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Abstract 
 
The work is a continuation of research on the use of water mist cooling in order to increase efficiency of the die-casting process for 
aluminum alloys. The paper describes the multipoint sequential cooling system of the casting die and its computer control and monitoring. 
It also includes results of the tests and analysis of cooling methods during making of the casting. These methods differ from each other in 
the sequence of casting die cooling and cause effective changes in microstructure and mechanical properties of castings made of AlSi11 
alloy. The study demonstrated that the use of multipoint sequential cooling with water mist affects the microstructure refinement and 
reduces the segregation in the cast as well as more than by 20% increases the mechanical properties of castings in the rough state. The 
study also demonstrates that the sequential cooling of casting die accelerates the cooling of the casting and shortens die-casting cycle. 
 
Keywords: Innovative Foundry Technologies and Materials, Casting Die Cooling, Water Mist, AlSi11, Microstructure, Mechanical 
Properties 
 
 
 

1. Introduction 
 
This work is a part of the studies on the application of water 

mist system for multiple sequential cooling chill to produce 
castings from aluminum alloys [1-8]. Currently, the industry uses 
two methods of cooling of permanent molds – the first consisting 
of the heat received by compressed air, which is very energy 
intensive due to the low efficiency of heat transfer through the air 
and the second one based on cooling with the water. The key 
subject of the research is the efficient cooling with the use of 
water mist through evaporation of water droplets on a hot surface 
of the casing die. 
The aim of this study was to investigate the effect of sequential 
multipoint cooling with the water mist on the mechanical 

properties of Rm, R p0,2, A5 and HB of casts made of AlSi11 
alloy. 
 
 

2. Experimental 
 

Studies were conducted on the research station, which scheme 
is shown in Figure 1 using the casting die presented in Figure 2. 
Water mist produced in the unit (1, 2) by dosing 0.08 l/min of 
water and 150 l/min compressed air. Water droplets are produced 
through the use of swirl jet (3) in the line of compressed air (9), 
which was moving them to cooled chill zone (10).  
Metal chill was cooled with cylindrical nozzles positioned 
perpendicular to the surface of wall. Temperature of the chill and 
the casting was examined using type K thermocouples placed in 
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the casting and the chill with an accuracy of 0.1C and a frequency 
of 1/s. For the analysis of temperature changes in the heat transfer 
zones (Fig. 2) Optris PI infrared camera was used. 
Research metal chill (Fig. 2) was made of X38CrMoV5-1 steel. In 
the body of the chill were installed symmetrically 3 sections of 
cooling nozzles. The nozzles were placed in such a way that each 
section of the nozzles cooled each zone of the chill and the 
casting. Cooling jets was controlled by the computer control 
system (Fig. 1, pos. 6) developed by Z-Tech Company. The 
system software includes a set of functions and procedures to 
monitor and control the course of the water mist generation in the 
multi-circuit cooling system using a pre-drafted program. 
In this metal casting die (Fig. 2) the "Rm" samples were cast from 
technical unmodified silumin AlSi11, using cooling methods M1-
M5 presented in Table 1. 
 
Table 1.  
Chill cooling methods 

In 
order 

M 1 M 2 M 3 M 4 M 5 
Zone of research chill 

1 With-
out 

cooling 

1 0 2 0, 1 i 2 
The same 

time 
2 0 i 2 1 i 2 0 i 1 
3 0, 1 i 2 0, 1 i 2 0, 1 i 2 

 
To assess the cooling influence on the microstructure there was 
used a microscope "Nikon MA200" and a computer image 
analysis system NIS Elements. The effect of sequential cooling on 
the mechanical properties of silumin castings was performed with 
use of static tensile testing machine INSTRON 4485 and hardness 
testing machine Briviskop. 

 

 
Fig. 1. The scheme of the research station: Modules: 1, 2 – air and 

water dosing, 3 – mixing of components, 4, 5 – supplying of air 
and water solenoid valves, 6 – computer cooling control, 7, 8 – 

PC, 9 – cooling circuit, 10 – research chill 
 

Nozzle 1 Nozzle 2

Nozzle 3

Nozzle 5 Nozzle 6

Nozzle 4
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Zone 0

 
Fig. 21. Cross section of the chill and the cast, zoning designation 

of nozzles 
 
 

3. Results 
 
3.1. Control program development 

 
The preliminary study shows that in order to obtain the 

quality of measuring part of the sample cast there should be given 
the priority to the casting crystallization zone 1, followed by 
cooling of the rest of the casting and chill. In order to determine 
the crystallization temperature of the casting and chill 
temperatures corresponding thermal and derivational analysis was 
performed. Its exemplary results are shown in Figure 3 and 4 and 
also in the Table 2. 

 
Fig. 3. Self-cooling of the casting (K3, DT3 / dt) and chill zones 

(K0, K1, K2) pre-heated to 200°C, uncooled 
 

Table 2.  
The temperature of the casting and the chill in the process of 
crystallization 

 Zone 0 Zone 1 Zone 2 Casting 
Temperature, C 

Cryst. start 376 331 394 576 
Cryst. finish 366 327 405 515 
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Fig. 4. Chill temperature changing during the pouring stage 

 
The temperature values was used as the basis for developing, 

the algorithm logic of control program as shown in Figure 4. 
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Fig. 5. Algorithm logic of control program 
 
 

The control program starts the cooling process in the 1. zone 
as soon as possible after filling the mold with the liquid metal, 
and at the latest at the beginning of crystallization of silumin, i.e. 
330 C. Then, after the silumin crystallization is finished, the 
program begins with the cooling of the other zones, which will no 
longer supply the zone 1 with the liquid metal,, but instead 
accelerate the process of cooling of the entire cast. The program 
ends cooling of the chill after reaching the temperature of 60 C for 
casting. The program also contains a condition of water pulsation 
after temperature reduction by mold below 150 C and then 100 C. 
This condition reduces the amount of water in a mist along with 
the decreasing ability of the evaporation on the cooled wall of the 
pre-chill and thereby reduces the possibility of water gathering at 
the casting station.. Moreover, research shows that reducing the 
amount of water at this stage did not affect the cooling rate and 
the total time of casting. The cooling process ends when they 
reach the permanent molds temperature below 60 ° C. 

Table 3 shows the record of the control program put into the 
control system cooling chill and Figure 5 shows the registration 
process of the valve control system of water mist cooling of the 
chill. 

 
Table 3.  
Conditional record of control program 

Condition Action 
(K1>330) Z3=10; Z4=10; Z11=10; Z12=10 
(K1<320) 

*(TIME>7) 
Z1=10; Z2=10; Z3=10; Z4=10; Z5=10; 

Z6=10; Z9=10;Z10=10; 
Z11=10; Z12=10; Z13=10; Z14=10 

(K1<150) 
*(TIME>7) 

Z1=6;Z2=6;Z3=6;Z4=6;Z5=6;Z6=6; 
Z9=10;Z10=10;Z11=10;Z12=10;Z13=10;Z14=10 

(K1<100) 
*(TIME>7) 

Z1=4;Z2=4;Z3=4;Z4=4;Z5=4;Z6=4; 
Z9=10;Z10=10;Z11=10;Z12=10;Z13=10;Z14=10 

(K3<60) Z1=0;Z2=0;Z3=0;Z4=0;Z5=0;Z6=0; 
Z9=0;Z10=0;Z11=0;Z12=0;Z13=0;Z14=0 

 

Va
lv

es

 
Fig. 6. The course of valves (Z1-Z6 of water and Z9-Z14 of air) 

of water mist cooling system during the casting process;  
Z5, Z6, Z13, Z14-chill zone 0, Z3, Z4, Z11, Z12-chill zone 1,  
Z1, Z2, Z9, Z10 - Zone 2 chill, casting stages: I – pouring the 
chill, II - the cooling of liquid metal, III - crystallization of the 

casting, IV - the cooling of the casting 
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For the resulting program there were developed variants of the 
corresponding methods of cooling chill in the Table 1.The study 
of sequential cooling effect of water mist for the cooling time of 
the casting in temperature ranging from start of the crystallization 
to temperature of 200 C shows that the applied cooling decreased 
about 10-fold casting cooling time compared to non-cooled chill, 
in which case self-cooling time was around 200s. The difference 
of casting cooling time for methods 2 to 5 varies between 2 to 4 s. 
The shortest casting time was obtained using the method 5, which 
was the simultaneous cooling of all the chill zones. 
 
3.2. Mechanical properties 
 

Figure 7 shows the properties of Rm, Rp0.2, HB obtained with 
the use of tested water mist cooling sequence (Table 1). 
Research shows that castings obtained from the uncooled chill are 
characterized by the smallest properties, but still meet the 
requirements of technical standard for AlSi11 silumin cast with 
the gravity die casting. Furthermore, an application of water mist 
cooling the chill in the tested methods of production (M2 - M5) of 
casts far exceeds the value of Rm, R p0.2, and HB minimum 
required technical standard for silumin AlSi11, meeting the much 
higher requirements for pressure die casting.  
A comparison of production methods shows that the greatest 
properties values were obtained by the castings manufactured 
according to method 2. The achieved tensile strength Rm is 
approximately 222 MPa, at a maximum value of 231 MPa. This 
means an approximately 20% increase in tensile strength 
compared to casting without cooling water mist (method 1). 
Similarly high values reach another property castings produced 
with cooling method 2 yield strength Rp0.2 = 119 MPa - an 
increase of about 15%, and hardness, which reaches a value of 86 
HB. Silumin elongation increased from A5 = 2.0% for uncooled 
castings to A5 = 2.6% chilled casting with method 2. The analysis 
of hardness testing shows that water mist cooling increases the 
hardness of castings to the value in the range 82 ÷ 86 HB. This 
hardness is about 70% higher compared to the required technical 
standard (HB 55) for die-casting and therefore meets the 
requirements of hardness of pressure die casting. 
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Fig. 7. Effect of cooling method (Table 1) on the tensile strength 

Rm (a), R p0.2 (b) and hardness HB (c) of silumin AlSi11 
 
3.3. Microstructure and quality of casting 
 

Presented in Figure 8 cast microstructure test results show that 
the microstructure of chill-cooled cast produced with the method 
2 is more refined compared to the microstructure of the casting 
produced without cooling. The microstructure of silumin consists 
of α phase dendrites and lamellar eutectic α+β. Investigations 
show that the size of the precipitates in the eutectic casting 
thickness is varied. There are both short precipitates of almost 
spherical silicon eutectic and several times larger lamellar 
precipitates. A comparison of the microstructure proves that the 
precipitates of eutectic β phase from water mist-cooled samples 
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are smaller and they are many more, and also their porosity was 
smaller than in the casting uncooled. 

In the microstructure of obtained castings a segregation was 
observed, which causes variety of cross-sectional cast 
microstructure between two areas: boundary layer and the core 
(Fig 9). The study shows that the use of sequential test chill 
cooling during crystallization and cooling causes about the 3-fold 
increase in the thickness of the boundary layer region, while 
reducing the core of about 7 to 4 mm. The segregation of the core 
cast was observed in a concentrated form, while for uncooled 
casting the segregation was dispersed. The boundary layer 
consists of many more pre-eutectic crystallized α phase dendrites 
than the core. 

The observation of the casting’s microstructure obtained with 
the method 2 shows that the eutectic precipitates β phase is more 
refined in the boundary layer (Fig. 8 c) than in the core (Fig. 8 d), 
despite the presence of the few 7 to 8 microns big β phase plates. 
In addition, studies show that on the boundary of both layers there 
are clusters of very fine eutectic α+β (transient layer). They are 
formed most likely by the mixture of liquid metal and the β-phase 
crystal nuclei from neighboring zones. The computer image 
analysis of the β phase precipitates shows that the average size of 
eutectic precipitates in the transition layer of the core is 2.36 
microns, while for the boundary layer their size is larger and 
amounts to 2.83 microns. Furthermore, one can find large α phase 
dendrites in the microstructure of these areas. 
To sum up the work, it should be noted that the use of multi-point 
sequential cooling of metal mold with reduced wall thickness 
allows a good quality castings with low shrinkage porosity. The 
castings that have been made without cooling had high porosity 
within the casting and collapsed walls in the places where the 
cross-sections of the casting transitioned. In the raw casting 
cooled with the water mist a clearly visible shrink hole was 
produced on the surface of the pouring gate, which confirms the 
effectiveness of supplying the cast through this riser.  
Accounted for less than 10% of the raw casting’s volume and thus 
was defining a very high - at least 90% yield of the metal. Less 
significant advantages of castings obtained with use of the cooling 
water mist also include the reduction of surface roughness of the 
castings, i.e. they are characterized by smooth and glossy surface. 

a)  

 
b) 

 
c) 

 
d) 

  
Fig. 8. Microstructure of casting obtained: a) without cooling, b), 
c), d) with water mist cooling system method 2; α dendrites,  α+β 

eutectic 
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a) 

 
b) 

 
Fig. 9. Segregation of casting obtained: a) without cooling, 

b) with water mist cooling system method 2; 1- boundary layer, 2 
– core of cast. 

 
 

4. Conclusions 
 

The work shows that the use of the multipoint sequential 
water mist cooling systems at the die casting: 
- allows computer control of the casting process using a 

dedicated software for regulating the chill cooling rate and 
consequently the crystallization front and the quality of 
casting, 

- allows reduction of the casting total time from 200 s to 20 s 
and increase efficiency of casts manufacturing, 

- increases 3-times the boundary layer thickness decreasing 
therefore the segregation in the cast’s microstructure, 

- reduces the porosity and extends the refinement of silumin 
AlSi11 microstructure, in which the eutectic β phase 
precipitates are characterized by a compact composition 
with an average size ranging from 2 ÷ 3 microns, 

- increases by over 20% the mechanical properties of silumin 
AlSi11, which amount to: Rm = 222 MPa,  
R p0, 2 = 119 MPa, A5 = 2.6% and HB = 86, 
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