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STRUCTURE PRESERVING SIMULATION OF MONOPEDAL
JUMPING

The human environment consists of a large variety of mechanical and bio-
mechanical systems in which different types of contact can occur. In this work,
we consider a monopedal jumper modelled as a three-dimensional rigid multibody
system with contact and simulate its dynamics using a structure preserving method.
The applied mechanical integrator is based on a constrained version of the Lagrange-
d’Alembert principle. The resulting variational integrator preserves the symplecticity
and momentum maps of the multibody dynamics. To ensure the structure preser-
vation and the geometric correctness, we solve the non-smooth problem including
the computation of the contact configuration, time and force instead of relying on
a smooth approximation of the contact problem via a penalty potential. In addi-
tion to the formulation of non-smooth problems in forward dynamic simulations,
we are interested in the optimal control of the monopedal high jump. The optimal
control problem is solved using a direct transcription method transforming it into a
constrained optimisation problem, see [14].

1. Introduction

A variety of biomechanical literature concerns the function and structure
of the human locomotor system and often the focus is on walking movements
[5, 17]. Here, we are interested in jumping movements as e.g. in [1]. The
monopedal jumper is modelled as a constrained multibody body system and
we simulate non-smooth forward dynamics and an optimal control problem.
In contrast to rolling wheels, the locomotion with legs requires simulation
techniques which handle the contact’s establishing and releasing between the
foot and the ground. The investigated contact formulation covers the theory
of perfectly elastic and perfectly plastic contacts (e.g. see [8]), where the last

∗ Chair of Applied Dynamics, University of Erlangen-Nuremberg, Konrad-Zuse-
Straße 3/5, D-91052 Erlangen, Germany; E-mail: michael.koch@ltd.uni-erlangen.de,
sigrid.leyendecker@ltd.uni-erlangen.de



128 MICHAEL W. KOCH, SIGRID LEYENDECKER

one means that the foot stays in contact with the ground for a certain time.
The monopedal jumper model consists of an upper body representing the
torso and the leg consists of two rigid bodies, which are connected at the
knee joint. The inclusion of the knee joint leads to movements that differs
from those considered e.g. in [7, 12], which are technically oriented jumpers.
The forward dynamics simulations use a symplectic momentum integrator
to compute the monopedal’s motion and include the perfectly elastic and
perfectly plastic contact formulations, which means that the relevant points
in time when contact establishing and releasing takes place are determined.
The optimally controlled jumper allows actuation in the hip and the knee
joint, such that a physiologically motivated cost function is minimised. In
the numerical solution, a direct transcription method is used to transform the
optimal control problem into an optimisation problem being constrained by
the fulfilment of discrete equations of motion, boundary conditions and path
constraints, see e.g. [10, 18]. To avoid an artificial restriction of the opti-
misation problem by prescribing the time of contact establishing or release,
variable time steps are used, wherefore two scaling parameters being part of
the optimisation parameters are used.
Section 2 describes briefly the multibody formulation in redundant coordi-
nates and introduces a corresponding actuation force formulation. The sym-
plectic momentum integrator and the null space method with nodal repara-
metrisation, which reduces the numerical effort, are introduced in Section 3.
Section 4 covers the optimal control problem and explains shortly the trans-
fer into a finite dimensional optimisation problem. The simple monopedal
jumper model is described in Section 5 and the discrete equations of motion
corresponding to the perfectly elastic, respectively perfectly plastic contact
for the variational approach are given in Section 6. In Section 7, the optimal
control problem of high jumping is transformed into an optimisation problem
with variable time step. Results for the forward dynamics as well as for the
optimal control problem are presented in the corresponding sections.

2. Rigid multibody configuration and actuation

The simulation of multibody dynamics requires a description of the
multibodies configuration – in this work we use the rotation free formulation
introduced in [2] for rigid bodies and in [4] for rigid multibody systems. The
α-th rigid body is specified by a configuration vector qα(t) ∈ R12 composed
by the placement of its center of mass ϕα(t) and the right-handed director
triad dαi (t) for i = 1, 2, 3. The director triad specifies the body’s orientation
in space and has to stay orthonormal during the motion in the considered
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time interval [t0, tN ], which is guaranteed by six so-called internal constraints
gint(qα) = 0 ∈ R6.

In multibody systems, the rigid bodies are interconnected by different
types of joints, e.g. revolute or spherical joints. The interconnection of the
rigid bodies as well as their rigidity gives rise to a scleronomic and holo-
nomic constraint function g(q) ∈ Rm on the redundant configuration variable
q ∈ Rk , where k equals 12 times the number of bodies. The multibody sys-
tems are actuated directly by the independent generalised force τ ∈ Rk−m and
the resulting k-dimensional redundant actuation f (q) ∈ Rk can be computed
via f (q) = BT (q) · τ with the input transformation matrix BT (q) ∈ Rk×(k−m).
Note that the transformation matrix depends on the rigid bodies’ intercon-
nection and it is described in detail in [14].

3. Structure preserving integration for constrained mechanical systems

The dynamics of continuous mechanical systems can be described us-
ing the Lagrangian or Hamiltonian formalism. Here, discrete Lagrangian
mechanics is used to derive a structure preserving integrator, see e.g. [16].
The constrained mechanical system is considered in a configuration mani-
fold Q ⊆ Rk with the time-dependent configuration vector q(t) ∈ Q. Corre-
sponding to the approach in [14], the constrained version of the Lagrange-
d’Alembert principle is discretised at the time nodes {t0, t1 = t0 + ∆t, . . . , tn =

t0 + n∆t, . . . , tN = t0 + N∆t}, where N ∈ N is the number of time inter-
vals and the discrete configurations qn ≈ q(tn) approximate the continuous
trajectory. Similarly, λn ≈ λ(tn) approximates the Lagrange multipliers with
λ(t) ∈ Rm. As usual in the context of discrete variational mechanics, the
discrete Lagrangian Ld : Q × Q → R is an approximation to the action
integral of the continuous Lagrangian over one time-interval. The discrete
Lagrange-d’Alembert principle requires stationarity of the resulting action
sum, i.e.

δSd = δ


N−1∑

n=0

Ld(qn, qn+1) − 1
2

(tn+1 − tn)
[
gT (qn) · λn − gT (qn+1) · λn+1

]

+

N−1∑

n=0

f −n · δqn + f +
n · δqn+1 = 0

for all variations δqn and δλn. This leads to the (k + m)-dimensional con-
strained forced discrete Euler-Lagrange equations

D2Ld(qn−1, qn) + D1Ld(qn, qn+1) − GT
d (qn) · λn + f +

n−1 + f −n = 0 (1)
g(qn+1) = 0, (2)
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for n = 1, . . . ,N − 1. Here Gd =
1
2
(tn+1 − tn−1)

∂g
∂qn

denotes the (m × k)-

dimensional Jacobian matrix of the constraints, and f −n =
1
2
(tn+1− tn)BT (qn) ·

τn, respectively f +
n−1 =

1
2
(tn−tn−1)BT (qn)·τn−1 are called left and right discrete

forces. The resulting mechanical integrator represents exactly the behaviour
of the analytical system concerning the consistency of the momentum maps
and symplecticity. Due to these preservation properties it is called symplectic
momentum scheme. A further benefit of this mechanical integrator is the
good energy behaviour, which means that there is no numerical gaining or
dissipation of energy.

According to [3, 4], we apply the discrete null space method to reduce
the dimension of the constrained forced discrete Euler-Lagrange equations.
The discrete null space matrix P ∈ Rk×(k−m) fulfils the property Gd · P = 0
and if we premultiply Equation (1) by the transposed null space matrix, then
the constraint forces and thereby the Lagrange multipliers vanish. The result-
ing k-dimensional system is called reduced forced discrete Euler-Lagrange
equations. The minimal dimension of the system can be achieved using the
vector of incremental generalised coordinates un+1 ∈ U ⊂ R(k−m) to repara-
metrise the configuration vector qn+1 in the neighbourhood of qn. The nodal
reparametrisation function Fd : U × Q → Q

qn+1 = Fd(un+1, qn) (3)

fulfils the constraint conditions and therefore Equation (2) becomes unnec-
essary. Finally, the number of unknowns and thereby numerical effort is
reduced by the formulation in discrete generalised coordinates ud = {un}Nn=0
and the discrete torques τd = {τn}N−1n=0 . The dimension of the equations of
motion is reduced to k − m.

PT (qn) ·
[
D2Ld(qn−1, qn) + D1Ld(qn, Fd(un+1, qn)) + f +

n−1(qn, τn−1) + f −n (qn, τn)
]

= 0
(4)

4. Optimal control problem

In general, the goal of optimal control problems is to determine the
optimal state trajectory and force field for the – in our case holonomically
constrained systems, which move from the initial state q(t0) = q0, q̇(t0) = q̇0
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to a final state q(tN ) = qN , q̇(tN ) = q̇N . The investigated system fulfils the
equations of motion and at the same time the objective functional

J(q, q̇, f ) =

tN∫

t0

C(q, q̇, f ) dt

is minimised, where the integrand C(q, q̇, f ) : TQ×T ∗qQ→ R is a given cost
function. The optimal control problem is solved using a direct transcription
method, which transforms it into a constrained optimisation problem. The
discrete objective function approximates the integral of the continuous cost
function and the discrete constrained optimisation problems reads

min
ud ,τd

J(ud , τd) = min
ud ,τd

N−1∑

n=0

C(un, un+1, τn), (5)

subject to the constraints given by the reduced discrete equations of motion
of the symplectic momentum scheme in Equation (4). In addition to the
discrete equations of motion of the specific mechanical integrator, further
constraints, like initial conditions, final conditions and possible inequality
path constraints can be imposed.

5. Monopedal jumper

The three-dimensional model of the monopedal jumper is inspired by the
human locomotor system. The characteristics of jumping are analysed using
a reduced system of three rigid bodies, which represents the calf, thigh and
upper part of the body, see Figure 1.

The human knee joint is modelled as a revolute joint, where the unit
vector n1 in body 2 specifies the axis of rotation and the hip is modelled by
a spherical joint. Note, that in reality the possible angles of anatomical joints
are restricted, accordingly, in case of the optimal control problem, an inequal-
ity constraint function h3d(q) < 0 prevents the human knee’s super-extension
and as a result of this, the angle between thigh and calf is smaller than
π. The motion of the upper part of the body is supported by a prismatical
joint, i.e. only translation parallel to the e3-direction is allowed. The con-
strained system of the monopedal jumper is described by a 36-dimensional
configuration variable and due to the rigidity mint = 18 internal constraints
are present. The joint interconnections cause mext = 13 external constraints
and therefore the model is restricted by m = 31 holonomic constraints. Cor-



132 MICHAEL W. KOCH, SIGRID LEYENDECKER

Fig. 1. Model of the three-dimensional jumper and its generalised coordinates

responding to the k −m = 5 degrees of freedom, the generalised coordinates
and actuations read

u =



u1

θS

θR

 ∈ R
5 and τ =



τ1

τS

τR

 ∈ R
5 (6)

with the translational motion u1 ∈ R and force τ1 ∈ R in e3-direction.
The vector θS ∈ R3 represents the relative rotation in the hip and θR ∈ R
the relative rotation of the calf (see Figure 1 for details). The monopedal
jumper’s hip is actuated by the torques τS ∈ R3 and τR ∈ R acts at the knee
joint.

6. Contact formulation

Within the forward dynamics simulation of the monopedal jumper, the
theory of perfectly elastic and perfectly plastic contacts are discussed. The
latter one means that the jumper’s foot sticks to the ground as long as the
contact force prevents the penetration of the ground. As soon as the contact
force is zero, the foot should be released since when its sign changes, it
would prevent the foot from lifting which is not consistent with the model
of a foot ground contact during a jump.
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6.1. Perfectly Elastic Contact Formulation

The simulation of perfectly elastic contacts using a variational integrator
is performed for chains of point masses in a box in [15] and further detail
can also be found in [6]. Here, the implemented non-penetration condition
gc(q) ≥ 0 ∈ R specifies the distance between the foot and the ground, where-
by the ground is the (e1, e2)-plane (see Figure 2).
As long as the non-penetration condition is not violated, the forward dy-
namics simulation computes a new configuration qn+1 using a constant time
step ∆t in the discrete Euler-Lagrange equations in Equation (1-2). After
every time step, the fulfilment of the inequality constraint is checked for
the new configuration qn+1. If it is violated, i.e. gc(qn+1) < 0, then the
configuration qn+1 is discarded (see e.g. dashed configuration in Figure 2),
and the physically correct contact configuration qι must be calculated.

Fig. 2. Perfectly elastic contact



134 MICHAEL W. KOCH, SIGRID LEYENDECKER

Table 1.
Physical quantities of the calf, thigh (taken from [19]) and the human torso (taken from [9] with

a total weight of 64.90 [kg])

physical quantity calf thigh torso

mass
[
kg

]
3.2800 6.8600 28.2055

moment of
inertia [kgm2]

Ie1e1 0.0490 0.1238 0.1368

Ie2e2 0.0504 0.1188 0.1368

Ie3e3 0.0037 0.0229 0.9035

The contact configuration qι, the time of contact tι and the Lagrange
multipliers λι−1 are determined by solving the (k + m + 1) equations

D2Ld(qι−2, qι−1) + D1Ld(qι−1, qι, tι−1, tι) − GT
d (qι−1) · λι−1 + f +

ι−2 + f −ι−1 = 0
(7)

g(qι) = 0
(8)

gc(qι) = 0.
(9)

Equation (9) describes the contact condition, which is needed to compute
the contact time tι. In the following time interval, qι+1, λι and the contact
force Lagrange multiplier λc follow from

D2Ld(qι−1, qι, tι−1, tι) + D1Ld(qι, qι+1, tι, tι+1)

−GT
d (qι) · λι − (GT

c )d(qι) · λc + f +
ι−1 + f −ι = 0
g(qι+1) = 0

D4Ld(qι−1, qι, tι−1, tι) + D3Ld(qι, qι+1, tι, tι+1) = 0, (10)

where Equation (10) is a conservation condition for the discrete energy being
the essential property of a perfect elastic contact.

6.1.1. Numerical Example

The conservation of energy is an essential feature of the perfectly elastic
contact formulation. To demonstrate the energy’s long term behaviour, we
consider an example with a straight leg. The physical parameters of the torso,
calf and the thigh are listed in Table 1. The motion starts at rest and the po-
sition of the calf’s center of mass is given by ϕ3

0 = [0, 0, 0.5] m. We simulate
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a time interval of 400 s and therein more than 830 contacts are counted.
The algorithm’s long term energy behaviour is plotted in Figure 3 and it
shows a slight oscillation of the total energy (as it is typical for variational
integrators), but the algorithm does not dissipates energy numerically. More
details on the perfectly elastic contact formulation and another example are
given in [11].

Fig. 3. Energy evolution for 830 contacts

6.2. Perfectly Plastic Contact Formulation

In case of the perfectly plastic contact, the jumper’s foot stays in contact
to the ground for a certain time and the contact is released as soon as the
contact force in e3-direction changes its algebraic sign, since this would
mean the foot is prevented from lifting off the ground. During the flight phase
(gc > 0), the forward dynamics simulation computes a new configuration qn+1
using a constant time step ∆t. Analogue to the perfectly elastic contact, the
configuration qn+1 is checked after every time step and if the non-penetration
condition is violated, then the Equations (7-9) are used to determine the time
and configuration of contact establishing. While the contact stays closed, the
foot is fixed at the ground in xS by a spherical joint. The corresponding
constraint reads gS(qn) = ϕ3

n + %3
n − xS = 0 ∈ R3 and the resulting contact

force is computed as fS(q) = GT
S (q) · λS ∈ R36. For tn > tι, the contact

configurations qn, the Lagrangian multipliers λn−1 and λSn−1 are determined
by solving the (k + m + 3)-dimensional system of equations

D2Ld(qn−1, qn) + D1Ld(qn, qn+1) − GT
d (qn) · λn − (GT

S )d(qn) · λSn + f +
n−1+ f −n = 0

(11)

g(qn+1) = 0
gS(qn+1) = 0.
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The contact force vector fS immobilises the jumper’s foot in xS and
its function is to prevent the penetration of the ground, thereby the third
component of the Lagrange multiplier is negative (λ3

Sn
< 0). If λ3

Sn
> 0,

the contact force would prevent the foot from lifting of the ground. When
this happens, the current configuration is discarded (see the right dashed
configuration in Figure 4). The violation of this condition implies, that during
the constant time-step the foot would release the contact with the ground,
but this is artificially prevented by the force vector fS.

Fig. 4. Perfectly plastic contact

Therefore, the last contact configuration qκ , the time of contact release
tκ , the internal and external Lagrange multipliers and the contact multipliers
are determined by solving the (k + m + 3 + 1) equations

D2Ld(qκ−2, qκ−1) + D1Ld(qκ−1, qκ)
−GT

d (qκ−1) · λκ−1 − (GT
S )d(qκ−1) · λSκ−1 + f +

κ−2 + f −κ−1 = 0
g(qκ) = 0

gS(qκ) = 0
λ3

Sκ−1 = 0. (12)

Equation (12) is necessary to compute the point in time, at which the foot
releases the contact with the ground. The forward dynamics after the contact
release is described again by the Equations (1) - (2).
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Fig. 5. Determination of the contact release time for the upright monopedal jumper

Fig. 6. Determination of a non-physical backward time step for the upright monopedal jumper

The determination of the contact release time can be a difficult task. For
simplicity, let us consider the special case when the jumper is standing on the
ground at rest in an upright position. The jumper is actuated by translational
forces fn−1, fn ∈ R at the upper part of the body and the forces act in the
jumpers longitudinal direction. At the contact release time, the actuation force
is in equilibrium with the gravitational force of the total body. However, in the
context of the discrete forced Euler-Lagrange equations, the force equilibrium
depends on the time step, in particular it reads

(tκ − tκ−2)GJ = (tκ−1 − tκ−2) fκ−1 + (tκ − tκ−1) fκ , (13)

whereby GJ represents the gravitational force. The monopedal jumper releas-
es the contact as soon as the integral of the actuation forces fκ−1 and fκ is
equal to the integral of the jumper’s gravity force. Therefore, we investigate
two different cases. The first one is illustrated in Figure 5, here, the actuation
force fκ−1 is smaller but fκ is greater than GJ . Due to that, the temporal
average of the actuation is greater than the jumper’s weight and therefore
the algorithm computes a correct time node tκ > tκ−1 for the contact release
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(see the grey shaded area in Figure 5). The other case is illustrated in Fig-
ure 6, where the force function is approximated by an other step function.
In this situation a non-physical contact release time is determined, because
the temporal average of the actuation forces fκ−1 and fκ (see the light grey
shaped area) is smaller than the gravitational forces and at the next step,
both actuation forces are greater than the GJ and so a negative time step
(tκ < tκ−1) is the result of the forward dynamics simulation. If this happens,
the contact release time interval is subdivided, thus the approximation to
the actuation is refined until a physically meaningful contact release time is
found. In this work, we examine two strategies to refine the approximation
of the jumper’s actuation. In Figure 7a), the contact release time interval is
subsequently divided in the middle (bisection) until a physical contact release
time is computed. The second possibility is illustrated in Figure 7b), where
the initial contact release interval is subdivided in p ∈ N equal subintervals

of time step
1
p

∆t, and p increases until a physical correct release time is

computed.

a) b)

Fig. 7. Determination of the contact release time for the monopedal jumper using the subdivision
with a subsequent bisection in a) and with increasing number of p subintervals (here p = 5) in b)

6.2.1. Numerical Examples

This section illustrates the properties of the perfectly plastic contact for-
mulation considering the different strategies to determine a physical correct
time of the contact release. The jumper’s motion starts at rest with a straight
leg and the foot is in contact with the ground in xS = [0, 0, 0] m. The upper
part of the body is actuated by a force approximated by a monotonously in-
creasing step function and the discrete equations of motion are solved using
the Newton-Raphson method with an numerical accuracy of 10−8.

At first, we investigate an example, in which no refinement strategy needs
to be used to compute the physically correct contact release time. In this
case, a basis time step of ∆t = 0.015 s is used and the applied step function
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Fig. 8. Visualisation of the continuos actuation function and the implemented step function

evaluates the continuous function f (t) =
3
2
GJ(t + 0.015) at the right side of

each time interval. The resulting step function is a rough approximation of
the continuos actuation force f (t). Figure 8 illustrates the continuous function
and the step function fn and it also depicts the computed contact release time
at tκ = 0.6570 s.

The next example illustrates the properties of the two introduced refine-
ment strategies. Both strategies are implemented with a basic time step of
∆t = 0.0075 s and the upper part of the body is actuated by a monoto-
nously increasing step function, which evaluates the continuous function

f (t) =
3
2
GJ(t + 0.0075).

Fig. 9. Visualisation of both possibilities to determine the correct contact release time for the
monopedal jumper. In a) the bisection approximation is used three times and in b) the basis time

step is subdivided in p = 5 subintervals

According to Equation (13), the time of contact release is expected in
the time interval [0.6525, 0.66] s. The first refining algorithm uses three
bisections to determine the time of contact release at 0.6592 s. The second
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possibility subdivides the standard time step into 5 subintervals and computes
the time of contact release at 0.6597 s. The small disparity between the
contact release times is a result of the different refinement strategies.

7. Optimal control of the monopedal jumper

The goal of the optimal control problem is to find the optimal state
trajectory and the optimal control sequence leading the jumper from an initial
to a final state. In contrast to the aforementioned examples, here, the jumper
is actuated in the hip and in the knee joint only. The optimal control problem
starts at rest and the foot is in contact with the ground, which is modelled as
a perfectly plastic contact. As it is illustrated in Figure 10, the optimal control
problem considers a motion with a contact and a flight phase, whereby the
maximum jump height is required at the end of the flight phase.

Fig. 10. Time grid and dynamical constraints of the jumpers’s optimal control problem

The constrained optimisation problem is formulated in terms of the dis-
crete generalised coordinates ud and actuations τd corresponding to Equa-
tion (6). During the flight phase, the dynamical constraints are given by
Equation (4) which is a 5-dimensional system of equations. In the context
of the optimal control problem, also the contact phase at the beginning of
the manoeuvre needs to be described using discrete equations of motion
of minimal dimension, thus here, the dimension of Equation (11) needs to
be reduced. Analoguous to the procedure during the flight phase, here the
(k+m+3)-dimensional forced discrete Euler-Lagrange equations are premul-
tiplied by the contact null space matrix Pc(qn) ∈ R5×2 and by the null space
matrix P(qn) ∈ R36×5, such that the constraint forces and also the contact
forces vanish (see Equation (14)). A further reduction is achieved by ap-
plying the nodal reparametrisation of the flight phase Fd from Equation (3)
(fulfilling the constraints g(qn+1) = 0 in Equation (11)). Thus, the forced
discrete equations of motion during the contact phase are also reduced to a
5-dimensional system. At this point it should be mentioned, that during the
contact phase, the discussed monopedal jumper has two degrees of freedom.
However, a maximal reduction would require a new nodal reparametrisation
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which is highly nonlinear (involving trigonometric functions). Experience
has shown that it is easier and faster for the optimiser to work with a slightly
larger number of dynamical constraints being less nonlinear.

In case of the forward dynamics simulation, the contact force prevents
the penetration of the ground and as soon as the contact force changes its
algebraic sign, the algorithm computes a contact release time and configu-
ration. During the contact phase of the optimal control problem, inequality
path constraints guarantee the correct orientation of the contact force, i.e. the
correct sign of the Lagrange multiplier λ3

Sn
< 0 for n = 1, . . . , κ − 2. How-

ever, due to the premultiplication by the contact null space matrix Pc(qn),
the contact force is eliminated from Equation (14). Thus, the corresponding
Lagrange multiplier must be recalculated after every time step to be able to
check whether it has the correct sign meaning that it fulfils the inequality
path constraints of the optimal control problem during the contact phase.
The contact Lagrange multipliers can be calculated via

λSn = ST (qn) · PT (qn) ·
[
D2Ld(qn−1, qn) + D1Ld(qn, qn+1) + f +

n−1 + f −n
]
,

with S(qn) = PT (qn) · GT
S (qn) ·

(
GS(qn) · P(qn) · [GS(qn) · P(qn)

]T )−1 ∈ R5×3.

The boundary conditions h1d(q0, p0) = 0 ∈ R2 guarantee an initial state
q(t0) = q0, p(t0) = p0 of the jumper, whereby p0 ∈ R36 represents the
conjugate momentum at the initial configuration. In this first example, a path
constraint function h2d(qn) = 0 is used to restrict the jumping movement
into the (e1, e3)-plane and therefore the jumper is only actuated by torques in
the e2-direction. The actuation of the monopedal jumper during the contact
phase has an essential effect on the time of release and on the height of
the jump. The optimal contact release time is not known a priori, it is part
of the optimal control problem. To realise this in the implementation, the
node number Nκ of the contact release time node tNκ

is predefined, but the
physical time tNκ

itself is an unknown which has to be determined by the
optimisation. Thus, the time steps before and after the contact release time
are scaled by the parameters σ1, σ2 ∈ R (see Figure 10) and these scalars
are part of the optimisation variables. Finally, the constrained optimisation
problem of the monopedal jumpers reads

min
ud ,τd ,σ1,σ2

J̃d(ud, τd , σ1, σ2)

subject to
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reduced forced discrete equations of motions during the contact phase for
n = 1, . . . , κ

PT
c (qn) · PT (qn) ·

[
D2Ld(qn−1, qn) + D1Ld(qn, qn+1) + f +

n−1 + f −n
]

= 0
(14)

gS(qn+1) = 0

reduced forced discrete equations of motions during the flight phase n =

κ + 1, . . . ,N − 1

PT (qn) ·
[
D2Ld(qn−1, qn) + D1Ld(qn, qn+1) + f +

n−1 + f −n
]

= 0

boundary conditions

h1d(q0, p0) = 0 h4d(qN ) < 0
path constraints for n = 2, . . . ,N

h2d(qn) = 0 h3d(qn) < 0
path constraints

for n = 1, . . . , κ − 2

λ3
Sn
< 0

σLB < σ1 < σOB

for n = κ − 1

λ3
Sκ−1 = 0

for n = κ + 1, . . . ,N

gS(qn) > 0

σLB < σ2 < σOB

the last inequalities ensure that the time steps σ1∆t during the contact phase
and σ2∆t during the flight phase do not degenerate too small or large. This
also yields a lower and upper bound on the total manoeuvre time. An addi-
tional equality constraint could be used to ensure a particular prescribed total
manoeuvre time, however this is not imposed for the considered example.

7.1. Numerical Example

The initial guess for the optimal control problem takes place in the time
interval [0, 0.3] s. It uses N = 24 constant time steps and contact release
takes place at the node number Nκ = 18. The motion starts at rest, the
position of the upper part of the body is given by ϕ1

0 = [0, 0, 0.8] m and the
foot is fixed in xS = [0, 0, 0] m. The initial guess for the discrete generalised
configurations results from the forward dynamics simulation with a constant
knee actuation τ3

S = 250 Nm. The actuation torques of the initial guess are
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set to zero and the discrete objective function for the monopedal jumper
reads

J̃d(ud , τd , σ1, σ2) =
1
hN

N−1∑

n=0

(tn+1 − tn)τT
n · τn,

whereby the jump height hN is defined to be the distance between the
torso’s centre of mass and the ground at the end of the manoeuvre. An in-
equality constraint h4d(qN ) < 0 ensures a minimum jump height of 1.4 m. The
objective function is motivated by the specific cost of transport, which means
that the control effort per jump height is minimised. The scaling parameters
are bounded between 0.5 ≤ σ1, σ2 ≤ 1.5. The restricted optimisation problem
is solved in MATLAB by using the sqp algorithm in the fmincon function,
which is part of the optimisation toolbox and the numerical accuracy is set
to 10−8.

Fig. 11. Snapshots of the optimised motion at the beginning, the contact release and at the end of
the motion

The optimisation algorithm computes a local minimum for which the

objective function value is about 1.5202 · 104 (Nm)2 s
m

and a jump height
of hN = 1.4 m is achieved. The resulting jump height is just slightly above
the prescribed minimal jump height, which illustrates the nonlinear relation
between the control effort and the jump height in the cost function. The op-
timiser shortens the contacts phase using the scaling parameter σ1 = 0.9879
and extends the flight time corresponding to σ2 = 1.2708. The optimised
motion of the monopedal jumper takes place in time interval [0, 0.3217] s,
thus the total jumping time is reduced by 7.2333% in comparison to the
initial guess. Figure 11 depicts three characteristic configurations, namely
the initial and final configuration and the contact release at tκ = 0.2099 s.
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Fig. 12. Evolution of the discrete torques acting in the hip (third component τ3
S being responsible

for the rotation in the plane) and in the knee (τR) of the monopedal jumper

In Figure 12, the actuation torques are plotted over the time and as a result
of the optimisation, whereby the actuation of the revolute joint dominates.
The torque evolution of the knee joint illustrates the essential effect of the
contact phase for the whole jumping motion. The comparison between the
actuation torques at the knee joint and the third component of the contact
Lagrange multiplier (illustrated in Figure 13a)) shows that they are related
during the contact phase as expected. The distance between the foot and the
ground plane is depicted in Figure 13 b).

Fig. 13. In a) the evolution of the third component of the contact Lagrange multiplier is plotted
over the time and b) illustrates the distance between the foot and the (e1, e2)-plane

8. Conclusion

This work investigates a variational integrator with structure preserving
properties. The simple example of a monopedal jumper is used to discuss the
theory of perfectly elastic, respectively perfectly plastic contact formulations.
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The contact formulations are covered in forward dynamics simulations and
in case of the perfectly elastic contact, the algorithm determines the contact
time, the contact configuration and force. If the contact is modelled as per-
fectly plastic, the foot is fixed at the ground until the contact force changes
the algebraic sign. Also here, the algorithm determines the corresponding
contact release time and configuration. Further, the variational integrator and
the formulations of the perfectly plastic contact are used in a direct tran-
scription method to solve the optimal control problem with variable time
step of a monopedal high jump. Therefore, two scaling parameters are used
to optimise the contact and flight phase and as a result, the jumping motion
is not artificially restricted.

Manuscript received by Editorial Board, September 27, 2012;
final version, November 11, 2012.
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Symulacja skoku jednonożnego z zachowaniem struktury

S t r e s z c z e n i e

Środowisko człowieka składa się z bardzo wielu różnorodnych systemów mechanicznych
i biomechanicznych, w których mogą wystąpić różne typy kontaktów. W przedstawionej pracy
rozważa się jednonożnego skoczka modelowanego jako trójwymiarowe ciało sztywne z kontaktem
i symuluje się jego dynamikę metodą, w której zachowana jest struktura systemu. W zastosowanym
integratorze mechanicznym wykorzystano wersję zasady Lagrange-d’Alemberta z ograniczeniami.
Wynikający stąd integrator wariacyjny zachowuje symplektyczność i mapę momentów pędu dy-
namiki układu wieloczłonowego. Aby zapewnić zachowanie struktury i poprawność geometryczną,
w rozwiązaniu tego problemu nie stosowano wygładzania. Wyznaczono konfigurację kontaktów,
czas i siłę, zamiast polegać na aproksymacji zagadnienia kontaktu z wygładzeniem poprzez po-
tencjał kary. Poza sformułowaniem niewygładzonego zagadnienia symulacji w dynamice prostej,
przedmiotem zainteresowania autorów jest także optymalne sterowanie skoku wzwyż skoczka
jednonożnego. Zagadnienie sterowania optymalnego zostało rozwiązane przy użyciu metody tran-
skrypcji bezpośredniej przekształcającej ten problem w zagadnienie optymalizacji z ograniczeniami
– patrz [14].


