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On Bounds on Cumulative Teletraffic Using

Min-Plus Convolution
Andrzej Borys

Abstract—Ideas and results published in two papers by R. L.
Cruz in IEEE Transactions on Information Theory in 1991 gave
rise to what is called now network calculus. A key role in it plays
a certain inequality characterizing the behaviour of cumulative
traffic curves. It defines the so-called burstiness constraint by
which many kinds of traffics can be described, as for example
those occurring in computer networks. Interpretation of this
constraint, which can be expressed in two equivalent forms: with
and without the use of min-plus convolution, can be found in
papers of R. L. Cruz. Nothing however was said about how
to obtain it practically, for example, for each of representatives
of a family of measured cumulative traffic curves being upper-
bounded. This problem is tackled in this paper, and as a result,
a relation between the Cruz’s constraining function and an
upper-bounding function of measured traffic curves is found.
The relation obtained is quite general and valid also for the
case of non-fulfilment of the so-called sub-additivity property
by traffic curves. For the purpose of its derivation, a notion of
sub-additivity property with some tolerance ∆ was introduced,
and the corresponding theorem exploiting it formulated and
proved. Further, to complement discussion of the above relation,
a minimal burstiness constraint was added to the original Cruz’s
inequality and related with a lower bound of a family of measured
cumulative traffic curves. The derivations presented in this paper
are illustrated by examples.

Keywords—Network calculus, bounds on cumulative teletraffic
curve, min-plus convolution.

I. INTRODUCTION

IN a paper [1] by R. L. Cruz, a class of traffics was

defined that obey a certain burstiness constraint. It says

that the difference between the cumulative traffics taken at

any two time instants can not exceed the value of a certain

function calculated for the difference of the aforementioned

time instants. This function plays a role of an envelope

for the cumulative traffic curves of a class considered [2],

[3]. Moreover, the condition formulated can be expressed

equivalently with the use of the so-called min-plus convolution

[2], [4].

The ideas presented in two papers of Cruz [1], [5], published

in 1991, together with those presented by Parekh and Gallager

in [6], [7] two years later, turned out to be very fruitful.

Their powerfulness followed just from a simple means of

describing network traffic through the burstiness constraint

[1], [5] connected with an elegant means of expressing traffic

servicing with the use of the so-called service curve [6], [7].

After the pioneering works of Cruz, Parekh, and Gallager
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mentioned above, many articles appeared in the subsequent

years, in which their original methodologies were further

developed. This resulted in a number of new important theo-

retical outcomes, and in developing many new access control

and scheduling algorithms for network protocols.

To get some compact information about all these achieve-

ments, an interested reader is referred to two well-written

surveys [8], [9]. And after reading these tutorials, if one wishes

to acquire more detailed knowledge of the solutions developed,

she/he is advised to read the corresponding original papers,

which are exhaustively listed in the references sections of [8]

and [9].

A new branch of networking, which was meanwhile named

deterministic network calculus, rose in the first phase of de-

velopment of the theory and accompanying techniques having

their beginning in the papers of Cruz, Parekh, and Gallager.

Now, we know that the deterministic network calculus has

some important drawbacks, of which the most unpleasant are

too pessimistic guarantees it provides for delays, backlogs, and

other parameters. The detailed explanation and discussion of

these drawbacks can be found in surveys [8], [9]. Introduction

of stochastic processes to the purely deterministic network cal-

culus was a remedy for its aforementioned disadvantages and

led it into the second phase of development. This originated

in the so-called stochastic network calculus [9]. Nowadays,

the deterministic network calculus is viewed as a matured

theory, opposite to its complement, the stochastic one, of

which development is still not finished. However, on the other

hand, the fact of existence of a couple of textbooks on these

calculi witnesses a high level of maturity of both of them.

With respect to this, we mention a fundamental textbook by

Le Boudec and Thiran [2], covering almost all aspects of the

deterministic calculus theory. Further, note a textbook [10]

by Chang devoted partly to the former theory as well as to

the early approaches of the stochastic network calculus. And

finally, let us mention the third one [11], written by Jiang

and Liu, which deals with the problems of stochastic network

calculus.

The considerations presented in this paper, on bounds on

cumulative traffic using min-plus convolution, belong to the

area of deterministic network calculus. They witness the fact

that even in this so highly matured theory there still exist some

important problems not dealt with or opened.

For example, note that nothing was said in [1] about how

to relate Cruz’s burstiness constraint with an upper-bound

posed on a family of measured cumulative traffic curves. In

this paper, we show that each of the elements of the above

set of traffic curves can be characterized using the Cruz’s



316 A. BORYS

constraining function related directly with an upper-bounding

function of this set. The relation between the above functions

is quite general and valid also for the case of non-fulfilment

of the so-called sub-additivity property by traffic curves. To

derive it, a new property of sub-additivity with some tolerance

∆ was introduced here, and then an useful theorem exploiting

it formulated and proved. Moreover, to complement discussion

of the above relation, a minimal burstiness constraint was

added to the original Cruz’s inequality and related with a lower

bound of a family of measured cumulative traffic curves.

This paper is organized as follows. After brief presentation

of the problem considered and paper’s objective, we discuss

and present in detail in Section II mathematical formulation

of the problem. In the next section, the basic result is derived.

Further, Section IV presents the results illustrating how to get

the Cruz’s burstiness constraining function defined in [1] and

a complementing minimal one, defined here, for the simplest

means of bounding a set of measured cumulative traffic curves.

Concluding remarks are summarized in Section V.

II. PROBLEM FORMULATION

We say that a function f is wide-sense increasing if and only

if f(s) ≤ f(t) holds for all s ≤ t. Consider now the functions

possessing the above property and having, additionally, values

identically equal to zero for negative times (that is for t < 0).

Such the functions belong to a class of functions named in [2]

a F -class; in [4], they were called causal processes.

Let us now take into account the curves shown in Fig. 1.

We say that they belong to class F . However, as depicted in

in Fig. 1, they are, strictly saying, F -class functions for the

times t ≤ tmax, and not specified in the range t > tmax.

In Fig. 1, R(t) stands for a representative taken from a set

of cumulative traffics considered. These are such functions of

which values for the consecutive time instants denote numbers

of bits arrived at a teletraffic node in the period from time

instant 0 to time instant t. We will assume in what follows

that {R(t)} stands for a whole set of traffics considered, but

its element (traffic representative) is denoted as R(t). Further,

we will assume throughout this paper that the above set of

traffics is lower- and upper-bounded. That is for each of its

representatives the following holds: β(t) ≤ R(t) ≤ α(t) for

t

( )( )
ma

R tα⊗

R t( )

( )( )
mi

tR β⊗

R,
mi

R β⊗ ,
ma

R α⊗

0 tmax

Fig. 1. A representative of cumulative traffic R(t) and its minimal and
maximal bounding curves.

t ≤ tmax, where β(t) and α(t) are some bounding functions

(belonging to the F -class defined above).

Further, observe that other functions, different from β(t)
and α(t), are used in Fig. 1 for lower- and upper-bounding the

cumulative traffic representative R(t), namely, the following

ones: (R � βmi)(t) and (R � αma)(t), which are dependent

upon the form of R(t). They constitute its minimal and

maximal bounding curves, respectively. That is the following

inequality

(R � βmi)(t) ≤ R(t) ≤ (R � αma)(t) (1)

holds (pointwise) for each t taken from 〈0, tmax〉. The time

period 〈0, tmax〉 means here the time interval in which we

register (measure or/and observe) a given traffic with tmax

being the maximal time of traffic registration. Moreover, the

symbol � in (1) stands for the convolution operation in the

min-plus algebra. It is defined as [2], [4]

(R � βmi)(t) = inf
0≤s≤t

(R(s) + βmi(t− s)) (2)

where s represents an auxiliary time variable and inf means

performing the mathematical operation of finding infimum

value. Similarly, we calculate the convolution of the functions

R(t) and αma(t), and of course of any other two functions.

In (1), the functions βmi(t) and αma(t) are assumed to

be some functions (generally different from β(t) and α(t))
belonging to class F , which enable expressing the bounding

curves for the cumulative traffic function R(t) – belonging also

to class F – just in such a form that uses min-plus convolution.

As this assumption is not obvious, we will discuss it again, in

the next section.

It is worth noting that such the form of expressing bounding

functions as in (1), with the use of min-plus convolution, is

now popular in the literature on network calculus. Its original

form as it occurs, for example, in the paper of Cruz [1] looks

like

R(t)−R(s) ≤ αma(t− s) (3a)

and holds for every pair t, s ∈ 〈0, tmax〉 such that s ≤ t. This

inequality is equivalent to the right-hand side inequality in (1),

that is to

R(t) ≤ (R � αma)(t). (3b)

Inequalities (3a) and (3b) express equivalently the burstiness

constraint posed on the traffic R(t), by its characterization

through the function αma(t), named arrival curve in [2] or

envelope function in [3], [4]. Equivalence of the descriptions

(3a) and (3b) was shown in [2], [4]. Moreover, it was proved

in [2] that if we calculate the convolution of two functions

belonging to class F then the resulting one belongs to F , too.

We include in this paper the traffic lower-bounding inequal-

ity (see the left-hand side inequality in (1)) to complement

our theoretical considerations regarding (3b). In other words,

in our view, the traffic characterization by (1) is simply more

complete than that using exclusively (3b).

Observe also that description of the traffic representative

R(t) as sketched in Fig. 1 and expressed analytically by (1)

can be viewed as the operation of building a bounding pipe

around this traffic representative. Furthermore, note that the
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bounding pipes constructed in such a way – for different traffic

representatives R(t) – differ from each other.

Similarly, the traffic characterization by the following in-

equalities: β(t) ≤ R(t) ≤ α(t) valid for all time instants

t ≤ tmax and for all traffic representatives of a set of

traffics considered can be interpreted as a bounding pipe. Note,

however, that in this case we have to do with only a single pipe

for all the traffic representatives. Obviously, this is opposite to

the previous case.

Such the visualizations as described above will be helpful

in further considerations presented in this paper.

The main objective of this paper is to find relations between

the functions β(t) and α(t) (lower- and upperbounding a set

of considered cumulative traffics {R(t)}) and the functions

βmi(t) and αma(t) used in the corresponding bounding ex-

pressions on the left- and right-hand sides of (1) (for bounding

an element R(t) taken from the above set {R(t)}).

It was shown in [4] that δ(t) given by

δ(t) = 0 for t < 0 and ∞ for t ≥ 0 (4)

is an identity element of the convolution operation. That is it

fulfills the following identity: R� δ ≡ δ�R ≡ R [4] for any

function R ∈ F . If we use it in the obvious equality

R(t) = R(t) = R(t) (5a)

we get

(R � δ)(t) = R(t) = (R � δ)(t). (5b)

Comparison of (5b) with (1) allows us to write

αma = βmi = δ. This is a particular solution, which however

is by no means interesting and satisfying. We look for such

ones that are different from each other, and different also from

δ. In other words, we are interested in describing any real

traffic as visualized in Fig. 1.

Before beginning derivation of the relations which hold

between the functions β(t) and βmi, and similarly, between

α(t) and αma(t), consider an interesting problem of deter-

mination of the characteristic of an input traffic at a traffic

device (system) (in the form, for example, as given by (1))

under assumption of knowledge of its output characteristic

(given, for example, by its envelope) and the traffic device

(system) service curve. At this point, it is worth noting that

the answer to a similar problem in classical linear systems

theory is positive, opposite to the traffic devices (systems)

analyzed in this paper. In the former, the answer is unique

and expressed, in the frequency domain, by Fourier transform

of system output signal divided by system’s transmittance.

For analysis of the related problem with the use of network

calculus, consider Fig. 2 depicting a teletraffic device offering

a service curve B(t) [2], [4], [6]. It possesses one input, with

the cumulative traffic R(t) applied to it, and one output at

which the cumulative traffic R∗(t) is registered. The input

traffic is transferred to the device output according to a rule

determined by B(t). Furthermore, we assume that there exists

an envelope E(t) for the output traffic R∗(t), defined as shown

in (3a) or (3b) (where we put now R∗ instead of R and E
instead of αma, respectively). Using the definitions: of the

teletraffic device
offering a

service curve ( )B t

input

cumulative

traffic R(t)

output

cumulative

traffic R
*( )t

characterized by

an envelope ( )E t

Fig. 2. Teletraffic device with one input and one output.

service curve as given, for example, in [2], [4], [6] and of the

envelope [4], we can write the following

(R � B)(t) ≤ R∗(t) ≤ (R∗
� E)(t) (6)

for the teletraffic device of Fig. 2. (Simply in (6), the left-

hand side and right-hand side inequalities constitute the corre-

sponding definitions: of the service curve (defining the relation

between input R and output R∗ traffics) and of the envelope

of output traffic R∗, respectively.)

As the form of (6) resembles that of (1), we can ask now

whether it would be possible to get (1) from (6). To check this,

assume, quite formally, B(t) = βmi(t) and E(t) = αma(t) in

(6) and recall the causality condition

R∗(t) ≤ R(t) (7)

(which any causal traffic must obey). Taking into account (7)

in (6), for eliminating R∗, we arrive at

(R � βmi)(t) ≤ (R � αma)(t) (8a)

and

(R � βmi)(t) ≤ R(t). (8b)

Note that in getting (8a) a rule was used that if (7) holds

then R∗
� αma ≤ R � αma does, too. This rule was proved,

for example, in [2] (rule 10 on page 115 therein).

Comparison of inequalities (8a) and (8b) with those in (1)

shows that they are not the same (identical). So we conclude

that derivation of (1) from (6) is not possible.

Finally, we remark that as B = E holds for teletraffic

devices called greedy shapers [2], [12] or regulators with

causal subadditive envelope [4], this simplifies (8a) and (8b)

to (R�βmi)(t) = (R�αma)(t) ≤ R(t) – under the previous

assumption of βmi(t) = B(t) and αma(t) = E(t). However,

this result does not mean the equivalence with (1) because

there are still such times for which (R � αma)(t) < R(t),
what contradicts the right-hand side of (1).

III. DERIVATION OF (1)

In the derivation of (1) presented here, we restrict ourselves

to a subclass of functions β(t), βmi(t), α(t), αma(t), and

R(t), belonging to F , that are right-continuous. More-

over, our traffic observation (registration) time will be re-

stricted to an interval of finite length 〈0, tmax〉. Furthermore,

we will not consider times t < 0, for which obviously

β(t) = α(t) = R(t) = 0 holds, and we will not be interested
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α(t)
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Fig. 3. Cumulative traffic description with lower β(t) and upper α(t)
bounding functions for two cases: a) when R(0) 6= 0 and b) when R(0) = 0.

in times t > tmax, for which, we assume, the above func-

tions are not specified. Additionally, we will assume that the

functions β(t) and α(t) are continuous in the open interval

(0, tmax) (that is they are left- as well as right-continuous

in each point of this interval). However, we will allow that

they are only right-continuous at the point t = 0. In other

words, at this point, the functions β(t) and α(t) will be

eventually discontinuous. Furthermore, it will be assumed that

the function R(t) may be discontinuous at the point t = 0 and

at the points of the interval (0, tmax). However, the number of

such discontinuities of R(t) will be always finite.

This description as sketched above is illustrated in Fig. 3

by two typical situations which can occur: (a) when R(0) 6= 0
and (b) when R(0) = 0.

Complementing the above description and Fig. 3, observe

that the functions β(t), α(t), and R(t) possess only the

left-continuity property at the point tmax (or, in the case of

R(t), the continuity property may be even not specified). This

follows from two facts: that the functions β(t), α(t), and R(t)
are assumed to be not specified for times t > tmax, and that

their continuity and discontinuity properties for times t < tmax

are as stated above.

And finally at this point, we remark that the functions

derived from β(t), α(t), as βmi(t), αma(t), and βz(t), α∆(t),
(the latter two will be introduced in this section) inherit all the

properties of β(t), α(t) discussed above.

Now, observe that the way of bounding a family of cumu-

lative traffic curves as shown in Fig. 3 is the simplest one

because it uses segments of straight lines. This idea, of using

piece-wise linear curves, originates from the choices made for

envelope functions of simple regulators, see for example [4].

Of course, the usage of more sophisticated bounding functions

is possible in our approach.

The lower β(t) and upper α(t) bounding functions shown

in Fig. 3a have, analytically, the following form:

β(t) ⇒ β1(t) =







0 for t < 0
ρ

β1
t+ σ

β1
= ρ

β1
t for 0 ≤ t ≤ tmax

not specified for t > tmax

(9)

and

α(t) ⇒ α1(t) =







0 for t < 0
ρ

α1
t+ σ

α1
for 0 ≤ t ≤ tmax

not specified for t > tmax

(10)

where σβ1 = 0, ρα1 > ρβ1 > 0, and σα1 > 0 are constant

coefficients. Note that a special choice for β(t) in Fig. 3a was

made with the coefficient σβ1 equal to zero. Evidently, other

choices are also possible.

Similarly, for the case of Fig. 3b, we have

β(t) ⇒ β2(t) =







0 for t < 0
ρ

β2
t for 0 ≤ t ≤ tmax

not specified for t > tmax

(11)

and

α(t) ⇒ α2(t) =







0 for t < 0
ρ

α2
t for 0 ≤ t ≤ tmax

not specified for t > tmax

(12)

where, as before, ρα2 > ρβ2 > 0, mean some constant

coefficients. Moreover, in (9-12), the following notational

convention was applied: the functions β(t) and α(t) referring

to the cases depicted in Figs. 3a and 3b have the indices 1 and

2, respectively.

Fig. 3 shows that, independently of the case: a) or b), we

can express the relation between β(t), α(t) and R(t) as

β(t) ≤ R(t) ≤ α(t) for t ≤ tmax (13)

and assume it as “not specified” for times t > tmax. Moreover,

without loss of generality, we can consider further (13) only

for times restricted to the interval 〈0, tmax〉.
Let us now introduce in (13) auxiliary variables t′ and s,

assuming values from the interval 〈0, tmax〉, and related with

the variable t as follows

t = t′ − s ≥ 0. (14)

Applying (14) in (13) and renaming then, for simplicity of

notation, the auxiliary variable t′ as t gives

β(t− s) ≤ R(t− s) ≤ α(t− s) (15)

for t − s ≥ 0 and t, s ∈ 〈0, tmax〉. In the next step, adding

R(s) on both the sides of (15) and to the expression in the

middle in (15), we obtain

R(s)+β(t− s) ≤ R(s)+R(t− s) ≤ R(s)+α(t− s). (16)
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Assume now β(t) and α(t) in (16) so situated as in Fig. 3a,

with the additional property that R(0) = 0. Next, consider the

left-hand side inequality in (16). For this case, we can write

R(0) + βz(t) ≤ R(0) +R(t) = R(t) (17)

where βz is used for denoting β, occurring in (13), in a special

case when R(0) = 0 holds.

Furthermore, because of the assumed properties of the

functions β(t) and R(t), the following

lim
s→0+

(R(s) + β(t− s)) = R(0) + β(t) (18)

holds, where lims→0+ means the right-hand side limit at the

point s = 0. Using this, (17) and the definition of the infimum

operation, we can write

inf
0≤s≤t

(R(s) + βz(t− s)) ≤ lim
s→0+

(R(s) + βz(t− s)) =

= R(0) + βz(t) ≤ R(t). (19a)

That is, we obtain finally

inf
0≤s≤t

(R(s) + βz(t− s)) ≤ R(t) (19b)

or in a more compact form

(R � βz)(t) ≤ R(t) (19c)

valid for all the times t from the interval 〈0, tmax〉.
Observe that (19c) represents the left-hand side inequality

in (1) with βmi(t) = βz(t).
For the case of R(0) 6= 0, we get a similar result. To show

this, we will use the previous result (19b) for an auxiliary

traffic P (t) = R(t) − R(0) that fulfills the requirement of

P (0) = 0 and is lower-bounded by some βz(t) (that is

βz(t) ≤ P (t) holds). So substituting P (t) instead of R(t) in

(19b) gives

inf
0≤s≤t

(P (s) + βz(t− s)) ≤ P (t). (20a)

From (20a), using P (t) = R(t)−R(0) , we get

inf
0≤s≤t

(R(s)−R(0) + βz(t− s)) ≤ R(t)−R(0). (20b)

and moving the constant value R(0) outside the operation

infimum, we arrive finally at

inf
0≤s≤t

(R(s) + βz(t− s)) ≤ R(t). (20c)

Note now that (20c) is identical with (19b) and its equivalent

(19c). So, similarly as before, we conclude that (20c) repre-

sents the left-hand side inequality in (1) with βmi(t) = βz(t).
However, in opposite to the previous case, the function βz(t)
is not now, in general, the same function β(t) that was chosen

originally for bounding R(t) by writing (13). The following

sequence of inequalities explains the above fact

β(t) ≤ R(t) ⇒

βz(t) = β(t) −R(0) ≤ R(t)−R(0) = P (t). (21)

Note that the function βz(t) defined by (21) differs from

β(t) by a constant R(0). Observe also that this function

can eventually have negative values in some time interval

beginning at t = 0. On the other hand, we want such the

functions to be nonnegative as the traffic cumulative functions

are [2]. In the case considered, it is easy to fulfill this

requirement by choosing – instead of βz(t) defined in (21)

– the following function

βz(t) = [β −R(0)]+ (22)

where the symbol [x(t)]+ denotes the operation of finding

maximum value in the set {x(t), 0} for each time instant [9].

It can be easily shown that the function βz(t) given by (22)

fulfills the requirement: βz(t) ≤ P (t). Moreover, we have

βz(t) ≤ β(t) ≤ R(t). And this means, generally, that we

have to use in (20c) the traffic lower-bounding function that

is not so tight as that originally chosen in (13). However, we

draw the reader’s attention to the fact that it is possible to

choose β(t) in (13) in a way (not so tight) guaranteeing that

not only (13) is fulfilled, but also the following inequality:

β(t) ≤ R(t) − R(0) = P (t). Then, such the β can be also

treated as βz , and used in (20c).

Consider now the right-hand side of (16). Obviously, this

inequality results in R(t) ≤ α(t) for s = 0 and R(0) = 0,

however, it is not possible to draw the conclusion from it

that R(t) ≤ α(t) ≤ (R � α)(t). We must find another

way of showing that the right-hand side inequality in (1) can

be derived from the inequality R(t) ≤ α(t). As it will be

shown below, we achieve this by posing a certain condition

on the traffic cumulative function R(t); it is the property of

subadditivity [2], [4]. So, we require that R(t) fulfills the

following inequality

R(t) ≤ R(s) +R(t− s) (23)

for all the pairs t, s ∈ 〈0, tmax〉 such that s ≤ t.
Using (23) in (16) gives

R(t) ≤ R(s) +R(t− s) ≤ R(s) + α(t− s) (24a)

valid for all the times t ∈ 〈0, tmax〉 and with s changing for

a fixed t in the range 〈0, t〉. Therefore, we can write

R(t) ≤ inf
0≤s≤t

(R(s) + α(t− s)). (24b)

Moreover, similarly as the result (19c), (24b) can be also

written in a compact form as

R(t) ≤ (R � α)(t). (24c)

Observe that (24c) represents the right-hand side inequality

in (1) with αma(t) = α(t).
It can happen, however, that a given traffic is not subaddi-

tive, i.e. it does not satisfy (23). Nevertheless, as we show

here, it possesses always a property named “subadditivity

with tolerance ∆”. This property is formulated and proved

in Theorem 1 below.

Theorem 1: Let be a teletraffic characterized by a cumu-

lative traffic function that is a F -class function for the times

t ≤ tmax, and eventually not specified in the range t > tmax.

Further, let be this function bounded. That is R(t) ≤ M , with

M being a constant, holds for the times t ≤ tmax. Then, the

following

R(t) ≤ R(s) +R(t− s) + ∆∞ (25a)
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is valid for all the pairs t, s ∈ (−∞, tmax〉 such that s ≤ t.
Moreover, similarly in the case of a finite interval 〈0, tmax〉,
we have

R(t) ≤ R(s) +R(t− s) + ∆ (25b)

i.e. for all the pairs t, s ∈ 〈0, tmax〉 such that s ≤ t.
In (25a) and (25b), ∆∞ and ∆, respectively, are certain

constants that can be interpreted as tolerances posed on

fulfilment of the subadditivity requirement by R(t) in the

corresponding intervals defined above.

Proof: Let hold the following

R(t) ≥ R(s) +R(t− s) (26)

for some pairs t, s ∈ (−∞, tmax〉 such that s ≤ t. This means

that the value of the difference R(t) − R(s) − R(t − s) for

these pairs of t and s is greater than zero or equals zero. Let

us now take into account the bound for the greatest value of

the above difference, that is

sup
t,s∈(−∞,tmax〉,s≤t

(R(t)−R(s)−R(t− s)) = ∆∞ (27)

This bound is denoted in (27) as ∆∞. Moreover, it follows

from the boundness of the function R(t) for t ∈ (−∞, tmax〉
that ∆∞ always exists, is finite and nonnegative. Further, we

can write now

R(t)−R(s)−R(t− s) ≤ ∆∞ ⇒

R(t) ≤ R(s) +R(t− s) + ∆∞. (28)

Observe that the proof for a finite interval 〈0, tmax〉 goes

along the same lines as above, however, now with

∆ = sup
t,s∈〈0,tmax〉,s≤t

(R(t)−R(s)−R(t− s)) (29)

instead of ∆∞. Furthermore, the equivalent of (28) for the

finite interval 〈0, tmax〉 has the form

R(t) ≤ R(s) +R(t− s) + ∆ (30)

and this ends the proof.

Using (25b) in (16) gives

R(t)−∆ ≤ R(s) +R(t− s) ≤ R(s) + α(t− s) (31a)

and finally

R(t) ≤ R(s) + α(t− s) + ∆ (31b)

valid for all the times t ∈ 〈0, tmax〉 and with s changing for

a fixed t in the range 〈0, t〉. Hence, (31b) can be also put into

a more compact form using the min-plus convolution operation

as

R(t) ≤ (R � α)(t) + ∆ = (R � α∆)(t) (31c)

where the modified bounding function α∆(t) is given by

α∆(t) = α(t) + ∆. (31d)

Observe that (31c) represents the right-hand side inequality

in (1) with αma(t) = α∆(t).
Concluding this section, note that inequalities (20c) and

(31c) provide for the general case the corresponding bounding

functions related with those in (1). In this case, the functions

βmi(t) and αma(t) occurring in (1) are not identical with

the bounding functions β(t) and α(t) chosen in (13). The

latter ones must be then slightly modified to be used in (1).

As shown, the modifications are related with the existence of

the nonzero value of R(0) and the lack of fulfilment of the

subadditivity condition by R(t). Moreover, it was also shown

that, when R(0) = 0 and the function R(t) is subadditive,

there is no need for the aforementioned modifications.

Finally, it is worth noting that we needed to ask whether

R(0) was equal to zero or not in our considerations regarding

the left-hand side inequality in (1). In this case, however, we

did not need to ask whether R(t) fulfilled the subadditivity

condition or not. And the reverse took place in the consider-

ations regarding the right-hand side inequality in (1).

IV. DISCUSSION AND EXAMPLES

For illustration of the results derived in the previous section,

let us consider the curve of the cumulative traffic R(t)
sketched in Fig. 3a. We find the functions βmi(t) and αma(t)
for it for bounding in the sense of (1). As we already know

from Section III, the functions β(t) and α(t) depicted in

Fig. 3a and expressed analytically by (9) and (10) can not

be applied directly. They must be modified because of two

reasons: the discontinuity of R(t) at t = 0 and its presum-

able non-subadditivity. We begin with β(t), and observe that

according to (22), we have to apply now

βz1(t) = [β1(t)−R(0)]+ = [ρβ1t−R(0)]+ =

=

{

0 for 0 ≤ t ≤ R(0)/ρβ1
ρβ1t−R(0) for R(0)/ρβ1 ≤ t ≤ tmax

(32)

for the range 〈0, tmax〉. Finally, this gives βmi(t) = βz1(t).
It is really difficult to evaluate R(t), obtained for instance in

traffic measurements, whether it is subadditive or not. One way

of doing this is a skilful curve inspection that provides better

or worse estimates of the parameter ∆. We explain this point

on an example of R(t) sketched in Fig. 3a. Observing R(t)
in Fig. 3a and having in mind (29), we guess that the greatest

positive value of the difference R(t)−R(s)−R(t−s) occurs

when R(t) is taken from the second segment of the piecewise

linear curve describing the traffic in the range 〈0, tmax〉, but

at the same time, R(s) and R(t − s) lie in its first segment.

That is they lie before the occurrence of the discontinuity,

taking place, say, at time td. Let us denote the magnitude of

discontinuity at this time instant as σd; it equals

σd = R(td)− lim
t→t

−

d

R(t) (33)

where lim
t→t

−

d

means the left-hand side limit at the point t =

td. Moreover, denote the line slopes in the first and second

segments as a1 and a2, respectively. We observe in Fig. 3a

that a1 > a2.

Applying these notations, we can describe the lines of the

aforementioned curve pieces in the following way

R(s) = a1s+R(0) for 0 < s < td (34a)

R(t− s) = a1(t− s) +R(0) for 0 < t− s < td (34b)

R(t) = a2(t−td)+a1td+R(0)+σd for td ≤ t < 2td. (34c)
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Using then (34a-c) to express R(t) − R(s) − R(t − s), after

some algebraic manipulations, we get

R(t)−R(s)−R(t−s) = −(a1−a2)(t−td)+σd−R(0) (35)

valid for all 0 < s < td and td ≤ t < 2td. As a1−a2 > 0 and

t− td ≥ 0 hold, (35) assumes the largest value for t = td, and

equals σd − R(0). Fig. 3a shows that this value is positive,

witnessing for the non-subadditivity of the traffic curve R(t).
Furthermore, it is the value of the parameter ∆. Note however

that, generally, it is difficult to obtain an exact value of ∆
using our “inspection approach”. Nevertheless, we get a better

or worse estimate of ∆ in each case.

Using the above result and expressions (10) and (31d), we

obtain for α∆(t)

α∆1(t) = ρα1t+ σα1 + σd −R(0) (36)

in the example considered for the range 〈0, tmax〉, for upper-

bounding the traffic according to (31c). Finally, this gives

αma1(t) = α∆1(t).

Note that there are many possible choices for associating

bounding functions with the cumulative traffic curves. We will

now present another choice, a little bit different from that

discussed just before. To this end, assume that we have to do

with a cumulative traffic function R(t) for which R(0) 6= 0
holds. We associate with this traffic an auxiliary one, named

P (t), by calculation of P (t) = R(t)−R(0) for each t. Then,

we sketch the bounding functions as depicted in Fig. 3b with

R(t) replaced now by P (t). Denoting them as βz2(t) and

α2(t), we have the following descriptions

βz2(t) = ρβ2
(t) (37)

and

α2(t) = ρα2
(t) (38)

in the range 〈0, tmax〉; their descriptions in two other intervals:

(−∞, 0) and (tmax,∞) are the same as the previous ones

(compare (9) with (11) and (10) with (12)).

Observe now that because P (t) fulfills the requirement

P (0) = 0, we can use the previous result (20a). That is the

following

inf
0≤s≤t

(P (s) + βz2(t− s)) ≤ P (t) (39)

holds in the case considered. Adding afterwards R(0) on both

sides of inequality (39), we get

inf
0≤s≤t

(P (s) + βz2(t− s)) +R(0) ≤ P (t) +R(0). (40a)

Further, using the fact that addition of a constant after per-

forming the infimum operation gives the same result as in the

case of adding it to the expression inside this operation, and

observing that P (t) +R(0) = R(t), we obtain from (40a)

inf
0≤s≤t

(R(s) + βz2(t− s)) ≤ R(t). (40b)

We remark that (40b) is identical with (20c), however, in this

case, it uses another form of the bounding function βz(t).
Consider now the upper-bounding of the traffic P (t). And

we begin with remark that if an original traffic R(t) is

subadditive then auxiliary one P (t) = R(t) − R(0) is not.

To show this, take into account R(t) being subadditive, what

means that (23) holds. Subtracting R(0) on both sides of (23)

allows us to rewrite it as

R(t)−R(0) ≤ R(s)−R(0)+R(t−s)−R(0)+R(0). (41a)

Introducing afterwards P (t) = R(t)−R(0) in (41a) gives

P (t) ≤ P (s) + P (t− s) +R(0). (41b)

Comparison of (41b) with (25b) shows that the traffic P (t) is

subadditive with the tolerance ∆P = R(0). So in this case,

for upper-bounding the traffic P (t), we must use (31c) (with

R(t) therein replaced now with P (t)) and with the function

α∆(t) having the form

α∆2(t) = α2(t) +R(0) = ρα2t+R(0). (42)

Note that in derivation of (42) expressions (31d) and (38) were

used.

To get the upper bound for the original traffic R(t), we

substitute P (t) = R(t)−R(0) and α∆2(t) given by (42) into

(31c), as described above. This gives

R(t)−R(0) ≤ ((R(·) −R(0)) � (α2(·) +R(0)))(t). (43a)

Using the definition of the min-plus convolution (2), it is easy

to show that the following

((R(·)−R(0)) � (α2(·) +R(0)))(t) = (R � α2)(t) (43b)

holds. Applying this in (43a) and rearranging the expressions,

we arrive finally at

R(t) ≤ (R � α2)(t) +R(0) = (R � α∆2)(t). (43c)

Comparing (43c) with (24c), we observe that the function

α∆2(t) = ρα2(t) + R(0) plays now a role of the function

α1(t) = ρα1t+ σα1 used in the first scheme of bounding the

traffic R(t) – as depicted in Fig. 3a. Hence, we can assume

for the parameters ρα1 and σα1 the following values: ρα2 and

R(0), respectively. Further, note that the number of possible

choices of ρα1 and σα1 is infinite. However, in each of them,

the following condition: ρα1 ≥ R(0) will be fulfilled, as this

example and Fig. 3a show.

Consider now the case of the traffic R(t) that is subadditive

with tolerance, say, ∆R > 0. The value of this tolerance is

given by (29). Adding and subtracting 2R(0) on the right-

hand side of (29), and reordering afterwards the expressions,

we get

∆R = sup
t,s∈〈0,tmax〉,s≤t

(R(t)−R(0)− (R(s)−R(0))−

−(R(t− s)−R(0)))−R(0). (44)

Introducing then the auxiliary traffic P (t) = R(t) − R(0) in

(44), we obtain

sup
t,s∈〈0,tmax〉,s≤t

(P (t)−P (s)−P (t− s)) = ∆R +R(0) = ∆P

(45)

for this traffic, with ∆P meaning its tolerance in fulfilling the

subadditivity condition.
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Proceeding analogously as before in the case of P (t) having

the tolerance ∆P = R(0), see the results shown in expressions

from (42) to (43c), we get now the equivalents of (42) and

(43c) as

α∆R2(t) = α2(t) + ∆R +R(0) = ρα2t+∆R +R(0) (46)

and

R(t) ≤ (R � α2)(t) + ∆R +R(0) = (R � α∆R2)(t) (47)

respectively. Note further that conclusions we can draw from

(46) and (47) are similar to those presented above for the

previous case.

V. CONCLUDING REMARKS

The problem of lower and upper bounding of the function

of cumulative traffic with the use of min-plus convolution

operation has been considered in this paper. It has been shown

how to get such the bounds from the bounding functions

posed on a family of cumulative traffic curves obtained,

for example, by performing traffic measurements. We have

explained how the function used in construction of the min-

plus convolution lower bound is influenced by the traffic’s

nonzero value at time t = 0 (the initial value). Moreover, we

have shown the influence of the fact of not possessing the

property of subadditivity on the form of the function used in

construction of the traffic’s min-plus convolution upper bound.

For each of the cases mentioned, an expression determining

the needed modification has been derived. Moreover, a very

useful property of subbaditivity with the tolerance ∆ has been

defined and used in derivations.
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