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Abstract 
 
Thin metal film subjected to a short-pulse laser heating is considered. The parabolic two-temperature model describing the temporal and 
spatial evolution of the lattice and electrons temperatures is discussed and the melting process of thin layer is taken into account. At the stage 
of numerical computations the finite difference method is used. In the final part of the paper the examples of computations are shown. 
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1. Introduction 
 
Phase changes often occur in laser material processing. The 

interaction of the laser beam and metal can cause the rise of surface 
temperature above melting point and partial melting of layer. When 
the duration of laser pulse is around 10-13 s, which is the mean free 
time between collisions of electrons in metals, nonequilibrium 
between electrons and the lattice is significant and can’t be analyzed 
using the classical heat transfer models [1, 2, 3]. In this case the 
two-temperature model is accepted for simulating femtosecond 
laser-material interactions [2, 3, 4, 5, 6]. 

In this paper the thin metal film subjected to the ultra-short laser 
pulse is considered. The problem is described by two coupled 
parabolic equations determining the electron and lattice 
temperatures. Laser action is taken into account in the internal 
source function appearing in the equation concerning the electron 
temperature.  The melting model basing on the one domain method 
[7, 8, 9] widely used in macroscopic heat transfer is proposed. The 

problem is solved by means of the explicit scheme of finite 
difference method. In the final part of the paper the results of 
computations are shown and the conclusions are formulated. 

 
 

2. Formulation of the problem 
 

The thin metal film of thickness L (1D problem) subjected to 
the laser pulse is considered. Electrons temperature is described by 
the following equation 
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where Te (x, t), Tl (x, t) are the temperatures of electrons and 
lattice, respectively, Ce (Te) is the electrons thermal capacity, 
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λe(Te, Tl) is the electrons thermal conductivity, G(Te, Tl) is the 
electron-lattice coupling factor, Q is the laser source [4] 
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where I0 is the laser intensity, tp is the characteristic time of laser 
pulse, δ is the optical penetration depth, R is the reflectivity of the 
irradiated surface and β  = 4 ln(2) [4].  

 
The lattice temperature in the liquid state Tl,l and solid state 

Tl,s is described by equations 
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where Cl,l, Cl,s, λl,l, λl,s are the thermal capacities and thermal 
conductivities of lattice in the liquid and solid state, respectively.  

At the solid-liquid interface ξ(t) the Stefan boundary 
condition was assumed  
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where Tm is the melting point, Qm is the volumetric latent heat of 
fusion, while u = dξ(t)/dt is the solid-liquid interfacial velocity.  

Taking into account the short period of laser heating, heat losses 
from front and back surfaces of thin film can be neglected [4], this 
means 
 

(0, ) ( , ) (0, ) ( , ) 0e e l lq t q L t q t q L t= = = =  (6) 
 
where qe (x, t), ql (x, t) are the heat fluxes for electron and lattice 
systems, respectively. 

The initial conditions are assumed to be constant 
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3. Model of phase change 
 

In this paper the following approach to the modeling of phase 
change in thin metal film is proposed. Instead of the melting 
temperature Tm the narrow interval temperature [TS, TL] is 
introduced. In this interval of temperature the latent heat of fusion 

is emitted. In other words, the melting process in the constant 
temperature is substituted by melting process in the small interval 
of temperatures.  

Then only one equation concerning the lattice is considered 
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where S(x, t) is the solid state fraction in the neighborhood of the 
point under consideration. Because 
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so the equation (8) can be written in the form 
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or 
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where 
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is the so-called substitute thermal capacity of lattice. Because for   
Tl < TS: S(Tl) = 1, this means dS(Tl)/dTl  = 0 and for Tl > TL:  
S(TL) = 0, this means dS(Tl)/dTl = 0, the definition of substitute 
thermal capacity of lattice can be extended on the whole domain  
[7, 8, 9]. If one assumes that 
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and the thermal capacities of liquid and solid state are constant 
then the substitute thermal capacity of lattice is defined as follows 
(c.f. Figure 1) 
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Summing up, presented approach consists in the solution of 
equations (1), (11) supplemented by boundary conditions (6) and 
initial ones (7).   
 

 
Fig. 1. Substitute thermal capacity of lattice 

 
 

4. Examples of computations  
 

The gold film of thickness L = 100 nm is considered. Initial 
temperature equals to Tp = 300 K. The layer is subjected to a short-
pulse laser irradiation (R = 0.93, I0 = 12000 J/m2, tp = 0.1 ps, δ =15.3 
nm). The profiles of Ce(Te) and G(Te)  are received from [10]. 
Thermophysical parameters for liquid and solid phase are  the  
following:  λl  = 315 W/(mK),  CL = CS = 2.5∙106 J/(m3 K). The 
thermal conductivity of electrons λe(Te, Tl) was obtained from 
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where A = 1.18·107 [1/(K2·s)]  i B = 1.25·1011 [1/(K·s)] [11] and  
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where h is the Planck constant divided by 2π (the Dirac constant), 
me is the effective mass of electrons, ne is the number of electrons 
per unit of volume. 

Melting temperature for thin gold film is equal to 1336K and 
the volumetric latent heat of fusion is equal to Qm = 63730∙19300 
[J/m3] [11]. The interval of melting temperature TS = 1335K, 
TL = 1337K is introduced. 

The problem is solved using finite difference method [8] under 
the assumption that Δt = 0.0001 ps and hx = 1 nm. Figure 2 shows 
the changes of electrons and lattice temperatures at the irradiated 
surface.  

To estimate the influence of width of the melting temperature 
interval on the results of computations the error for electrons and 
lattice on the surface (x = 0) is calculated. This analysis is prepared 
for laser intensity I0 = 6000 J/m2. Other data are the same as 
previously.  
 
 
 

The error for electrons and lattice was calculated from 
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and 
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where Te

f
,±1K, Tl

f
,±1K are the calculated electrons and lattice 

temperatures for the interval of melting [Tm – 1K, Tm + 1K], 
respectively, Te

f
,±1Kmax is the maximum temperature for this  melting 

interval and Te
f
,±ΔT is the temperature for increased width of melting 

temperature interval [TS, TL]. In table 1 the error analysis is 
presented.  
 

 
Fig. 2. Electrons and lattice temperature profiles on the irradiated 

surface –  I0 = 12000 J/m2 
 
Table 1. 
Error analysis 

The width of melting 
temperature interval [K] 

Error 
for Tl [%] 

Error 
for Te [%] 

1 1.289 0.031 
10 1.806 0.030 
20 2.348 0.036 
50 2.513 0.048 

 
As you can see this width changes have greater influence on 

lattice temperature. In figure 3 the lattice temperature profiles for 
different melting interval are shown. Additionally, in table 2 the 
maximum electrons and lattice temperature are shown. 
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Fig. 3. Lattice temperature profiles on the irradiated surface for 

different melting interval –  I0 = 6000 J/m2 
 
Table 2. 
Maximum electrons and lattice temperature for different width of 
melting interval 

The width of melting 
temperature interval [K] maximum Tl [K] maximum Te [K] 

1 1426.372 13669.7179 
2 1400.134 13669.7178 
10 1358.981 13669.7177 
20 1337.238 13669.7177 
50 1333.760 13669.7176 

 
 

5. Conclusions 
 

Thin metal film subjected to the laser pulse has been 
considered. To describe the process analyzed the two-temperature 
parabolic model has been applied. The analysis of influence of the 
width of melting interval on electrons and lattice temperature is 
prepared.  

It turned out that the changes of these parameters affected 
mainly on lattice temperature especially after exceeding the 
melting interval.  It should be pointed out that narrow interval can 
neglect the melting process so it is important to choose it properly. 
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