + a zrl

)
−

(
a zrr + b z f r

)]

L B
(3)
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Similar relations to Equations (1), (2), and (3) can be written in terms
of accelerations, corresponding directly to the measurement done using ac-
celerometers on the instrumented vehicle. The accelerations thus computed
are then fed into Equations (4), (5), and (6). (The parameters z f l, z f r , zrl, zrr
are the vertical displacements of the wheels (front left, front right, real left,
rear right).)

Using the parameters to be estimated Mu, Jpitch, Jroll as the mass, pitch
inertia, and roll inertia of the sprung mass, the dynamic equations of motion
of the sprung mass are defined as:

Mu Z̈ =


∑

i= f l, f r, rl, rr

Fi

 − z̈u,cg (4)

Jpitch θ̈ = Tpitch − Jpitch θ̈u,cg (5)

Jroll φ̈ = Troll − Jroll φ̈u,cg (6)

Where the relative displacements in vertical bounce (Z), pitch (θ) and roll
(φ) between the centers of the unsprung and sprung mass bodies are:

Z = zs,cg − zu,cg (7)

θ = θs,cg − θu,cg (8)

φ = φs,cg − φu,cg (9)

The forces and moments for the sprung mass system using the relative dis-
placements are:

F f l = −k f Z − b f Ż + a k f θ + a b f θ̇ − l k f φ − l b f φ̇ (10)

F f r = −k f Z − b f Ż + a k f θ + a b f θ̇ + r k f φ + r b f φ̇ (11)

Frl = −kr Z − br Ż − b kr θ − b br θ̇ − l kr φ − l br φ̇ (12)

Frl = −kr Z − br Ż − b kr θ − b br θ̇ + r kr φ + r br φ̇ (13)

Tpitch = −a
(
F f l + F f r

)
+ b(Frl + Frr) (14)

Troll = −r
(
F f r + Frr

)
+ l

(
F f l + Frl

)
(15)
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4. Methodology of Study

The sensors and instrumentation used for this purpose are described in
this section. Further, the mathematical methods employed in developing the
estimators are also presented here.

4.1. Sensors and Data Collected

Artificial sensor readings are produced from a seven DOF vehicle model
operating on a synthetic road profile. The synthetic road profile is created
from a combination of sine and cosine functions, operating between 0.77 Hz
and 8.3 Hz with magnitudes of 3 cm and 0.3 cm, and step functions.

4.2 Theory used in quantifying unknown parameters

The parameters to be estimated are defined in the model dynamics as hav-
ing uncertain values. To propagate the uncertainty in the parameters through
the dynamics of the model, the mathematical technique of Generalized Poly-
nomial Chaos is employed (gPC).

The model is initiated by specifying a mean and variance for the para-
meters, as shown in Equations (16) to (18):

Mass = mass + ∆mass (16)

JPitch = JPitch + ∆JPitch (17)

JRoll = JRoll + ∆JRoll (18)

Because these parameters are uncertain, the solution of the differential equa-
tions will also be uncertain. The state space is represented in gPC as:

x =


S∑

i=1

xi
1 Ψi (ξ) · · ·

S∑

i=1

xi
n Ψi (ξ)

S∑

i=1

vi
1 Ψi (ξ) · · ·

S∑

i=1

vi
n Ψi (ξ)


T

(19)

The state space vector is formally expanded to contain the parameter values:

x =


S∑

i=1

xi
1 Ψi (ξ) · · ·

S∑

i=1

xi
n Ψi (ξ)

S∑

i=1

vi
1 Ψi (ξ) · · ·

S∑

i=1

vi
n Ψi (ξ)

S∑

i=1

pi
1 Ψi (ξ) · · ·

S∑

i=1

pi
d Ψi (ξ)


T

(20)

with xi
j representing the ith term of the power series, and the jth state variable.

Similarly vi
j represents the jth state space variable velocity and the ith term

in its power series expansion. The parameters are described as pi
d with d

indexing the parameter of interest, and i indexing the power series coefficient.
For a gPC series, the term Ψi (ξ) is a tensor product of the basis functions
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and random variables, ξ which are used to span the space of the uncertain
parameters. The basis functions are orthogonal or orthonormal polynomials
(such as Legendre Polynomials). More explicit detailing of this can be found
in [8, 18, 19, 23, 25].

The coefficients of these power series are solved through the collocation
technique. The collocation technique functions much like Monte Carlo sim-
ulations, but with two major differences. The first is that we choose specific
points. The second is that the set of solutions are combined through the
collocation matrix. The collocation matrix is defined as:

A j,i = Ψi
(
ξj
)

(21)

where the ith index tracks the tensor project of the basis functions and the
jth index is the choice of points from the set of collocation points. The
collocation points are given in vector form:

ξ j =
[
ξ

j
1 . . . ξ

j
d

]
(22)

Where j represents the rows of points, occupying the subset 1 ≤ j ≤ S, and
d indexes the points chosen for each uncertain parameter. In general, a stable
solution requires 3S ≤ Q ≤ 4S number of collocation [5]. The coefficients
are thus solved for as:

x j (T ) =

Q∑

i=1

(A#) j,i X
i(T ) (23)

Where A# is the Moore-Penrose pseudo-inverse. X i is the ith solution of
the state space parameters from the dynamics using the ith row vector of
collocation points and x j denotes the jth power series coefficient.

4.3 Estimation Techniques

In section 4.2 the method by which the uncertainties are propagated
through the dynamics of the model are shown. Once the system is construct-
ed, the output is a stochastic solution that only propagates the uncertainties
but does nothing to estimate them. In the next two sub-sections, methods for
estimating these parameter values are described.

4.3.1 Extended Kalman Filter

A differential equation system can be described in state space form as:

ẋ = f (x) + w (24)
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Where:
x = [x1 . . . xn, v1 . . . vn]T (25)

And w is the vector of process noise. The system measurement equation is
defined as:

z = h (x) + v (26)

h is the observation matrix, that incorporates the state vector into an output
solution. v is the vector of the sensor noise. The Kalman Filter is designed
for linear systems. The Extended Kalman Filter (EKF) linearizes the system
mechanics in an attempt to produce an approximately linear system. This is
done through linearizing the system dynamics and observation matrices and
evaluating them at each time step, k:

Fk =
δ f (x)
δx
|x=xk (27)

Hk =
δh (x)
δx
|x=xk (28)

The EKF equation is:

xu
k = x f

k + Kk(zk − Hk ∗ xk) (29)

The system takes the initial forecast (or model solution), x f
k , and updates it

through the Kalman Update equations, Kk, and the residual, (zk − Hk ∗ xk),
to update the state variables, xu

k . The Kalman Update equation is defined as:

Kk = Mk HT
k

(
Hk Mk HT

k + Rk

)−1
(30)

The covariance matrices, Mk , and, Pk are thus obtained as:

Mk = Φk Pk−1 Φk + Qk (31)

Pk = (I − Kk Hk) Mk (32)

The system covariance matrix, Mk , is created through the functional ma-
trix, Φk , and the forecasted system covariance, Pk−1. The Rk matrix is the
measurement noise matrix, defined as:

Rk = E(vvT ) (33)

E is the mathematical expectation operator. Qk is the matrix that describes
the discrete process noise matrix, through the process noise matrix, Q.

Φk=eFkTs (34)
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Q = E(wwT ) (35)

Qk =

∫ Ts

0
Φk Q Φk dt (36)

More explicit detailing and implementation of the EKF can be found in [10,
22, 26].

4.3.2 The Generalized Polynomial Chaos – Extended Kalman Filter

The EKF equations are modified to accept the gPC power series solutions
of the state variables. The gPC method calculates the covariances of the
variables through multiplication of the power series coefficients as defined
by Equation (37), for normalized basis functions:

cov
(
xd,k , x j,k

)
=

Q∑

i=2

xi
d, k xi

j, k (37)

For gPC-EKF the Kalman Update equation is defined as:

xu,i
k = x f ,i

k + Kk

(
zkδ (i − 1) − Hkx f ,i

k

)
(38)

Kk = cov
(
xf

k, pk
)
HT

k

(
Rk + Hkcov (x1...2n, x1...2n) HT

k

)−1
(39)

More explicit derivation of this equation can be found in reference [3]. The
indexes are defined as: The subscript k indexes time. The u and f superscripts
denote the updated and forecasted state space vectors. The superscript i in-
dexes the term of the power series. The 1 . . . 2n subscript denotes that only
the state variables, and not the parameters are to be used here. T is the matrix
transpose operator. The variables are defined as: z is the vector of the sensor
signals. R is the sensor signal noise matrix δ is the dirac delta function H is
the linearized observation matrix p is the vector of parameters.

4.3.3 Bayesian Statistics

Bayesian Statistics can be used to estimate the parameter values. This
is done by assuming that the error between the signal and the model is a
statistical distribution. The Bayesian framework for parameter estimation is
defined as:

P
[
p |z ] =

P
[
z |p ]

P
[
p
]

P [z]
(40)

For the purposes of estimation, the term P [z] can be ignored as a constant
scaling factor. This reduces Equation (41) to:

P
[
p |z ] ∝ P

[
z |p ]

P
[
p
]

(41)
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P[p|z] is the posterior probability density function of the parameter values
given the data. The term P[z|p] is the statistical distribution of the error
between the signal and the model. This is defined for a normal distribution
as:

P
[
z |p ]

= e
− 1

2

T f∑
t=Ti

(zt−ht(x))TR−1t (zt−ht(x))
(42)

Where zt is the signal vector at time t, and ht is the model output vector
at the same time, t. The term Rt is the signal noise matrix. The term P[p]
is the prior distribution of the parameters. x is the state space vector. This
is one of the powerful tools of the Bayesian framework, as it incorporates
previous knowledge about the distributions of the parameters. This term is
used to allow the estimator to learn.

A sequence of measurements is collected over a time span, [T i . . .T f ],
and the distribution P

[
p |z ] is calculated. The Maximum A Posteriori (MAP)

estimation finds the values of the parameters that maximize this function
P

[
p |z ] The probability density function of P[p] is then fed into the next

estimation as the distribution for P[p].
The values being estimated here are not the values of the parameters, p,

but the values of the random variables, ξ. This redefines Equation (29) as:

P[z |ξ ] = e
− 1

2

T f∑
t=Ti

(zt−ht(x,ξ))TR−1t (zt−ht(x,ξ))
(43)

P
[
ξ |z ] ∝ P

[
z |ξ ]P [

ξ
]

(44)

The MAP estimate of the random variables from Equation (31) is used in the
collocation matrix to return the values of the state space variables (positions
and velocities) and the parameter values (mass, pitch inertia, and roll inertia)
as:

A (ξEst) x (t, ξEst) (45)

5. Simulation Results and Discussion

5.1 Extended Kalman Filter Results

Four different simulations are performed using the Extended Kalman
Filter. Table 1 shows the variation in the parameters for each simulation, and
figures (3-5) show the parameter estimations for each simulation.

The values for the Mass, Pitch Inertia and Roll Inertia are set as initial
estimations for the parameters. The variance for the parameters is defined as
600 kg, 700 kg m2 and 400 kg m2 for Mass, Pitch Inertia and Roll Inertia
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Table 1.
Variations in the parameters used as inputs for the EKF estimation simulations

Run Mass
Pitch
Inertia

Roll
Inertia

Poly
Order

1 2250 3500 1100 2

2 2250 3500 1100 4

3 1500 2700 600 2

4 1500 2700 600 4

Fig. 3. EKF mass estimate versus time

respectively. The time step of integration is 0.005 seconds. Total time length
is 300 seconds.

The EKF estimations are excellent when the models match well. As the
sensor measurements leave the bounds imposed by the constraints used in the
derivation of the model the EKF estimates diverge. This can easily be seen
by the bump in the road at t = 61s causing a shifting of the parameter values.
The effect can be reduced through higher polynomial orders, modification of
the sensor noise matrix, changes in the time step or any combination thereof.
The steady state error percentages between the model parameters and the
actual are listed in Table 2:
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Fig. 4. EKF pitch inertia estimate versus time

Fig. 5. EKF roll inertia versus time

Table 2.
EKF error percentages for final estimation

Mass Error % Pitch Inertia Error % Roll Inertia Error %

0.01 -1.31 -2.27
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5.2 Bayesian Statistics

Eight experiments are detailed below in Tables 3 and 4. For each of
the estimation experiments, several of the parameters are changed. These are
listed below as the initial estimation of the mass, pitch inertia and roll inertia
mean values, the polynomial order (Poly Order) of the gPC expansions, the
length of each time interval used for estimation and the number of estimations
performed.

Table 3.
Initial parameters fed into the Bayesian MAP estimation algorithm

Run Mass Pitch Inertia Roll Inertia Poly Order Time Interval # of Intervals

1 2250 3500 1000 6 24 1

2 2250 3500 1000 6 1 24

3 2250 3500 1000 4 24 1

4 2250 3500 1000 4 1 24

5 1650 2600 1000 6 24 1

6 2250 3500 1000 4 6 4

7 2250 3500 1000 4 60 1

8 2250 3500 1000 10 24 1

Table 3 details the results of the estimation algorithm. The table details
what the final estimates are, and what their percent error is relative to the
actual values of the synthetic data model.

Table 4.
Results of the Bayesian simulations

Run Mass Est Pitch Est Roll Est % Err Mass % Err Pitch % Err Roll

1 1905.685 3054.9 785.44 3.01% 1.83% -1.82%

2 1897.915 3017.19 823.28 2.59% 0.57% 2.91%

3 1934.36 3159 780.08 4.56% 5.3% -2.49%

4 1852.405 2877 833.44 0.13% -4.1% 4.18%

5 1914 3069.4 766.7 3.46% 2.31% -4.17%

6 1897.9 3048.3 858.2 2.59% 2.61% 7.28%

7 1802.5 2876.4 803.4 -1.59% -4.12% 0.43%

8 1874.2 3047.3 777.7 1.31% 1.58% -2.78%

It can be seen that the higher the polynomial order, the more accurate
are the estimations. This is consistent with the proposed behavior of the gPC
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mathematics. The longer the time sequence fed into the Bayesian estimation
algorithm the better the estimation, which is consistent with statistical theory.
It can also be seen that the closer the initial estimate is, the more accurate
the estimation.

6. Conclusions

This paper derives a vehicle model capable of estimating mass, pitch
inertia, and roll inertia of a vehicle without the need for a terrain profile
and using a reduced set of sensors. The techniques employed show accept-
able agreement between the derived model and the seven DOF model. The
Bayesian model is more robust in comparison to the EKF model. The EKF
model can be designed to run much faster, while also providing updates to
the parameters much faster.

Manuscript received by Editorial Board, September 10, 2012;
final version, November 29, 2012.
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Metody estymacji parametrów w czasie rzeczywistym dla wyznaczania właściwości
inercyjnych pojazdu terenowego

S t r e s z c z e n i e

Parametry pojazdu mają znaczny wpływ na jego właściwości, takie jak sterowalność, sta-
bilność i odporność na wywrócenie. W pracy przedstawiono dwie metody estymacji parametrów
inercyjnych pojazdu terenowego w czasie rzeczywistym.

W modelu pojazdu z niepewnościami wyznacza się funkcje gęstości prawdopodobieństwa
(PDF) dla każdej wielkości opisując propagację niepewności przez zastosowanie techniki uogól-
nionego chaosu wielomianowego (gPC). Funkcje te mogą być użyte do estymacji wartości para-
metrów przy wykorzystaniu różnych metod statystycznych. W pracy zastosowano metodę maksy-
malnego estymatora a posteriori (MAP). Estymator MAP maksymalizuje funkcję rozkładu
P(β | z), gdzie β jest wektorem funkcji gęstości prawdopodobieństwa parametrów, a z jest wielkością
mierzalną, otrzymaną z porównania wyjść czujników.

Metodą alternatywną jest zastosowanie filtru adaptacyjnego, którego przykładem jest
filtr Kalmana. Metoda ta, w połączeniu z techniką uogólnionego chaosu wielomianowego (gPC),
umożliwia, w każdym kroku adaptacji, uaktualnianie funkcji gęstości prawdopodobieństwa (PDF)
parametrów systemu. Działanie filtru powoduje, że mediany tych funkcji zmieniają się dążąc do
rzeczywistych wartości poszukiwanych parametrów.


