
T H E A R C H I V E O F M E C H A N I C A L E N G I N E E R I N G

VOL. LX 2013 Number 3

10.2478/meceng-2013-0021
Key words: mechanical system, modelling, vibration

RAFAŁ HEIN ∗, CEZARY ORLIKOWSKI ∗∗

HYBRID REDUCED MODEL OF ROTOR

In the paper, the authors describe the method of reduction of a model of ro-
tor system. The proposed approach makes it possible to obtain a low order model
including e.g. non-proportional damping or the gyroscopic effect. This method is
illustrated using an example of a rotor system. First, a model of the system is built
without gyroscopic and damping effects by using the rigid finite element method.
Next, this model is reduced. Finally, two identical, low order, reduced models in
two perpendicular planes are coupled together by means of gyroscopic and damping
interaction to form one model of the system. Thus a hybrid model is obtained. The
advantage of the presented method is that the number of gyroscopic and damping
interactions does not affect the model range.

1. Introduction

Modern engineering systems are constructed from a variety of compo-
nents, some of which have pointwise concentrated features and others have
spatially distributed ones. For these features to be properly reflected in the
dynamic analyses models, these systems should be considered as partially
lumped and partially distributed.

A particular example of a distributed or lumped-distributed system is a
rotor. In general, such systems comprise a number of rigid disc elements
mounted on a flexible, distributed shaft.

Distributed parameter systems are described by partial differential equa-
tions. In order to avoid mathematical difficulties arising from the manipu-
lation on sets of mixed ordinary and partial differential equations, different
approximate lumped models of distributed systems are usually applied. By
using the finite element method, one can obtain an accurate model and final
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results. However, obtaining a sufficiently accurate result requires a very fine
mesh, and therefore a high-order model is needed.

For the analysis of response in large structural systems, the use of a
high order model in its entirety requires considerable computer run time and
large memory. Additionally, in many cases, a high order model is not very
useful, e.g. in control systems analysis and design. Designers greatly benefit
from the availability of very small models that represent the behaviour of
a complex system with almost the same accuracy as a high order model.
A simple but adequate model of a system reflects the basic properties and
provides good insight into the process.

Model reduction can be done in many different ways. Two of the most
common are:

– eigenvalue (modal) truncation [1,4],
– balanced model reduction [2].
The standard eigenvalue problem applies to linear undamped or propor-

tionally damped systems with symmetric matrices. Unsymmetrical systems
are difficult to handle in this procedure.

The balanced model reduction method is applied to linear, stable (with
damping) systems. However, this approach is system input/output dependent.
Systems with a large number of inputs and outputs are difficult to handle in
this procedure, and the rank of model reduction is comparatively small.

This paper concerns the modelling of speed-varying rotor systems. The
difficulties in modal analysis of rotor systems arise from the fact that here the
equation of motion has an unsymmetrical matrix which describes gyroscopic
phenomena [5]. To avoid the problem of a non-self-adjoined system, one
can omit the gyroscopic phenomena and treat the rotor model as a simple
beam model. In some cases, however, such models are not accurate enough.
Moreover, these beam models can only reflect proportional damping.

The balanced model reduction method has none of the above limita-
tions. However, neither of these methods can be applied in the case of
speed-varying or nonlinear damped rotors. Instead, the following approach
is proposed [7,8,9,10,11,12]. A modal-reduced model is created for a rotor
without gyroscopic and damping effects. These are modelled separately using
the rigid finite element method. The final reduced model is a hybrid one.
It comprises two linear modal models of beams, one vibrating in the X-Z
plane and the other in the X-Y plane, and spatially-lumped representations
of the gyroscopic interaction between these two models. Non-proportional,
nonlinear, internal and/or external lumped damping can be modelled in the
same way.

Theoretically, it is possible to apply the balanced model reduction method
to a rotor with or without gyroscopic and damping phenomena. In practice,
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however, it is very difficult or even impossible to obtain a reduced model
with a large number of inputs and outputs to connect with the rigid finite
element model of gyroscopic and damping effects.

Fig. 1 presents the general concept of a hybrid reduced model of a speed-
varying rotor with a damping and gyroscopic effect. Rigid finite element
models of damping and gyroscopic interaction are algebraic equations, and
they do not enlarge the order of the final reduced model.

Fig. 1. General concept of reduced hybrid model of speed-varying rotor

2. Model of discontinuous speed-varying rotor

Let us consider a rotor system presented in Fig. 2. The model of the pre-
sented structure was built based on the Timoshenko beam model. It includes:
rotary inertia, shear deformation, the gyroscopic effect as well as internal and
external damping.

Fig. 2. General view of the considered rotor system

By applying the rigid finite element method [3,6], one can obtain the
following equations for the rotor:

Mq̈y + Byq̇y + Gq̇z + Kyqy = fy, (1)

Mq̈z + Bzq̇z −Gq̇y + Kzqz = fz, (2)
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(3)

where:
qy, qz – vectors of generalized displacements along y and z axes (n –

elements vector),
fy, fz – vectors of generalized forces along y and z axes(n – elements

vector),
M, B, G, K – matrices of inertia, damping, gyroscopic and stiffness

(n × n matrices).
The considered rotor system (Fig. 2) consists of two rotors rotating at

angular speeds Ω1 and Ω2. Taking into account the two subsystems, we can
represent the vectors: qy, qz as:

qy = col(qy1,qy2), qz = col(qz1,qz2), (4)

were subscripts 1 and 2 denote subsystems.
Equation (3) can be then presented in a more detailed form:
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(5)
where:

My =

[
My1 0
0 My2

]
, Mz =

[
Mz1 0
0 Mz2

]
, By =

[
By11 By12

By21 By22

]
,

Bz =

[
Bz11 Bz12

Bz21 Bz22

]
, Ky =

[
Ky11 Ky12

Ky21 Ky22

]
, Kz =

[
Kz11 Kz12

Kz21 Kz22

]
,

G =

[
G1 0
0 G2

]
.

Matrices G1, G2 depend on Ω1 and Ω2, respectively:

G1 = Ω1G∗1, G2 = Ω2G∗2.
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In general, f y and f z are functions of Ω1 and Ω2 (e.g. centrifugal forces)
By substituting:

fBy = col(fBy1, fBy2) = Byq̇y, fBz = col(fBz1, fBz2) = Bzq̇z, (6)

fGy = col(fGy1, fGy2) = Gq̇z, fGz = col(fGz1, fGz2) = −Gq̇y

we can present equation (3) as


M 0
0 M




q̈y

q̈z

 +


Ky 0
0 Kz




qy

qz

 =


fy
fz

 −


fBy

fBz

 −


fGy

fGz

 (7)

or 
M 0
0 M

 ·


q̈y

q̈z

 +


Ky 0
0 Kz

 ·


qy

qz

 =


fΣy

fΣz

 , (8)

where 
fΣy

fΣz

 =


fy
fz

 −


fBy

fBz

 −


fGy

fGz

 . (9)

3. Modal decomposition

The model described by two equations derived from (7):

Mq̈y + Kyqy = f∑ y, (10)

Mq̈z + Kzqz = f∑ z, (11)

can be written in modal representation as:

Mmyq̈my + Kmyqmy = fmy, (12)

Mmzq̈mz + Kmzqmz = fmz, (13)

where:
Mmy = ΦT

y MΦy = diag(my1, . . . ,myr , . . . ,myn),

Kmy = ΦT
y KyΦy = diag(ky1, . . . , kyr , . . . , kym),

Mmz = ΦT
z MΦz = diag(mz1, . . . ,mzr , . . . ,mzn),

Kmz = ΦT
z KzΦz = diag(kz1, . . . , kzr , . . . , kzn),

qmy = col( qmy1 · · · qmyr · · · qmyn ), qmz = col( qmz1 · · · qmzr · · · qmzn ),

fmy = ΦT
y f∑ y, fmz = ΦT

z f∑ z,
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Φy = [ ϕy1 · · · ϕyr · · · ϕyn ], Φz = [ ϕz1 · · · ϕzr · · · ϕzn ],

in which:
myi, mzi– modal coefficients of inertia respectively along the y and z axes,
kyi, kzi – modal coefficients of stiffness respectively along the y and z

axes,
ϕyi, ϕzi – eigenvectors of matrix M−1K.
Then, by solving (12, 13) we can obtain the solution to (10, 11) in the

form:
qy = Φyqmy, q̇y = Φyq̇my

qz = Φzqmz, q̇z = Φzq̇mz.

4. Reduced hybrid model

Modal model (12, 13) can be reduced by removing the rows and columns
in Mmy, Kmy, Mmz, Kmz which are insignificant to the system’s dynamics.
Thus we obtain:

Mmyrq̈myr + Kmyrqmyr = fmyr , (14)

Mmzrq̈mzr + Kmzrqmzr = fmzr , (15)

where:

Mmyr = diag(my1, . . . ,myr), Mmzr = diag(mz1, . . . ,mzr),

Kmyr = diag(ky1, . . . , kyr), Kmzr = diag(kz1, . . . , kzr),

qmyr = col(qmy1, . . . , qmyr), qmzr = col(qmz1, . . . , qmzr),

fmyr = ΦT
yrf∑ y, fmzr = ΦT

zrf∑ z, Φyr = [ ϕy1 · · · ϕyr ].

By application of the reduced order model (14, 15) we can obtain an ap-
proximate solution to (10, 11) from the formulas:

qy = Φyrqmyr , q̇y = Φyrq̇myr (16)

qz = Φzrqmzr , q̇z = Φzrq̇mzr .

Taking into account Eq. (6), we can transform (14, 15) into the following
form:

Mmyrq̈myr + Kmyrqmyr = ΦT
yrfy −ΦT

yrByΦyrq̇myr −ΦT
yrGΦzrq̇mzr , (17)

Mmzrq̈mzr + Kmzrqmzr = ΦT
zrfz −ΦT

zrBzΦzrq̇mzr + ΦT
zrGΦyrq̇myr (18)
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or
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(19)

Equations (17, 18) and (16) or (19) and (16) present the final hybrid model,
in which fy, fz are the input data and qy, qz result from the system described
in (1, 2). A block diagram describing the above hybrid model is presented
in Fig. 3. This shows that the hybrid model uses matrices Mmyr , Mmzr ,Kmyr ,
Kmzr from modal reduced models (14, 15) and matrices By, Bz, G from the
initial FEM model (1).

Fig. 3. Detailed block diagram of the hybrid model
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5. Numerical calculations and results

As an example, let us consider the rotor system presented in Fig. 4, which
has the following parameters: modulus of elasticity (Young’s) E =2·1011 [Pa],
shear modulus (Kirchhoff’s) G=7.8·1010 [Pa], mass density ρ =8000 [kg/m3].
A discrete model of the system (Fig. 5) is created using the rigid finite ele-
ment method [3,6], where the continuous structure (Fig. 4) is divided into 152
rigid finite elements (RFE) as well as 156 spring-damping elements (SDE).
Each RFE has four degrees of freedom, i.e. transverse displacements in y, z
directions and angular displacements around x,y,z axes. FEM discretization
is presented in Fig. 5.

Fig. 4. The investigated rotor system

Fig. 5. The discrete model of the considered rotor system

The final model of the system also includes the gyroscopic effect. Fig. 6
presents the influence of the gyroscopic effect on the frequency characteristic,
indicating that at the angular velocity Ω1 = Ω2 =1000 [rad/s] it should be
taken into account. The frequency response (Fig. 6) is prepared for the unit
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Table 1.
The inertia coefficients of RFE no. r

r
mr Jy,r Jz,r

[kg] [kgm2] [kgm2]

1, 101 0.01256637061 3.403392041·10−7 6.283185307·10−7

2÷15, 17÷100 0.02513274122 8.377580409·10−7 1.256637061·10−6

16 5.02654824574 0.012733922222 0.025384068641

102, 152 0.11875220230 6.250324248023·10−5 1.245116841·10−4

103÷126, 128÷151 0.23750440461 1.264908874892·10−4 2.490233682·10−4

127 10.5451955647 0.063414412294894 0.1266530713303

Table 2.
The coefficients of SDE no. k and connection co–ordinates of SDE no. k to RFE no. r and p

r p k
ck,x [Nm−1]

bk,x [Nsm−1]
ck,y = ck,z [Nm−1]

bk,y = bk,z [Nsm−1]
ck,xz [Nm]

bk,xz [Nsm] sr,k,x sr,k,z sp,k,x sr,k,z

1 2 1
6283185307.179

2617993.878
2067560665.144

861483.61
157079.633

65.45

0.0025 0 -0.005 0
...

...
... 0.005 0 -0.005 0

100 101 100 0.005 0 -0.0025 0

102 103 102
59376101152.847

24740042.147
19538448285.609

8141020.119
31127921.029

12969.967

0.0025 0 -0.005 0
...

...
... 0.005 0 -0.005 0

151 152 151 0.005 0 -0.0025 0

81 152 101
2·106

0
2·106

0
0
0

0.0025 0 0 0

0 1 0 0 0 -0.0025 0

101 0 0 0.0025 0 0 0

0 102 0 0 0 -0.0025 0

step input applied at the 16-th RFE (first disk) and the output displacement
is observed at the same point.

A FEM model without gyroscopic and damping phenomena was con-
structed to obtain the modal model described by eq. (12, 13). Its first four
eigenfunctions, taken into account in the reduced modal model, are shown
in Fig. 7.

The reduced hybrid model (19) was built for 6 and 8 retained modes (3
and 4 eigenvalues for each plane of vibration).

To verify the reduced hybrid model obtained in that way, its frequency
response was compared with that of the FEM model (reference model). The
results are presented in Figs. 8 and 9. They were obtained for a force input
acting at the 16-th RFE (first disk), with the output observed at the same point
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Fig. 6. Comparison of frequency characteristics of models

Fig. 7. Eigenvalues and eigenfunctions of the FEM model

(z-direction). All frequency characteristics were determined for the constant
rotor speed Ω1 = Ω2 =1000 [rad/s]. The model also takes into account
damping for the cases shown in Fig. 9. Linear, non-proportional damping
was considered. Numerical values of the applied damping coefficients are
presented in Tab. 2.

Moreover, the models were compared and verified in the time domain.
Simulations were performed for an unbalanced rotor with a pointwise mass
m =0.001 kg in the first disk (16-th RFE), and with an eccentricity e =0.003.
The rotors started with the varying speed Ω1 = Ω2 = Ω(t) and constant
acceleration ε1 = ε2 =10 rad/s2. The output displacement was observed at
the same point where the unbalanced pointwise mass was placed. Some of
the obtained results are presented in Fig. 10. and 11. Additionally, it is worth
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Fig. 8. Frequency characteristics of models with gyroscopic effect and without damping
(a – 3 modes retained, b – 4 modes retained)

Fig. 9. Frequency characteristics of models with damping and gyroscopic effect

(a – 3 modes retained, b – 4 modes retained)

to mention that the hybrid model simulation time is about 7 times shorter
than the simulation time required for the full, reference model.
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Fig. 10. Time response of the rotor with gyroscopic effect, without damping a) t =0÷50,
b) t =31.5÷31.7 c) z-y displacement trajectory t =12.5÷12.9, d) z-y displacement trajectory

t =33.8÷34.2
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Fig. 11. Time responses of the rotor with gyroscopic effect and with damping (ζ =0.05 for all
modes) a) t =0÷50, b) t =33.8÷33.9 c) z-y displacement trajectory t =12.5÷12.9, d) z-y

displacement trajectory t =33.8÷34.2

6. Summary

In this paper, we presented reduction of a model of a gyroscopic and
damped system using two techniques: modal decomposition and the rigid
finite element approach. The final, reduced model consists of two parts:
the reduced modal model and the rigid finite element model. The proposed
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approach gives very good results for the frequency range with regard to the
number of retained modes. Time plots have shown that the constructed hybrid
model is also sufficiently accurate in the time domain. Hence, the proposed
method of modelling is efficient and, due to the low order of the hybrid
model, requires considerably less computer running time and memory.
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Hybrydowy zredukowany model wirnika

S t r e s z c z e n i e

W pracy zaprezentowano metodę redukcji modelu wirnika z efektem żyroskopowym i tłumie-
niem. Do budowy modelu zredukowanego wykorzystano dwie metody konstruowania przybliżonych
modeli dyskretnych układów ciągłych – metodę dekompozycji modalnej oraz metodę dyskretyzacji
przestrzennej (elementów skończonych).

Zredukowany model modalny zbudowano dla tej części modelu, dla której łatwo jest for-
mułować warunki ortogonalności. Pozostałe zjawiska, które powodują trudności w formułowaniu
warunków ortogonalności np. efekt żyroskopowy lub nieproporcjonalne tłumienie, zamodelowano
z wykorzystaniem metody elementów skończonych. Następnie powiązano ze sobą dwa takie same
modele drgające w płaszczyznach wzajemnie prostopadłych poprzez zamodelowane oddziaływania
żyroskopowe lub nieproporcjonalne tłumienie.

Zaprezentowana metoda umożliwia otrzymanie modelu wirnika niskiego rzędu przy zmiennej
prędkości kątowej oraz z dowolnym rodzajem tłumienia wewnętrznego i zewnętrznego. Zaprezen-
towany przykład analizy wirnika potwierdza skuteczność zaproponowanego ujęcia.


