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Abstract 
 

The paper presents results of examination of material parameters of cast iron with structure obtained under rapid resolidification conditions 
carried out by means of the nanoindentation method.  
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1. Introduction 
 

The method of improving service properties of cast iron 
through superficial remelting with the use of Gas Tungsten Arc 
Welding (GTAW) [1–7] gains increasing popularity. To 
determine results obtained by means of this process, hardness 
measurements are typically used. More knowledge of the 
material parameters can be provided by indentation tests that 
allow to obtain information about the modulus of elasticity, 
mechanical work, relaxation, or creeping of the material. The 
standard hardness testing procedures are based on material 
hardness observed after the load being removed from the 
indenter. The instrumented indentation method used here allows 
to assess the course of force change and displacement of the 
indenter while penetrating the examined material in the course 
of both loading and unloading [8–20]. Indentation tests are 
carried out with the use of Vickers or Berkovich diamond cones 
under given indentation force and speed, followed by a pause of 
definite duration and unloading of the indentation force with 
given speed. Elastic displacement of the indenter is governed by 
the Sneddon’s equation [15]. Theoretical foundations of 
indentation tests were given by Olivier and Pharr [10]. The test 

result is obtained in the form of a plot representing the load force 
versus displacement functional dependence. Based on the plot, one 
can calculate: hardness, modulus of elasticity and mechanical work 
relating to forcing indenter into the material (elastic deformation 
work and plastic deformation work). In Figure 1, an example 
indentation test curve is shown.  

 
a) 

 
b) 

 
Fig. 1. Schematic recess indenter (a) and schematic curve recorded 

during the indentation test (b) [7-9,15]: 
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1 -the line of sample surface permanent deformation caused by 
the indenter after load release, 2 -the line of sample surface 
permanent deformation at maximum indentation hmax with 
maximum force Fmax, A -application of the load force F, B -
removal of the load force F, hc -the depth of contact of the 
indenter with the sample at Fmax, hp -the depth of the indenter 
penetration after release of Fmax, hr -point of intersection with 
the tangent to the unloading curve B, Wspr -the elastic 
deformation work, Wplast -the plastic deformation work 
 
 
2. Methods 
 
2.1. Material for study 

 
The research work was carried out with unalloyed 

spheroidal cast iron in the condition after surface remelting by 
means of GTAW method. The chemical composition analysis 
was carried out with the use of Q4-TASMAN emission 
spectrometer by Bruker. The cast iron contained 3.49% C; 
2.30% Si; 0.66% Mn; 0.019% S; 0.039% P; 0.17% Cu; 0.01% 
Ni; 0.084% Mg. The tests were carried out on castings in the 
form of plates with dimensions 200×50×10 mm. On the 
castings, superficial remeltings were made with the use of 
plasma of electric arc generated by means of TETRIX 351 

AC/DC welder by EWM. The remeltings were made in argon 
atmosphere at welding current intensities I = 50, 100, 200 and 
300 A with the electric arc scanning rate vs = 200 mm/min. The test 
samples were ground and polished. Designation of test samples and 
parameters of the remelting process are presented in Table 1.  

 
Table 1.  
Determination of test samples and the parameters of the GTAW 

No 
GTAW parameters 

Welding current, 
 I [A] 

The electric  
arc scanning rate, vs [mm/min] 

A 300 200 
B 300 400 
C 300 600 
D 300 800 

 
2.2. Indentation test 
 

The cast iron indentation tests were carried out on a test stand 
equipped with a multi-function platform OPX NHT/NST by CSM 
Instruments with a Berkovich indenter with a tip diameter 2 μm and 
angle 90°. The measurement head allows to carry out tests in the 
load force range from 0.1 mN to 500 mN. The test set-up is 
presented in Figure 2. 

 

 
Fig. 2. The test method for indentation testing, OPX NHT / NST's CSM Instruments 

 
Cast iron samples were examined by means of 

nanoindentation method with load force FN = 450 mN and the 
load followed by a 15 s pause. The load application and removal 
rates both equalled to 900 mN/min. The indentation tests were 
carried out as per ASTM [8] and PN EN ISO [9] standards. In 
Figure 3, plots of force FN value is presented versus indenter 
displacement Pd in the cast iron obtained under rapid 
resolidification conditions.  

In Table 2, measurement results obtained from the indentation 
test for cast iron obtained under rapid resolidification conditions. 
Figure 4 presents the indentation test results in graphical form. 

 
 

3. Analysis of results 
 

Cast iron obtained under rapid resolidification conditions is 
characterised with diversified microstructure [21–24]. The effect 
of increased of the welding current intensity consists in larger 
volume of the molten metal pool which results in lower 
solidification rate. This in turn is related to a lower degree of 

fragmentation of the cementite eutectic in which, as the result of 
rapid cooling down to ambient temperature, austenite is partly 
transformed into hardening product. 

 

 
Fig. 3. Indentation curves after cast iron surface melting, welding 

currents I=300A and scanning speed vs of  electric arc at  200 
mm/min -line A, 400 mm/min -line B, 600 mm/min -line C, 800 

mm/min –line D 
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Table 2. 
Indentation test results obtained on the structure of iron under conditions of rapid crystallization 

No 

Melting parameters Results of indentation 
welding 
currents 

I [A] 

speed 
vs 

[mm/min] 

hmax 
[nm] 

hc 
[nm] 

hr 
[nm] 

hp 
[nm] 

Wspr 
[pJ] 

Wplast 
[pJ] 

Wtotal 
[pJ] 

ηIT 
[%] 

EIT 
[N/mm2] HV  

A 300 200 1676 1607 1467 76407 76407 192835 269242 28,38 185 649 
B 300 400 1279 1196 1070 93294 93294 167077 260371 35,83 191 1114 
C 300 600 1207 1129 1005 87300 87300 143453 230753 37,83 223 1249 
D 300 800 1180 1099 969 88934 88934 144264 233198 38,14 224 1307 

where: hc  -depth of indenter-sample contact at Fmax; hp  -indenter penetration depth after removal of force Fmax; hr  -point of intersection with the tangent 
to load removal curve B (Fig. 1), Wspr  -elastic deformation work; Wplast  -plastic deformation work; Wtotal = Wspr+Wplast; ηIT = (Wspr/Wtotal)×100  -elastic 
force work share in the loading/ unloading cycle 
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e) 

 

f) 

 
Fig. 4. Effect of HV hardness and elastic module EIT cast iron structure resulting in a rapid crystallization of the 

indenter penetration of a, b), mechanical work c, d), the share of the work of elastic e, f) 
 

The molten metal pool volume has also an effect on the rate at 
which cementite eutectic cools down to ambient temperature and 
thus on the volume share of hardening products and the volume 
share of residual austenite. This manifests itself in the material 
hardness diversification from 649 HV in the case of remelting 
performed with the electric arc scanning rate of vs= 200 mm/min 

to 1307 HV in the case of remelting carried out by the scanning 
with electric arc at rate vs= 800 mm/min.  

Cast iron with structure obtained under rapid resolidi-fication 
conditions resulting from surface remelting with the use of higher 
electric arc scanning rates is characterised with higher values of 
the modulus of elasticity EIT. They equal EIT = 185 N/mm2 at the 
electric arc scanning rate of vs= 200 mm/min and 
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EIT = 224 N/mm2 at the electric arc scanning rate of 
vs= 800 mm/min, respectively. Values of material parameters are 
reflected in course of the curve representing penetration of 
indenter into the material during applying and removing the load 
(geometrical parameters of the indentation process, hmax, hc, hr, 
hp). Analysis of course of the indentation curve shows that for 
remeltings obtained with the use of higher electric arc scanning 
rates, the total work value decreases. This is a result of a decrease 
of value of work relating to the plastic force. With increasing 
velocity of electric arc scanning, the molten metal pool volume 
decreases which results in increased pace of resolidification. This 
in turn results in decrease of the inter-phase distance λ in 
cementite eutectic and increase of share of the hardening products 
and thus a lower share of austenite in the material structure [21–
24]. The changes occurring in the microstructure are reflected in 
the increase of share of the elastic force work Wspr in the total 
work Wtotal from ηIT= 28.38% for the electric arc scanning rate 
vs= 200 mm/min to ηIT = 38.14% for the for the electric arc 
scanning rate vs= 800 mm/min. 
 
 

4. Conclusions 
 
The obtained results indicate that the tests carried out with the 

use of the nanoindentation method is an effective tool useful in 
evaluation of material structure parameters that can be further 
used for assessment of service properties of materials. 
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