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Abstract 
 
Mathematical description of alloys solidification in a macro scale can be formulated using the one domain method (fixed domain approach). 
The energy equation corresponding to this model contains the parameter called a substitute thermal capacity (STC). The analytical form of 
STC results from the assumption concerning the course of the function fS = fS (T) describing the changes of solid state volumetric fraction and 
the temperature at the point considered. Between border temperatures TS , TL  the function  fS  changes from 1 to 0. In this paper the volumetric 
fraction fS  (more precisely  fL  = 1- fS ) is found using the simple models of macrosegregation (the lever arm rule, the Scheil model). In this 
way one obtains the formulas determining the course of STC resulting from the certain physical considerations and this approach seems to be 
closer to the real course of thermal processes proceeding in domain of solidifying alloy. 
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1. One domain method 
 
We consider the following energy equation  

[ ]( , ) ( , )( ) ( ) ( , ) ST x t f x tc T T T x t L
t t

∂ ∂
= ∇ λ ∇ +

∂ ∂
 (1) 

where c(T ) is a volumetric specific heat of casting material, λ(T ) is 
a thermal conductivity, L is a volumetric latent heat, T = T (x, t), 
fS = fS (x, t ) denote the temperature and the local volumetric fraction 
of solid state. One can see, that only heat conduction in a casting 
volume is considered. The different forms of equation (1) appear at 
the stage of solidification rate ∂fS /∂t computations (e.g. [1, 2]). 

Let us denote the temperatures corresponding to the beginning 
and the end of solidification process by TL and TS , at the same time 
we assume the knowledge of temperature-dependent function fS for 
the interval [TS , TL ] and then 

( , ) d ( , )
d

S Sf x t f T x t
t T t

∂ ∂
=

∂ ∂
  (2) 

Introducing this formula to energy equation (1) one obtains 

[ ]( , )( ) ( ) ( , )T x tC T T T x t
t

∂
= ∇ λ ∇

∂
 (3) 

where C (T ) = c (T ) – L dfS /dT is called 'a substitute thermal 
capacity'. This parameter can be defined in the different ways, it 
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will be discussed in the next part of the paper. One can see that for 
T < TS : fS = 0, while for T >TL ; fS = 0 and the derivative d fS/dT=0. 
Summing up, the following definition of substitute thermal capacity 
can be accepted [3, 4] 
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 or, because fL =1- fS 
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where cL , cP , cS are the volumetric specific heats of molten metal, 
mushy zone and solid state sub-domains and one can use the 
equation (3) as the model of thermal processes proceeding in the 
whole, conventionally homogeneous, casting domain. It is the 
reason that the approach presented is called 'a one domain method'. 
As an example of purely mathematical hypothesis concerning the 
course of function fS,, the formula  
 

( )
n

L
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                                                                  (6) 

 
can be considered. The function (6) fulfils the necessary condition 
fS (TL ) = 0 and fS (TS ) = 1, additionally it is the monotonic one. We 
find the derivative 
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and then 
1
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The quotient L /(TL – TS ) = csp is called 'a spectral latent heat'. 
Introducing this parameter on has 

1

( )
n

L
P sp

L S

T TC T c c n
T T

−
 −

= +   − 
  (9) 

Above formula is very often used for the case n=1, namely 

( ) , [ , ]P P sp S L
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 (10) 

  The typical mathematical description of the real foundry 
technology requires the supplement of equation (1) by the equation 
determining the course of thermal processes in a mould sub-
domain, this means 

 

( , )( ) λ ( ) ( , )m
m m m

T x tc T T T x t
t

∂  =∇ ∇ ∂
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where the index m identifies the mould sub-domain, the non-
homogeneous mould can be also considered. 
On the external surface of mould the following boundary condition 

( , )λ α ( , )m
m m a

T x t T x t T
n

∂
− = −  ∂

 (12) 

is, as a rule, accepted. Here α is a heat transfer coefficient, Ta is an 
ambient temperature, ∂/∂n denotes a normal derivative. 
On the contact surface between casting and mould the continuity 
condition is given 

( , ) ( , ) ( , ) ( , )λ λ
( , )

m m
m

T x t T x t T x t T x t
n R x t n

∂ − ∂
− = = −

∂ ∂
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where R is a thermal resistance. For R = 0 (a such assumption can 
be done in the case of sand mix mould) the last equation takes a 
form 

( , ) ( , )λ λ

( , ) ( , )

m
m

m

T x t T x t
n n

T x t T x t

∂ ∂− = − ∂ ∂
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  (14) 

The initial temperature distribution for t = 0 is also known 

0 00 : ( , 0) ( ) , ( , 0) ( )m mt T x T x T x T x= = =  (15) 

The mathematical model presented above can be more complicated. 
For example, one can consider the convectional component of heat 
transfer which appear in the molten metal sub-domain. 
 
 

2. Macrosegregation models 
 

Presented below the macrosegregation models result from the 
certain physical considerations concerning the mass (or volume) 
balance of alloy component in the casting volume. The models are 
close to the conditions of volumetric solidification. When the 
mass densities of liquid and solid are assumed to be the same, 
then the both balances lead to the same results. For two successive 
time levels t and t+∆t we have the following form of volume 
balance   
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

S S L L

S S L L

V t z t V t z t

V t t z t t V t t z t t

+ =

+ ∆ + ∆ + + ∆ + ∆
                           (16) 

 
where zS,zL are the concentrations of alloy component in the solid 
and  liquid  phases.  The  change  of  volume ( ) ( )S SV t t V t+ ∆ − is 
conventionally shown in Figure 1. 
The values of VS,VL and zS, zL for time t + ∆t we can find using 
the Taylor series (the summands of higher order containing ∆t2  
and next ones are neglected) 
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and similarly 
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Fig. 1. The change of global ( )SV t  

 
Using the equations (17) – (20) we obtain 
 

d d d d 0
d d d d

S S L L
S S L L

z V z VV z V z
t t t t
+ + + =                                       (21) 

 
or, taking into account the definitions of fS and fL  
 

d d d d 0
d d d d

S S L L
S S L L

z f z ff z f z
t t t t
+ + + =                                         (22) 

 
We introduce the partition coefficient k= zS / zL and the self-
evident dependence fS =1- fL and rhen 
 

d d(1 ) 0
d d

L L
L L L L

L L

f ff k k z f z
z z

− − + + =                                         (23) 

The final form of equation considered is the following 
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The equation (24) is a linear one and it should be solved taking 
into account the condition 0 : 1Lz z f= = .  
Let us assume that the partition coefficient is a constant value (it 
corresponds to the assumption that the lines TS and TL on the equi-
librium diagram are the straight ones and they start from the same 
point TP. The solution of equation (24) is of the form 

 

( )
0

1
L

L
L

z k zf
k z
−

=
−

                                                                           (25) 

The last result correspond to the well known lever arm model. 

We can also assume that the derivative d 0
d

Sz
t
=  and then 
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or 
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this means 
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For z=z0 : 1Lf = and finalny 
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The last equation corresponds to the Scheil model. 
 
 

3. Substitute thermal capacity 
 

Let us assume, as previously, that the partition coefficient k is 
a constant value. The straight lines determining the dependencies  
TS (zS ) and TL(zL )  are of the form 
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and then 
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where PT is a solidification point of pure metal, 0T is the border 
temperature corresponding to the concentration 0z . 
Because 
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consequently 
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or introducing in a place of concentration the dependencies (31) 
we obtain  
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In the case of Scheil model one has 
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and next 
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One can see that for 0T T=  the liquid state fraction Lf =1, while 
when the solidification process goes to the end Lf in not equal to 
0. In this connection it should be assumed that the end of 
solidification corresponds, for example, to 0.05Lf < . 
At the stage of numerical computations the following problem has 
been solved. The frame (2D problem – Figure 2) produced from 
from Al-Si alloy (2% Si) has been considered. The following  input   
data  have  been  introduced: cS = 2.96 MJ/m3 K, cL =3.07,  λS =250 
W/mK, λL =104,  L = 990.6 MJ/m3 , k =0.25, Tp =660 o C. 

 
Fig. 2. Frame geometry 

 

The remaining input data and the details concerning the numerical 
solution of a such problem can be found in the paper [5] 
developed by Szopa, Siedlecki and Wojciechowska from our 
team. 
The example of results obtained concerns the applicatiom of 
equation (36). In particular, Figure 3 illustrates the cooling curves at 
the points 1, 2, 3 marked in Figure 2. 
 

 
Fig. 3. Cooling curves 
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