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MODELLING OF HEAT TREATMENT OF STEEL ELEMENTS WITH THE MOVEMENT OF COOLANT

MODELOWANIE OBRÓBKI CIEPLNEJ ELEMENTÓW STALOWYCH Z UWZGLĘDNIENIEM RUCHÓW CHŁODZIWA

A mathematical and numerical model of hardening process using the generalized finite difference method for the movement
of fluid and heat transport have been proposed in this paper. To solve the Navier-Stokes equation the characteristic based split
scheme (CBS) has been used. The solution of the heat transport equation with the convective term has been obtained by a
stabilized meshless method. To determine of the phase transformation the macroscopic model built on the basis of CCT diagrams
for continuous cooling of medium-carbon steel has been used. The temporary temperature fields, the phase transformation,
thermal and structural strains for the heat treated element and the fields of temperature and velocity for the coolant have been
determined. The comparative analysis of the results of calculations for the model without taking into account movement of
coolant has been carried out. The effect of the notch in the shaft on the cooling rates and fields of the kinetics of the phase
transformations has been presented.

Keywords: heat treatment, continuous cooling, meshless method, liquid coolant

W pracy zaproponowano model matematyczny i numeryczny zjawisk termicznych oraz ruchów chłodziwa zbudowany
z wykorzystaniem uogólnionej metody różnic skończonych. Do rozwiązania równania Naviera-Stokesa wykorzystano metodę
rzutowania (CBS). Rozwiązanie równania przewodzenia ciepła z członem konwekcyjnym uzyskano na podstawie stabilizowanej
bezsiatkowej metody różnic skończonych. Do modelowania przemian fazowych wykorzystano makroskopowy model zbudowany
na podstawie analizy wykresów ciągłego chłodzenia CTPc dla stali średniowęglowej. Dla elementu obrabianego cieplnie
określono chwilowe pola temperatury, udziały fazowe, odkształcenia termiczne, strukturalne oraz pala temperatury i prędkości
cieczy chłodzącej. Przeprowadzono analizę porównawczą z wynikami obliczeń z ruchem i bez ruchu chłodziwa. W pracy
przedstawiono także wpływ wycięcia (rowka na wałku) na pola prędkości chłodziwa oraz na kinetykę przemian fazowych.

1. Introduction

The process of heat treatment of steel elements is
a complex and difficult phenomenon to numerical mod-
elling. There are many factors which have a significant
impact on the processes of quenching and tempering,
such as process conditions, properties of the workpiece,
or the properties of the coolant [1,2]. A multitude of
these parameters leads researchers interested in mod-
elling of hardening to continuing extend the scope of
considered of phenomena of such a process. Generally,

in the models of the hardening process the influence
of convective cooling fluid movements is not taken into
account. On the whole, the impact of coolant on the
temperature of element is modeled by suitable boundary
conditions, which are oversimplifying the modelling, but
do not take into consideration the influence of large tem-
perature gradients on the edges of the cooling element
and generating strong convective motion of the coolant
[3,4]. In the paper, the effect of convection movements
of quenching coolant on the structure and stresses of
component after heat treatment has been analyzed.
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Fig. 1. Conceptual diagram of the analyzed problem

2. Temperature fields

In modelling the processes of heat treatment have
a significant role taken into account movements of nat-
ural or a forced convection. These movements usually
occurring in the coolant are approximated by the appro-
priate boundary conditions. However, this approach may
lead to a large error of approximation. This occurs when
the coolant is liquid, and also for geometrically complex
parts of machines. Therefore, the model of heat transport
for heat treatment processes should take into account the
movements of the liquid coolant. In presented paper a
numerical model of heat transfer for the coolant and the
cooled axisymmetric element in the hardening process
is described.

The temperature fields are determined on the basis
of the heat transfer equation with convection term, which
for axially symmetric space take the following form:
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where T [K] is the temperature, t [s] is the time, λ=
λ(T) [W/mK] is the thermal conductivity, ρ [kg/m3] is
the density, C [J/kgK] is the specific heat, V [m/s] is the
velocity, qv [J/m3s] is the volumetric heat source, r – is
a distance from the symmetry axis.

In equation (1) latent heat of the phase transforma-
tion as volumetric heat source in heat transfer equation
is introduced:

qV =
∑

i

Hi
∆ηi

∆t
ρ (2)

where: Hi[J/kg] is the heat of the “i” transformation,
∆ηi is the volumetric increment of the “i” phase.

For high- and medium-carbon steel should be tak-
en into account changes in temperature caused by latent
heats of the phase transformation. The effect of these re-
actions is significant on the cooling temperature. This is
particularly visible during the hardening process when a
high volume transformation austenite to pearlite occurs.
In the literature of latent heat of phase transformation
the models, heat of transformation for particular phase
(dependent on the temperature and chemical composi-
tion) are described [2]. In presented paper the results of

analysis of Fe-C-Mn system and constant value of en-
thalpy for austenite-martensite transformation are used
[2,5]. This solution is approximated by the polynomial
function of the third degree:

Hγ→α (T ) = 0.00064156 · T 3 − 0.59347 · T 2+

+245.24 · T − 145423
Hγ→P (T ) = 0.00093038 · T 3 − 1.0536 · T 2+

+475.96 · T − 212728
Hγ→B (T ) = 0.00077541 · T 3 − 0.81671 · T 2+

+365.01 · T − 176705
Hγ→M (T ) = 8.25 · 104

(3)

where: Hγ→α[J/kg] is the heat of austenite to ferrite
transformation, Hγ→P is the heat of austenite to pearlite
transformation, Hγ→B is the heat of austenite to bainite
transformation, Hγ→M is the heat of austenite to marten-
site transformation, T is the temperature [◦C].

As already indicated, the latent heats of the transfor-
mations have especially influence on the changes of tem-
perature and on the kinetics of the phase transformations
in the volumetric hardening for high or medium carbon
steels, whereas it is insignificant in the transformations
during the surface hardening for these steels.

2.1. Numerical method

Modelling of technological processes is a difficult
task and sets many problems for developer. Incorpo-
ration of the characteristic features of the phenomena
occurring in the modeled process is fundamental into
any correctness model. Selection of method at the be-
ginning construction of application is very significant.
Potential problems in modelling often occur as a result
of the wrong choice modelling method, therefore it is
important to know the advantages and disadvantages of
the chosen method of modelling. Unfortunately, on the
beginning of development of a model is rarely possible
predicted the future problems and pathways of algorithm
development. Because of its advantages the generalized
finite difference method has been chosen. This choice is
related to, inter alia, easy adaptation to the changes of
mesh geometry.

For the modelling of heat flow the generalized finite
difference method was used [6,7]. So that a function of
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temperature has been developed into Taylor series with
an accuracy to the second derivative:
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where: h j = r j − ri, k j = z j − zi, “i” number of the
central-node, “ j” additional numbers of nodes around
the central node.

The following criterion for the quality of approxi-
mations derived in the central node has been assumed:
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(5)
where: l j is the distance from the “ j” node to central
node (“i”), a constant m=3.

The necessary conditions for a minimum of func-
tional J are zeroing to derivatives:

∂J
∂ (T,α)i

= 0,
∂J

∂
(
T,αβ

)
i

= 0 (6)

where T,α = ∂(.)/∂xα.
Finally, the solution of equations (6) are the coeffi-

cients z j, used to build the matrix in the selected numer-
ical method.

2.2. Stabilization method

Numerical modelling of the phenomena with high
rates causes the problems with the stabilization of so-
lutions. Therefore, the stabilization of the differential
method using a combination of derivatives (determined
on

The modification of the coefficients in the stabiliza-
tion of generalized finite difference method, GFDM is
described by the following equation:

zα = (1 − ζα) zI
α + ζαz

j
α, j = II .. V,

ζα =
1
2

∣∣∣∣∣
1

tanh (Peα/2)
− 2

Peα

∣∣∣∣∣
(7)

where Pe is a local Peclet number defined as follows: in
the heat transfer model - Peα = vαrαρC/λ, in the flow
model - Peα= ρvαrα/µ, rα is a characteristic size of the
element of grid in the α direction, j is the number of grid
(see Fig. 2). several nodal grids of nodes) was proposed.

Fig. 2. Examples of grid nodes used for the calculation

2.3. Numerical model

The temperature in nodes was determined by the
solution of the heat transfer equation with the convec-
tive term based on GFDM. This solution in a nonlinear
implicit time scheme is written in the matrix form as:

A · T = D (8)

where matrix A is defined as:
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and vector D is written as:
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(10)
where zαj ,z

αα
j are the coefficients determined from the

solutions of the equation (6), s is the number of the time
step, i and j are the numbers of central and surrounding
nodes of the grid nodes (see Fig. 2).

Because the presented system matrix is highly asym-
metric, it was solved by using the biconjugated gradients
method. In this iterative method was used the Jacobi
preconditioner [8,9].
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3. Velocity fields

In modelling of the hardening process, especially
when the coolant is a liquid, should be considered the
behavior of the cooling medium. In this process the large
changes in the intensity occurring in cooling were caused
by convection or forced movement of liquid. The basis
for the mathematical description of this movement is the
Navier-Stokes equation with the free convection term.

The Navier-Stokes equation is defined as follows
[10,11]:
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where V [m/s] is the velocity component in the r or
z-direction, µ [kg/ms] is the dynamic viscosity, p [N/m2]
is the pressure, az [m/s2] is the acceleration component
in the z-direction, β [1/K] is the volumetric thermal ex-
pansion coefficient, Tre f [K] is the reference temperature.

The Navier-Stokes equation (11) is supplemented by
the continuity equation taking the form:

∂Vr
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r
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= 0 (12)

Equations (11) and (12) are complemented by appropri-
ate boundary and initial conditions.

The Navier-Stokes equation (11) is solved only in a
region filled with the coolant by means of a characteristic
based split (CBS) scheme. The CBS scheme is based on
the projection method developed by Chorin [12] and de-
scribed by Zienkiewicz and Codina [10]. In this method
an auxiliary velocity field V∗ is introduced to uncouple
equations (11) and (12).
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where V k
α is the velocity component in the r or

z-direction for the previous time step.

The final velocity field is corrected by the pressure
increment so that is divergence free:

Vα − V ∗α = −∆t
ρ

p,α (14)

By taking the divergence of (14) the following Poisson
equation for the pressure is obtained:
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The final velocity field is corrected by the pressure in-
crement:

Vα = V ∗α + ∆V ∗α, ∆V ∗α = −∆t
ρ

(p,α) (16)

The momentum equation (13) was solved by GDFM us-
ing an implicit time scheme for i-th node of the grid.
This solution in the matrix form is written as:

Aα · Vα∗ = Dα (17)

where matrix Aα is described as:
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The pressure field is obtained by solving the Poisson
equation (15), which in the matrix form is written as:

A · p = D (20)

where matrix A is described as:

Ai,i =
1
ρ

(
−

n∑
j=1

(
zxx

j + zyy
j

)
− 1

ri

n∑
j=1

(
zx

j

))

Ai, j =
1
ρ

zxx
j + zyy

j +
zx

j

ri


(21)

and vector D is written as:

Di =
1
∆t

(
n∑

j=1
zx

j
(
V ∗x

)
j −

n∑
j=1

zx
j
(
V ∗x

)
i +

n∑
j=1

zy
j

(
V ∗y

)
j
−

−
n∑

j=1
zy

j

(
V ∗y

)
i
+

(Vx)i
ri

) (22)

However, the equation (16) in the generalized finite dif-
ference method has in the form:
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4. Phase transformations of cooling

The modelling of thermal phenomena, except move-
ments of the liquid coolant, should also take into con-
sideration the phase transformations in the solid state.
These transformations influence on the temperature field
through the heat of transformation and also have a sig-
nificant impact on the temporary and residual field of
stresses. In the paper the macroscopic model of the phase
transformations based on an analysis of CCT diagrams
has been presented [4,13].

The volume fractions η(.) (T, t) growth during cool-
ing process are calculated by the Avrami equations
[13,14].

η(i) (T, t) = min

η(i%), η̃γ −
∑
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η j

·
(
1 − exp

(
−b (T ) tn(T )

))

(24)
where: η̃γ is a volume fraction of forming austenite, η j is
volume fraction of phase formed during cooling process,
η(i%) is final fraction of “i”-phase estimation of basis on
CCT diagrams considered steel. The functions b(T ) and
n(T ) depending on temperature as well as on the start
(ts) and finish (t f ) times of transformation is described
by formulas:

n (T ) = 6, 12733/ ln
(
t f (T )
ts (T )

)
, b (T ) =

0, 01005

tn(T )
s

(25)
The results obtained from Avrami equation strongly

depend on the assumed CCT diagram analysis. The func-
tion determined by the Avrami covers the whole range
transformation and must be appropriately modified for
the analysis of individual transformation. Is assumes that
the function is defined in segments depending on the
location of the transformation in the CCT diagram. Co-
efficients occurring in these functions are obtained from
CCT diagram. In presented model kinetics of the phase
transformation are determined by the Avrami equations.
Three variants of phase kinetics are considered accord-
ing to informations about creation of particular phase.
In paper the model, which determinate the kinetics of
individual phases with the use of spline functions is ap-
plied. If maximum value of participation of the particular
phase and final time of its creation is predicted, the be-
ginning of the phase transformation will be calculated
from following equation [4,13]:
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where: η% is estimated volume fraction of the last phase.

If the end of first transformation, its maximum par-
ticipation and starting time of the transformations is
known, ending of the transformations will be estimated
from below relation [13]:

t f (t, η%, ts) = exp
(−A · (ln (ts) − ln (t))

B (η%)

)
· ts (27)

In the case of the phase transformation occurring be-
tween others transformations, the start of them is calcu-
lated from following equation [13]:
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The coefficients A(), B(), and N() are calculated using
following formulas:
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(
ln (1 − η%)
ln (1 − ηs)
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(30)
Among considerable factors deciding in primary mea-
sure about course of transformation are stress conditions.
In this model modification of equations describing kinet-
ics of the phase transformations are introduced [3,15,16].
Influence of the mechanical phenomena on the changes
of material microstructure is taken into account. This
phenomenon is especially noticeable during the marten-
site transformation. This effect describes as dependence
of start martensite temperature on average and effective
stresses.

The phase transformation during the high-rate cool-
ing (transformation austenite to martensite) is deter-
mined by classic form of Koistinen-Marburger equation
[3,15-17]:

ηM (T, t) =

(
η̃γ − ∑

i,M
ηi

)

(
1 − exp

(
−k

(
MS − T + AMσe f f + BMσa

)))
, k = 0.01537

(31)
where: σa = (σii) /3 – average stress, σe f f =√

3/2
(
σD · σD)

– effective stress, σD – deviatoric stress-
es, AM and BM coefficients for C45 steel are equal to
AM = 1.25×10−6 [K/Pa], BM = 0.75×10−6 [K/Pa] [15].

According to eq. 4.31 it can be noticed, that tem-
perature MS diminishes when average stress is less than
zero, otherwise MS rises. Effective stress always cause
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the growth MS temperature, so the austenite – martensite
transformation is accelerated.

The increase of isotropic strain resulted from the
temperature and phase transformation (dεT ph = dεT +

dεph) during heating and cooling is described by formula
[4,13]:

dεT =
∑

i

αi (T ) ηidT, dεph =
∑

i

ε
ph
i (T ) dηi (32)

where: αi is a thermal expansion coefficients for “i”
phase, εph

i = δVi/ (3V ) is a strain expansion coefficients
for “i” transformation. Experimental research and nu-
merical simulations – dilatometric curves, assign these
values (thermal and structural expansion coefficients)
[13].

The kinetics of the phase transformations during
cooling strongly depend on austenisation temperature,
therefore model, which exploits two CCT diagrams for
C45 steel (880◦C and 1050◦C austenisation temperature)
was developed [18,19]. The constructed application uses
a pairs of corresponding points of both CCT diagrams.
Each of the points located at the curve determining the
end of transformation must have the maximum value of
transformation.

Continuous cooling transformation diagrams dis-
placed with respect to each other are used to determine
intermediate diagram using follows approximation [13].

t j (TAust) = γAustt1050
j + (1 − γAust) t880

j

T j (TAust) = γAustT 1050
j + (1 − γAust)T 880

j

η(i%) j (TAust) = γAustη
1050
(i%) j + (1 − γAust) η880

(i%) j

(33)

Parameter γAust is described by formula:

γAust = 0 for Tmax < 880̊C
γAust = Tmax−880

1050−880 for 880̊C < Tmax < 1050̊C
γAust = 1 for Tmax > 1050̊C

(34)

The presented numerical model for numerical simula-
tions of structural and thermal strains during the phase
transformation of cooling for different austenization tem-
perature is used.

5. Evaluations of the models

Numerical models are only a closer reality. Devel-
oped mathematical models contain some simplifications
influencing on the accuracy of the solution. Therefore,
a comparative analysis between calculated and reference

results (experimental results and numerical benchmarks)
is presented.

The differential equation of heat transport using a
generalized finite difference method in the control area
Ω was solved. The rectangular geometry of dimensions
1.0×1.0 [m], the initial and boundary conditions were
adopted in such a way, that numerical calculations re-
sults of the approximate solution can be compared to an
existing analytical solution.

As an initial condition we assumed, that the entire
area T0(xα)=300 [K] and the boundary conditions were
follows:
• on the left boundary (Γ, x =0) the Dirichlet condition

TD(x =0)=1000 [K]
• on the other edge the Neumann condition q =

−λ ∂T
∂n = 0 [W/m2]

For this case, the analytical solution has the follow-
ing form [20]:

T (x, t) = 1
2

(
TD − T0

) (
er f c

(
x−ut√
4Dt

)
+

+ exp
(
ux
D

)
er f c

(
x+ut√
4Dt

))
+ T0

(35)

where D=λ/(ρC).
The obtained results are shown in Figure 3.
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Fig. 3. The comparison of numerical model with the analytical so-
lution, u=1 [m/s], t=0.5 [s], λ=0.5 [W/mK], ρ=1 [kg/m3], C=1000
[J/kgK]

The numerical model of coolant flow was verified
using the numerical benchmarks involving a forced flow
in a closed area with a movable top wall (Fig. 4) – Driven
Cavity Test (Ghia et al.) [21]. The conditions of the test
were as follows: area dimension d=1 [m], density ρ=1
[kg/m3], dynamic viscosity µ [kg/ms].
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Fig. 4. The comparison of calculation results with the numerical benchmark for the grid 150×150 nodes, a) Re=100, b) Re=400, c) Re=1000

The experimental research to validate the method
used to determine the kinetics of the phase transfor-
mations during cooling was made. The objects of re-
search were specimens made from C45 steel. The exper-
imental research was done on thermal cycle simulators:
SMITWELD TCS 1405, which is the property of In-
stitute of Mechanics and Machine Design of Technical
University of Częstochowa. Heating in the dilatometer

is realized by the inductive method, while the cooling is
executed by water inside the specimen. The dimensions
of specimens were 11×11×55 [mm]. In the experimental
research the phase transformations during the cooling of
continuous steel C45 exposed to quick heating and cool-
ing with different rates (heating – 100 [◦C/s], cooling –
10, 30, 200 [◦C/s]) were investigated.
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Fig. 5. The verification of the model of the phase transformations – dilatometric tests a) 10, b) 30, c) 200 [◦C/s]

6. Examples of calculation

The geometry of the hardening parts surrounded by
cooling liquid is presented in Fig. 6. The effect of coolant
motion on distribution of bainite, martensite, thermal
and structural strains was investigated. The comparative
analysis of the results of calculations for the model with-
out (example A) and with (example B) taking into ac-
count movement of coolant has been carried out. In the

paper the calculation for the axisymmetric element with
the notch (example C) was presented. The dimensions of
the both steel elements are r=0.04 [m], h=0.06 [m], the
dimensions of the notch are 0.005×0.02 [m], the radius
of the container with the coolant is 0.12 [m], height is
0.12 [m]. The results of numerical solutions show the
effect of the notch in the shaft on the cooling rates and
fields of the kinetics of the phases. In the presented ex-
amples only natural convection is taken into account.
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Fig. 6. Geometry of the analyzed regions for calculations a) without and with, b) with taking into account movement of coolant

Following boundary and initial conditions were in-
troduced for the heat transport equation:
• Newton boundary condition on external boundary ΓL

with α=300 [W/m2K], T∞=300 [K],
• Neumann boundary condition on axial boundary ΓA

with q=0 [W/m2],
• Dirichlet boundary condition on external boundary

ΓD with TD=300 [K],
• ideal contact between hardening element and coolant

on internal boundary ΓS,
• the initial temperature of a hardening element was

equal to TH=1200 [K],
• the initial temperature of coolant TC=300 [K].

Following boundary and initial conditions complet-
ed the Navier-Stokes equation:
• Dirichlet boundary condition on boundaries ΓL, ΓA,

ΓD with Vα=0 [m/s],
• initial velocities in coolant Vα=0 [m/s],
• reference temperature in coolant TRe f =300 [K].

The CCT diagram for austenitization temperature
was determined for 1200 [K] and was used in calcu-
lations. Material properties used in calculations are col-
lected in Tables 1-2.

TABLE 1
The material properties of hardening elements and coolant

Material property Hardening element Coolant

λ [W/mK] 48.1 68

C[J/kgK] 500 1045

ρ [kg/m3] 7760 852

µ [kg/ms] – 2.64×10−4

β [1/K] – 2.71×10−4

TABLE 2
The thermal and structural strain coefficients

Phase αi [1/K] γi

Austenite 2.178×10−5 1.986×10−3

Ferrite 1.534×10−5 3.055×10−3

Pearlite 1.534×10−5 3.055×10−3

Bainite 1.171×10−5 4.0×10−3

Martensite 1.36×10−5 6.5×10−3

In the Figure 7 very large difference between fields
of temperature for analyzed cases is displayed. If the
convective movement of coolant is not take into account,
then occurs significant decrease of the cooling rate of
steel element.

The effect of notch in steel element on the field of
coolant flow In the Figure 8 is presents. It shows the
difficult of modelling coolant trough the boundary con-
ditions.

The high rate of cooling occurs in the case, where
the movement of coolant, favors a deeper hardening area
is taking into account. This is visible on the diagrams
presenting the fields bainitic and martensitic structures.
(Figs 9,10,12,13). The thermal and structural strains oc-
curring in steel element after hardening process for pre-
sented cases are shown in the Figure 11.
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Fig. 7. Sample fields of temperature – after time t=4 [s], a) without (example A), b) with (example B) movement of coolant
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Fig. 8. Sample fields of motion vectors – after time t=4 [s], a) element without the notch (example B), b) element with the notch
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Fig. 9. The field of martensite – after cooling, a) without (example A), b) with (example B) movement of coolant
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Fig. 10. The field of bainite – after cooling, a) without (example A), b) with (example B) movement of coolant
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Fig. 11. The fields of thermal and structural strains – after cooling, a) without (example A), b) with (example B) movement of coolant
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Fig. 12. The fields of phase fraction – hardening process for the shaft with the notch, a) martensite, b) bainite
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Fig. 13. The kinetics of phase in control node (see Fig. 9), a) without (example A), b) with (example B) movement of coolant

The phase transformations according to time are pre-
sented in diagrams 13. In the control nodes (see Fig.
9) the concentration of bainite is greater than 0.32 in
the first variant of simulation while in the second one
gives result about 0.54. The concentration of martensite
in these nodes is greater than 0.16 in variant with mo-
tions of coolant. It proves significant effect of coolant
motion on hardening process.

7. Conclusion

The paper presents a complex numerical model for
heat treatment of steel with the movement of coolant.
The solutions of the numerical model of phase trans-
formations, temperature and coolant flow are in good
conformity with the reference results (analytical solu-
tion, numerical benchmarks and experimental research-
es). The presented macroscopic model of phase trans-
formation may be used to estimate of kinetics and dis-
tribution of phases in the solid state for a large number
of types of steel. However, a precise CCT and CHT di-
agrams are required.

Comparing the solutions with and without notch in
the shaft the changes in the distributions of the phase
transformations due to different profile of cooling can
see. In this example, it can be concluded that the predict
ability of the effect of coolant on hardened element, the
temperature, rate and direction of flow for geometrically
complex parts is difficult without numerical modelling.

Significant differences in spatial distribution of bai-
nite and martensite in case of considering coolant motion
during hardening process in comparison with variant
neglecting velocities are noticed. Cooling rates during
early stage of process are definitely higher if motion of

the liquid is taken into account. It results from intensive
mixing of hot and cold material according to temperature
gradients.

Selected numerical method can be successfully ap-
plied to problems with irregular grids. GFDM is effective
in the modelling processes for complex geometries. The
stabilization of this method allows one to model the flow
with large values of forced coolant velocity. Without the
presented stabilization, this numerical model does not
lead to accurate results for the large Peclet numbers.
This model may be used to estimate the temperature field
during a cooling process for hardening steel tools. The
using of complex models hardening allows the modelling
of the real conditions of processes. Taking into account
velocity of coolant makes it possible to determine the
conditions of cooling components with complex shapes.
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Stähle, Verlag Stahl Eisen MBH, Düsseldorf, (1954).

[19] F. W e v e r, A. R o s e, Atlas zur Wärmebehandlung
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