
A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S

Volume 56 2011 Issue 2

DOI: 10.2478/v10172-011-0039-3

B. HADAŁA∗, A. CEBO-RUDNICKA∗, Z. MALINOWSKI∗, A. GOŁDASZ∗

THE INFLUENCE OF THERMAL STRESSES AND STRAND BENDING ON SURFACE DEFECTS FORMATION IN
CONTINUOUSLY CAST STRANDS

WPŁYW NAPRĘŻEŃ CIEPLNYCH ORAZ ZGINANIA PASMA NA POWSTAWANIE PĘKNIĘĆ POWIERZCHNIOWYCH WE
WLEWKU CIĄGŁYM

Improvement of slab surface quality is a very important goal in continues casting process of steel. It is closely coupled
with casting line productivity and tendency to increase casting speed. In such a case rapid cooling of strand surface mast be
employed. It results in thermal stresses development and formation of surface cracks if casting speed, cooling conditions or the
arc of casting machine are not appropriate. The strain and stress fields in continuously cast strand have been determined based
on the developed thermo-mechanical model and finite element software. It allowed to calculate variation of selected criterions
integrals over the hole casting line starting from solidification process in the mould and ending at cutting section. Steady
solution to heat transfer equation has been used to calculate strand temperature field. Mould temperature has been calculated
from the three dimensional transient model. Finite element method has been employed to build steady and transient heat transfer
models. Finite element solution accuracy to the temperature field has been improved. New algorithm of the solidification heat
handling has been developed to stabilize a steady solution to the heat transport equation. Damageability of the strand has been
evaluated based on four fracture criterions.
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Poprawa jakości powierzchni wlewka ciągłego jest jednym z głównych celów procesu ciągłego odlewania stali. Z drugiej
strony ciągła potrzeba zwiększania wydajności linii produkcyjnej poprzez zwiększenie prędkości odlewania, wymaga bardziej
intensywnego chłodzenia pasma. Rezultatem takich działań jest rozwój naprężeń cieplnych oraz tendencja do powstawania
pęknięć powierzchniowych we wlewku ciągłym.

Naprężenia i odkształcenia powstające w materiale określono przy użyciu modelu termomechanicznego z wykorzystaniem
oprogramowania bazującego na metodzie elementów skończonych. Dzięki temu możliwym stało się wyznaczenie przebiegu
zmian parametrów opisujących wybrane kryteria pękania na całej długości odlewanego pasma (od momentu krzepnięcia w
krystalizatorze, aż do momentu odcinania pasma na wyjściu z maszyny COS).

W opracowanym modelu wymiany ciepła pole temperatury w odlewanym paśmie wyznaczono przy pomocy stacjonarnego
rozwiązania równania wymiany ciepła. Do obliczeń pola temperatury w krystalizatorze wykorzystano trójwymiarowy model
niestacjonarny. W obu przypadkach w rozwiązaniu numerycznym zastosowano metodę elementów skończonych.

Poprawę stabilności i dokładności rozwiązania pola temperatury uzyskano dzięki uwzględnieniu ciepła krzepnięcia. Po-
datność pasma na powstawanie defektów określono za pomocą wybranych kryteriów pękania.

1. Introduction

Solidification of steel in the continuous casting line
proceeds under nonequilibrium conditions and is char-
acterized by the large cooling rate [1,2]. These may lead
to formation of defects at cast strand such as surface or
internal cracks. The cracks formation affects also vari-
ation of a steel chemical composition, which is caused
by elements segregation. However, casting parameters
are the most important. From this reason development

of surface and internal cracks is very difficult to model
because the temperature, strain and stress fields have to
be calculated over the casting line taking into account
industrial cooling conditions. Productivity improvement
of the continuous casting process is essentially limited
by crack formation and it is a very important problem
how to determine the conditions in which fracture may
occur.

Most models of crack prediction require stress and
strain fields developed in material subjected to mechani-
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cal and thermal loads [3,4]. Next stage is the selection of
suitable crack criterion, that let to determine the moment
and the place where failure may occur. The analysis of
cracks criterions let us to separate four types of crite-
rions. To the first group belong criterions is in which
crack formation is predicted on the basis of the stress
field [5]. The second group is constituted by criterions
based on parameters determined from strain field only
[5]. To the third group criterions which are based on
energy of deformation can be included [6]. The fourth
group of criterions consist of other methods. Selection of
a proper criterion is a difficult problem and data which
are available in analysis of continuous casting process
have to be considered.

2. Heat transfer model

The temperature field in the strand while cool-
ing in the continuous casting mould and in the sec-
ondary cooling zones has been determined from steady
Fourier-Kirchhoff equation

∫ [
λ

(
∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2

)
+ qV−

−ρc
(
vx
∂T
∂x

+ vy
∂T
∂y

+ vz
∂T
∂z

)]
dV = 0

(1)

where: T – temperature, K; vx, vy, vz – velocity field,
m/s; λ – thermal conductivity, W/(m·K); qv – internal
heat source, W/m3; c – specific heat, J/(kg·K); ρ density,
kg/m3.

In equation (1), mass movement has been simplified
and the velocity component in the direction of steel flow
equal to casting speed vz =vo has been assumed. The
other components of the velocity field vx = vy =0 have
been assumed.

Heat generation has been included in the model and
the heat of solidification has been determined from

qv = Qs
dVs

dτ
(2)

where: Qs – heat of solidification, for steel Qs = 1.9 109

J/m3; Vs – volume fraction of a solid phase, τ – time, s.
The solution of equation (1) gives the temperature

field, which should satisfied the boundary conditions on
the surface of the cast strand. The boundary condition
have been specified in the form of heat flux transferred
from the strand surface:
to the mould

qsk = αsk (Ts − Tk) (3)

to cooling water

qs = αs

(
Ts − Tp

)
(4)

to surroundings

qc = αc (Ts − Ta) = (αra + αsa) (Ts − Ta) (5)

where: Ts – strand surface temperature, Tp – water spray
temperature, Tk – mould surface temperature from the
side of strand, Ta – air temperature, αsk – combined heat
transfer coefficient on the strand – mould interface, αs
– heat transfer coefficient for water spray cooling, αc –
combined heat transfer coefficient for air cooling.

Combined heat transfer coefficient on the strand –
mould interface for strand surface temperature Ts lar-
ger then solidus temperature Tso, has been assumed as
a constant value αl. This value is characteristic for each
specific mould and mould powders that are used in the
process. Below the solidus temperature empirical formu-
la has been used

αsk = αr + (αl − αr) exp

Ts − Tso

Tso − Tza (6)

where: αr – radiation heat transfer coefficient, Tza – tem-
perature of the mould powder solidification.

The radiation heat transfer coefficient has been cal-
culated from the following formula

αr = 5.67 · 10−8
εsεk

εs + εk − εsεk

T 4
s − T 4

k

Ts − Tk
(7)

where: εs – emissivity of the strand surface; εk – emis-
sivity of the mould surface.

Below the mould, in the secondary cooling zones
strand is cooled by water sprays and the convection heat
transfer coefficient αs can be calculated from the equa-
tion [7]

αs= 3.15 · 109w0.616
s

[
700+

Ts−700
exp(0.1Ts−70) + 1

]−2.455

·

·
[
1− 1

exp(0.025 · Ts−6.25) + 1

]

(8)
where: – ws water spray flux rate, dm3/(m2·s).

Empirical equation (8) can be used to calculate
heat transfer coefficient for water flux rate from 0.16
to 62 kg/(m2·s). Below the water spray cooling zones
the strand loses heat to surroundings by radiation and
convection. The radiation heat transfer coefficient αra
can be calculated from:

αra= 5.6710−8εs
T 4

s−T 4
a

Ts−T a
(9)

For air cooling, convection heat transfer coefficient αsa
can be calculated from [8]

Nu =
αsaλp

L
= 0, 664Re1/2Pr1/3

(
Pr
Prs

)0,19

(10)



369

where: L – strand width, λp – air conductivity, Re –
Reynolds number, Pr – Prandtl number calculated for
surrounding air temperature, Prs – Prandtl calculated for
air temperature equal to strand surface temperature.

The solution of the strand cooling problem is possi-
ble if mould surface temperature is known. The mould
temperature has been calculated from the transient heat
conduction equation

∂T
∂τ

=
λ

ρc

(
∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2

)
(11)

Boundary conditions on the mould surface have been
specified in the following way:
– on the inner side which is taking heat from the strand

qsk = αsk (Tk − Ts) (12)

– on the outer side Sw cooled by water

qw = αw (Tkz − Tw) (13)

where: Tw – avarage water temperature in the mould
cooling channel, Tkz – surface temperature of the outer
side of mould, αw – heat transfer coefficient on the mould
surface cooled by water. Water cooling channels are ma-
chined in mold in a form of grooves of a side length from
3 to 5 mm. Most relation for the heat transfer coefficient
for turbulent flow are based on experimental studies and
can be used in this case. The Nusselt number relation
due to Michiejew [9] have been chosen

Nu = 0.021Re0.8
w Pr0.43

w

(
Prw

Prs

)0.25

(14)

Subscript s indicates that the Prandtl number Pr must be
evaluated at the mould surface temperature and subscript
w denotes that the Reynolds Re and Prandtl Pr numbers
are to be evaluated at the mean bulk temperature of wa-
ter. Once the Nusselt number is known the convection
heat transfer coefficient for water cooling is determined
from

αw=
Nuλw

Dh
(15)

where:
Dh – hydraulic diameter of the water cooling chan-

nel, m,
λw – water conductivity, W/(m·K).
To solve the heat transfer problem finite element

method has been used. By employing the weighted resid-
uals method to equation (1) or (2), the set of linear al-
gebraic equations has been received:

(Knn + Wnn) Pn = Gn (16)

where: n – number of unknowns, Pn - unknown para-
meters.

Several numerical models can be obtained if a prop-
er weighting and shape function are selected. In the pre-
sented model Hermitian polynomials has been used. As
a result the following form of matrix Knn, Wnn and vector
Gn were received:

Wi j =

27∑

k=1

ρkck
(
vk

xHi
∂H j

∂x
+ vk

yHi
∂H j

∂y
+ vk

z Hi
∂H j

∂z

)
Dk

v (17)

Ki j =
27∑
k=1
λk

(
∂Hi

∂x
∂H j

∂x
+
∂Hi

∂y
∂H j

∂y
+
∂Hi

∂z
∂H j

∂z

)
Dk

v+

+
6∑

s=1
Ls

9∑
k=1

HiH jα
kDk

s

(18)

Gi =
27∑
k=1

qk
vHiDk

v +
6∑

s=1

9∑
k=1

Hi

(
αkT k

a − qk
)
Dk

s (19)

i, j = 1, ..., 64

where: Hi – Hermitian shape functions, Ta – ambient
temperature, q – heat flux, α – heat transfer coefficient,
k – Gaussian integration point, DV – determinant of el-
ement transformation, Ds – determinant of the element
side transformation.

The unknown parameters Pi in Eq. (16) are tem-
peratures and their derivatives in elements nodes. More
detailed description of the method has been presented in
[10].

In the presented numerical model boundary condi-
tions can be specified in a simple way. Heat transfer
coefficient α in equation (18) and (19) should be re-
placed by the value calculated from the boundary con-
dition model described above. The ambient temperature
Ta in equation (19) is equal to the mould surface tem-
perature, the temperature of cooling water or air temper-
ature. Solidification heat handling is more complicated.
Volume fraction of a solid phase can be determined by
from various models, which let us to obtain more or less
accurate description of the internal heat source. In the
model following equation has been used

Vs = 1 − exp−K
Tli−T

Tli−Tso (20)

where: K – solidification kinetics constant, Tli – liquidus
temperature.

The first derivative of solid volume fraction with
respect to time in equation (2) can be replaced by the
finite difference form:

qv = Qs
∆Vs

∆τ
(21)

Scheme defined by equation (21) is usually used in fi-
nite element models. However, in case of steady solution
these scheme is not satisfactory. The internal heat source
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qV have to be calculated in a different way. The following
material derivative have been employed

dVs

dτ
=
∂T
∂x

∂Vs

∂T
∂x
∂τ

(22)

where:
∂Vs

∂T
= − K

Tli − Tso
exp−K

Tli−T
Tli−Tso (23)

Substitute equation (22) to (2) new numerical scheme
is obtained

qv = −Qs
∂T
∂x

vo
K

Tli − Tso
exp−K

Tli−T
Tli−Tso (24)

In Eqn. (22) x represents distance measured along the
particle path and vo is particle velocity. It should be not-
ed that Eqn. (24) adds additional term to the heat load
vector G. In the case of Eqn. (21) additional term has
been added to the heat convection matrix W . It has sig-
nificant influence on stability of the numerical solution
[11].

3. Stress and strain model

In the casting machine, the cast strand is subjected
to thermal and mechanical loads, which are caused by
the non uniform temperature field and the set of guid-
ing rolls. These rolls force strand movement along the
casting machine arc. It causes bending and unbending
of the cast strand. Local deformations that occur at the
rolls – strand contact zones have been neglected in the
developed stress model. Also, the influence of the gravity
forces on the mean stress has been neglected. Neglect-
ing local deformations which may be caused by rolls
and gravity forces movement of the cast strand has been
described by the velocity field:

v1 = 0 (25)

v2 = ωrcosϕ (26)

v3 = −ωrsinϕ (27)

In the assumed co-ordinate system x1 coordinate is di-
rected along the axis of guiding rolls. Coordinate x2 is
perpendicular to the strand surface and coordinate x3 is
directed in line with gravity forces. Origin of the coordi-
nate system has been fixed at the center of the meniscus
as shown in Fig. 1. Cylindrical coordinates r,φ,z are re-
lated to Cartesian coordinates by the equations:

Fig. 1. Scheme of the coordinate system assumed for calculations of
the stress and deformation tensors of the continuously cast strand

x1 = z (28)

x2 = r cosϕ − Rk (29)

x3 = r sin ϕ + Lk (30)

where: Rk – average arc radius of casting machine, Lk
- length of the straight part of strand measured from
the meniscus level to the inlet plane of the circumferen-
tial flow of strand, r – radius of a material point in the
circumferential flow.

Angular velocity ω of the material point is calculat-
ed from the equation

ω = ω0 +
8
π

(ωs − ω0)ϕz (31)

Angle ϕz is related to the coordinate ϕ by the following
equations:

ϕz =


ϕ ∈

(
0 6 ϕ 6

π

4

)

π

2
− ϕ ∈

(
π

4
6 ϕ 6

π

2

) (32)

Angular velocity of a material point in the axis of sym-
metry of a cast stand is denoted as ωs. Angular velocity
of a material point at the inlet plane of the circumferen-
tial flow is denoted as ωo.
The components of the rate of deformation tensor di j

dij=
1
2

(
∂νi

∂xj
+
∂νj

∂xi

)
(33)

caused by the circumferential flow of a cast strand has
been calculated as partial derivatives of the velocity field

∂ν2

∂xk
= − ∂ω

∂xk
r sin ϕ − ∂r

∂xk
ω sin ϕ − ∂ϕ

∂xk
ωr cosϕ,

k = 2, 3
(34)
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∂υ3

∂xk
= − ∂ω

∂xk
r cosϕ +

∂r
∂xk

ω cosϕ − ∂ϕ

∂xk
ωr sin ϕ,

k = 2, 3
(35)

Increments of the logarithmic strain tensor ∆εi j re-
sulted from elastic-plastic bending of a strand and non
uniform temperature field have been calculated from

∆εi j = ∆τdi j + ∆εc
i j (36)

The logarithmic strain tensor components have been ob-
tained by adding up increments of strain tensor starting
from the meniscus level and following the material flow
up to the cut-off zone

ε(τ+∆τ)
i j = ∆εi j + Rikε

τ
klR jl (37)

where: ∆τ – time increment necessary for the material
point to reach the next node of element in the cross
section of a cast strand. The rotation tensor is calculated
from the equation

Ri j = δi j + sin
(
∆τωi j

)
(38)

where: δi j – elementary tensor.
The stress tensor components have been calculated

in the similar way

σ(τ+∆τ)
i j = ∆σi j + Rikσ

τ
klR jl (39)

Relationships between increments of the stress ten-
sor ∆σi j and the strain tensor ∆εc

i j as well as the method
of thermal strains calculation have been presented in
[12].

4. Crack criterion

To analyze damageability of cast strand four crack
criterion have been selected [13]

1. Plastic work criterion

CEP =

t∫

0

.
ε̄ σ̄dt for σm > 0 (40)

where:
.
ε̄ – effective strain rate, σ̄ – effective stress.

The criterion assumes that cracks will occur if strain
energy is higher than the critical value CEP. Plastic strain
energy is calculated only at points where mean stress is
positive.

2. Rice and Tracy criterion

CRT = ε̄ exp
(
−3

2
6m
σ̄

)
(41)

where: σm – mean stress, ε̄ – effective strain.
Rice and Tracy criterion predicts that failures will

form if parameter CRT passes the critical value of the
effective strain ε̄ f

3. Modified Rice and Tracy criterion

Modification of Rice and Tracy criterion (41) rely
on calculating the critical value of CRM parameter, as
a sum of right side of equation (41). The summation is
made only at points for which the mean stress is positive.

CRM =
∑

∆ε̄ exp(−3
2
σm

σ̄
) for σm > 0 (42)

4. Latham criterion

CLO =

t∫

0

σmax
.
ε̄ dt for σm > 0 (43)

where: σmax – maximum stress.
Latham criterion assumes cracks formation if strain

work done by the maximum tensile stress passes the
critical value CLO. The uniaxial tension test can be em-
ployed in order to determine the critical values of CEP,
CRT ,CLO parameters for a particular steel.

5. Numerical calculations

The influence of strand temperature field and the
circumferential flow of a cast strand along the arc of cast-
ing machine on the strain and stress development have
been analyzed for the square strand of 160mm×160mm.
Chemical composition of steel has been assumed for the
calculation as: C=0.1%, Mn=1.7%, Si=0.39%, Cr=3.0%,
Ni=0.2%. Thermophysical properties of steel were se-
lected on the ground of steel chemical composition. In
Figures from 2 to 8 heat conduction coefficient, density,
specific heat, Young’s modulus, flow stress, Poisson’s
ratio and thermal expansion coefficient as a function of
temperature for the steel employed in computations have
been presented.
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Fig. 2. Heat conduction coefficient as a function of temperature for
the steel employed in computations

Fig. 3. Density as a function of temperature for the steel employed
in computations

Fig. 4. Specific heat as a function of temperature for the steel em-
ployed in computations

Fig. 5. Young’s modulus as a function of temperature for the steel
employed in computations
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Fig. 6. Flow stress as a function of temperature for the steel employed
in computations

Fig. 7. Poisson’s ratio as a function of temperature for the steel em-
ployed in computations

Fig. 8. Thermal expansion coefficient as a function of temperature
for the steel employed in computations

Solidus temperature was assumed as 1460˚C, liq-
uidus as 1510oC. In the solid state the austenitic transfor-
mation boundaries were assumed as: 890oC and 720oC.
The analysis has been performed for the arc of casting
machine equal 6 m. Casting speed was assumed as 1,8
m/min. The length of the secondary cooling zone was
equal 4,51 m. Computation have been performed for the
following cases:

• Case I – bending and unbending of the cast strand
only. Thermal strains have been removed from the
strain tensor in order to examine the influence of the
circumferential flow of strand only.

• Case II –thermal stresses only. The influence of the
circumferential flow of the strand has been neglected.

• Case III – coupled effect of the stress and strain field
resulting from non uniform temperature field and the
circumferential flow of the cast strand.

In Fig. 9 temperature distribution in the axis of cast
strand, in the axis of the strand side surface and in strand
corners have been presented. The results have been ob-
tained for the heat source given by equation (21). Esti-
mation of the derivative of the solidification heat by the
finite difference scheme, did not give stable solution. In
Fig. 9 decrease in cast strand temperature below the am-
bient temperature is observed in range of 2 m from the
meniscus level. Temperature distribution does not reflect
temperature obtained in real process. New scheme of the
internal heat handling defined by equation (24) resulted
in a very good stability and accuracy of the finite element
model.
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From the heat balance calculated for the control vol-
ume [14] follows, that the standard weighted residuals
method gives the strand temperature of about 225oC too
low. The correct solution has been obtained after iterative
modification of weighting function Hi in equation (18).
The correction factor has been employed for scaling the
weighting function, has been calculated from the heat
balance. The developed numerical scheme is stabile and
efficient. Temperature distributions at side surface of the
cast strand and at its corners presented in Fig. 10 and
11, do not indicate any oscillations. Noticeable at these
figures increses and decreases of the strand temperature
result from the changes in cooling conditions in the sub-
sequent cooling zones. The final, smooth parts of the
temperature distributions reflect strand cooling in air.

Fig. 9. Temperature distributions at selected points of the continu-
ously cast strand for the solidification heat given by Eq. (21)
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Fig. 10. Distribution of the temperature on the side surface of the
continuously cast strand for the solidification heat given by Eq. (24)
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Fig. 11. Distribution of the temperature in the corner of the contin-
uously cast strand for the solidification heat given by Eq. (24)

Fig. 12. Average stress distributions at selected points of the contin-
uously cast strand resulting from bending of the strand

In Fig. 12 to 15, the results of calculation of the
effective strain and mean stress have been presented. In
the case of mean stress the results have been presented
for characteristic points of a cast strand cross section.
Effective strain in 2 selected cross section of the cast
strand has been presented: below casting mould and after
unbending of the strand.

Analysis of the mean stress distribution, resulted
from bending of a cast strand (Fig. 12) leads to con-
clusion, that in the cast strand axis mean stress is equal
zero. The outer surface of a cast strand is tensiled to the
half of the length of arc of casting machine. Then, the
mean stress turns to positive values. In the same time
the mean stress distributions on the strand surface from
the inner side of arc of casting machine show opposite
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Fig. 13. Average stress distributions at selected points of the contin-
uously cast strand resulting non uniform temperature field

behavior. Stress distributions are symmetrical and char-
acteristic for bedning of a cast strand. The surface
of a cast strand passes to the plastic state as a result of
deformation caused by bending of a cast strand. Further
deformation of a cast strand is caused by non uniform
temperature field. In Fig. 15 the total effect of these
two factors on the effective strain is presented. Effective
strain reaches 0.06 at the surface layers. Mean stress

distribution is affected by bending of a cast strand. The
mean stress (Fig. 13) caused by non uniform temperature
field, changes the distributions of mean stress (Fig. 14),
but the curves follow the results of the bending model.
The highest values of the mean stress in case of corners
of a cast strand have not exceeded ±400 MPa (Fig. 14).
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Fig. 14. Average stress distributions at selected points of the contin-
uously cast strand resulting from non uniform temperature field and
the strand bending
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Fig. 15. Effective strain distributions in the cross section of the continuously cast strand resulting from the strand bending and non uniform
temperature field. a) below the mould, b) after the strand straightening
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Calculated values of crack criterion parameters con-
firmed that the most susceptible to crack formation are
corners of the cast strand. Analysis of the results of Rice
and Tracy criterion do not give the possibility to identi-
fy zones cracks formation. Values of these criterion for
outer corner of a cast strand are much higher than that
obtained for inner corner and strand axis. Unfortunately
on all those curves peaks are noted (Fig. 16). It makes
the proper interpretation of the results very difficult. This
problem disappears after modification of Rice and Tracy
criterion. Results of calculations given by plastic work
and Latham criterions indicated as the most probable
place of crack formation zones between the 1st and the
5th meter of the outer corner of the cast strand (Fig. 18,
19). It is the bending zone. In case of inner corner of
a cast strand potential fractures may occur after leaving
the casting mould (at about 1th meter of the metallurgical
length of strand) and then again in unbending zone (be-
tween 5th and the 8th meter of the metallurgical length
of strand). In these regions parameters calculated from
plastic work and Latham criterions increase very rapid-
ly. Similar domains are indicated by modified Rice and
Tracy criterion (Fig. 17). Such a course of curves is
justifiable by thermal and mechanical loads.
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Fig. 16. Results of calculations of Rice and Tracy criterion
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Fig. 17. Results of calculations of the modified Rice and Tracy cri-
terion
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Fig. 18. Results of calculations of strain criterion
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Fig. 19. Results of calculations of Latham criterion
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6. Conclusions

New, stable scheme of solidification heat handling
in steady solution of heat transfer model has been devel-
oped. The strain and stress field in the continuously cast
strand, have been determined. The accuracy of thermal
model has been improved based on the heat balance cal-
culated in control volume. Iterative scaling of weighting
function in the weighted residual method let to obtain
stable and accurate solution. The possibility to analyze
the influence of casting parameters on the temperature,
strain and stress fields is possible. The largest influence
on the mean stress has bending and unbending of a cast
strand. The highest values of mean stress in these case
reach about ±400 MPa. Dominant influence on the effec-
tive strain distribution has the non uniform temperature
field. The domains of maximal deformations are located
near the surface of a cast ingot. Along the whole casting
line the lowest values of the effective strain occur at the
axis of the cast ingot.

The calculations performed for selected crack crite-
rions let to identify the domains most exposure to cracks
formation and development. The most useful are strain
work criterion, Latham criterion and modified Rice and
Tracy criterion. Numerical calculations performed on the
basis of these three criterions indicated the same regions
of possible cracks formation as that well known from the
industrial practice. It is necessary to employ uniaxial ten-
sion tests to determine critical values of fracture criterion
parameters. Unfortunately, uniaxial tension tests have to
be conducted in a very wide range of temperatures.
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