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Abstract 
 
The study presents a mathematical model of the crystallisation of nodular graphite cast iron. The proposed model is based on micro- and 
macromodels, in which heat flow is analysed at the macro level, while micro level is used for modelling of the diffusion of elements. The 
use of elementary diffusion field in the shape of an averaged Voronoi polyhedron [AVP] was proposed. To determine the geometry of the 
averaged Voronoi polyhedron, Kolmogorov statistical theory of crystallisation was applied. The principles of a differential mathematical 
formulation of this problem were discussed. Application of AVP geometry allows taking into account the reduced volume fraction of the 
peripheral areas of equiaxial grains by random contacts between adjacent grains. 
As a result of the simulation, the cooling curves were plotted, and the movement of "graphite-austenite" and "austenite-liquid” phase 
boundaries was examined. Data on the microsegregation of carbon in the cross-section of an austenite layer in eutectic grains were 
obtained. Calculations were performed for different particle densities and different wall thicknesses. The calculation results were 
compared with experimental data. 
 
Keywords: Cast iron with nodular graphite, Modelling, Averaged Voronoi polyhedron  
 
 
 

1. Introduction 
 
Because of its outstanding mechanical and casting properties, 

the nodular graphite cast iron is a very important material used in 
industry [1]. The properties of this cast iron result mainly from the 
microstructure that is formed during crystallisation. One of the 
important parameters affecting the microstructure is the graphite 
nodules size and count. It affects  the kinetics of phase 
transformations during crystallisation and cooling, and also during 
the process of the possible heat treatment of castings. 

Recently, a significant increase of the interest in thin-walled 
castings made of nodular graphite cast iron has been observed [2]. 
Castings made of this material not only have a low weight, but 
also very good mechanical properties [3-5]. For this reason, 
nodular graphite cast iron continues being the object of studies 
using different mathematical models, the main task of which is 
the best approximation of processes that occur during 
crystallisation of this alloy [6-10]. 

The number of mathematical models allowing the simulation 
of solidification process in a foundry mould has grown quite 
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considerably. Due to the continuous increase of computing power, 
today's models are not limited only to the description of heat flow 
in a casting-mould system, using the Fourier-Kirchhoff equation 
(macromodels) [11], but also allow modelling of, among others, 
microstructure and segregation of alloying elements (micro-macro 
models) [12-14]. This is very important for thin-walled castings, 
as the short cooling time prevailing in such objects does not allow 
the chemical composition to become homogeneous within the 
crystallised austenite grains. 

The subject and aim of this study is to create a mathematical 
model describing the field of carbon concentration in an 
aspherical elementary diffusion field (EDF) during the 
crystallisation of eutectic nodular graphite cast iron and after its 
solidification. The model assumes that as a result of random 
contacts between the eutectic grains growing around the 
individual nodules of graphite, EDF has an aspherical shape. 

To determine the geometry of a three-dimensional EDF, the 
principles of the statistical theory of crystallisation have been 
used in this study [15]. 

 
 

2. Model of nodular graphite cast iron 
crystallisation  
 
 
2.1. Heat flow  
 

To determine the cooling rate of a thin-walled casting poured 
in sand mould, Fourier equation was applied: 

 

( ) TqTTc +∇λ∇=
τ∂

∂  (1) 

 
where: T - temperature, τ - time, λ - thermal conductivity, c - 
specific heat, qT - function of heat source (the intensity of the 
evolution of the latent heat of crystallisation). 

To solve equation (1), the finite difference method (FDM) 
was used, allowing for the one-dimensional heat flow. The heat 
source function takes values different from zero only in the 
casting, which confers to equation (1) a non-linear character. To 
determine its value, the following relationship was used: 

 

τ∂
∂

=
fLqT

 (2) 

 
where: L – the volumetric heat of phase transformations, ∂ f - the 
speed of increase of the solidified phase content in a time step. 
The numerical calculations neglected the temperature 
variations in the thin-walled casting cross-section (using 
appropriate step of FDM in the casting), but included the 
heat flow resistance  at the “casting-mould” phase 
boundary. 
 
 
 

2.2. Diffusion 
 

Currently, only carbon diffusion is analysed in the model. The 
concentration field of this element is determined in the austenite 
envelope surrounding the nodule of graphite and in the liquid 
matrix using the following equation: 

 

( )( )CgradDdivC
f ⋅=

τ∂
∂  (3) 

 
where: D - diffusion coefficient, C – carbon concentration in a 
given phase. 

As an initial condition for the modelling it has been assumed 
that, according to the stoichiometric composition of the eutectic, 
in the middle of an EDF filled with the liquid phase there is a 
graphite nodule of a 1.0 μm radius surrounded by the austenite 
envelope 1.4 μm thick [16]. Equation (3) is solved separately for 
the austenite envelope and for the liquid, adopting the following 
conditions determined from the Fe-C phase equilibrium diagram: 

 
- concentration in austenite at the graphite phase boundary: 
 

25
/ 108036542.1103658.3 −−

γ ⋅−⋅= TC gr  (4) 
 
- concentration in austenite at the liquid phase boundary: 
 

25
/ 10141414.8102525254.5 −−

γ ⋅+⋅−= TC L  (5) 
 
- concentration in liquid at the austenite phase boundary: 
 

15
/ 105663161108814239 --

L .T.-C ⋅+⋅=γ  (6) 
 

On the external EDF border, an adiabatic boundary condition 
was assumed.  
 
 
2.3. Differential approximation and EDF 
geometry – averaged Voronoi polyhedron  
 

For a description of polycrystalline structures in 
computational tasks, Voronoi polyhedrons are often used. To a 
system of "nuclei" of an arbitrary spatial distribution respective of 
the polyhedron (i.e. the grain) related with this system shall 
belong all the space points that lie closer to this "nucleus" than to 
any other. The walls of this polyhedron are fragments of planes 
perpendicular to the segments joining the "nuclei" and dividing 
these segments into two equal parts. The specific shape and 
volume of this polyhedron, as well as the number of faces and 
edges depend on the distribution of the nearest neighbouring  
"nuclei". Structure of this type is formed in the case of an 
immediate nucleation of the grains and their spherical growth at 
an equal rate. In this study, to solve equation (3), the elementary 
balance method was used. Numerical calculations were performed 
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for the area of an averaged Voronoi cell. The method to determine 
the geometry of EDF and equations used in the solution are 
shown below. 

In the modelling it has been assumed that within the area of 
EDF, at any arbitrary time instant, carbon concentration can be 
described as a product of two functions: 

 
( ) ( ) ( )τθ⋅=τ rfrC ,  (7) 

 
It means that the diffusion fluxes in EDF are directed radially 

with respect to the centre, while the side flux is neglected. A zero 
diffusion flux through the Voronoi cell boundary was also 
adopted. 

According to [15], in the case of an immediate nucleation of 
the n grains present in a unit volume and their spherical growth at 
the same (not necessarily constant) speed, the volume of the 
material at a maximum distance r from the nucleation site can be 
determined by the following equation: 

 

( ) 













 π−−= 3

3
4exp11 nr

n
rV  (8) 

 
The field of the surface separating the area V(r) from the 

material more remote from the nucleation site is: 
  
 

( ) ( )






 π−⋅π== 32

3
4exp4 nrr

dr
rdVrF  (9) 

 
The volume of the material area whose distance from the 

nucleation site is comprised in the range from r to (r + Δr) can be 
computed as: 

  
 

( ) ( )












 ∆+π−−






 π−=∆∆ 33

3
4exp

3
4exp1, rrnnr

n
rrV  (10) 

 
or for Δr << r: 
 

( ) 





 π−∆π≈∆∆ 32

3
4exp4, nrrrrrV  (11) 

 
In this case, the difference equation for the elementary 

balance method can be written as: 
 

( ) ( ) ( ) ( ) ( )[ ] ( )
( ) ( )[ ] ( )222

1111
,,,

rFrCgradrD

rFrCgradrDrCrCrrV

⋅⋅−

−⋅⋅=
τ∆

τ−τ∆+τ
⋅∆∆  (12) 

 
where: D(r) – average diffusion coefficient of material in a layer 
of EDF; r2 = r1 + Δr, r = (r1+r2)/2.  
 

If the concentration gradient is approximated with the central 
differential quotient and the explicit scheme is used, then in the 
case of constant grid step Δr the concentration in the i area of an 
elementary balance can be computed as: 

 

( ) ( ) ( ) ( ) ( )τ+τ+τ⋅−−=τ∆+τ +− 111 iiiiiiii CBCACBAC  (13) 

 
where:  
 

( ) ( )
( ) rrrV

rFrDA
i

ii
i ∆⋅∆∆

τ∆⋅⋅
=

,
, ( ) ( )

( ) rrrV
rrFrrDB

i

ii
i ∆⋅∆∆

τ∆⋅∆+⋅∆+
=

,
 (14) 

 
It has been assumed that the i area is located within the 

distance range of  ri to ri+Δr from the centre of EDF. 
The Voronoi polyhedron is convex but not necessarily 

bounded [17].  From equation (8) it follows that the fraction of the 
EDF space distant from the centre by a value exceeding Rm is: 

 

( ) 





 π−= 3

3
4exp MM nRRf  (15) 

 
Assuming a small value of this fraction, further called the 

rounding constant, the EDF radius for which the calculations are 
to be performed can now be determined: 

  
 

3

4
ln3

n
fRM π

−=  (16) 

 
According to [13],  f = 1·10-3 has been adopted. 
 
 
2.4. Phase boundaries 
 

The calculations were performed on a differential grid with 
constant space step (with the exception of boundary elements in 
areas adjacent to the phase boundaries). In boundary elements, 
along the sections EDF with a length of 2Δr involving the 
interfaces between adjacent phases, a variable spatial step has 
been used with the interface between adjacent balance elements  
overlapping the phase boundary. The width of the boundary 
elements varies in the range from 0.5·Δr to 1.5·Δr. When this 
range is exceeded, the calculation grid is subjected to local 
modifications to move the boundary elements, while preserving 
the mass balance of constituents. 

The speed of the "graphite-austenite" and "austenite-liquid" 
phase boundaries migration is determined from the mass balance 
at interfaces: 

 

( )
+

γ
γγγγγ ρ−=ρ−ρ

grr
grgrgrgr dr

dC
DCCu

 (17) 
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( )
−−

γγ
γγγγγγ ρ−ρ=ρ−ρ

grgr r
LL

r
LLLL dr

dC
D

dr
dC

DCCu  (18) 

where: uγ/gr – the migration speed of the „austenite-graphite” 
interface (the graphite growth rate); uL/γ – the migration speed of 
the „austenite-liquid” interface (the eutectic grain growth rate). 
 
 

3. Modelling conditions 
 

Calculations were performed for cast plates 3 and 5 mm  
thick, poured in sand moulds. 

The thermophysical parameters used in modelling are shown 
in Table 1. The initial temperature was 1595 K and 298 K for the 
metal and mould, respectively.  

 
Table 1.  
The thermophysical parameters used in modelling  

Thermal conductivity: W/(m⋅K)  Reference 
– liquid  λL  30 [19] 
– austenite  λγ  20 [20] 
–graphite λgr  20 [20] 
Carbon diffusion coefficient in: m2/s  
– liquid DL  1.25⋅10-9 [21] 
Enthalpy of phase transformations: J/m3  
– liquid into austenite  ΔHL→γ  19.71⋅108 [20] 
– liquid into graphite  ΔHL→gr  16.16⋅105  
– austenite into graphite  ΔHγ→gr  8.8⋅105  
Specific heat: J/(m3⋅K)  
– liquid  cv,L  5.6⋅106 [20] 
– austenite  cv,γ  5.84⋅106 [19] 
–graphite cv,gr  17.84⋅105 [20] 
Density: kg/m3  
– liquid  ρL  7⋅103 [22] 
– austenite  ργ  7.3⋅103 [19] 
–graphite ρgr  2.23⋅103 [20] 

 
The initial carbon content in the liquid phase of an Fe-C alloy  

amounted to 0.0426 of the weight fraction. In the calculations of  
carbon diffusion, a spatial grid step of 1 µm was used. 

The value of the diffusion coefficient in austenite was adopted 
as a variable in function of temperature according to [18]: 

 









⋅
⋅

−⋅= −

TR
D

5
2 102.1exp1067.1γ

 (19) 

 
where: R = 8.3144621 J/(mole·K), T – absolute temperature, K. 

 
Table 2 shows the dimensions of EDF used in the simulation, 

based on the number of grains calculated in accordance with (16). 
The model assumed an instantaneous nucleation of eutectic 
grains. Calculations were performed for the number of grains 
obtained in experimental castings, and for two close values (see 
Table 2). 

Table 2. 
Radii of the elementary diffusion field  

Casting thickness, 
mm Grain density, m-3 EPD radius, µm 

3 
5·1014 18 

9.7·1014 15 
1·1015 14 

5 
1·1013 65 

3.8·1014 42 
1·1014 31 

 
 
4. Results of modelling 
 

Figure 1 compares the cooling curves obtained by modelling 
with the curve obtained experimentally for castings of two wall 
thicknesses.  
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Fig. 1. Fragments of the casting cooling curves. The results of 
simulation obtained for the following eutectic grain densities: 
casting wall thickness: 3 mm: 1 - n=1015, 2 - n=9.7·1014, 3 - 
n=5·1014 m-3; casting wall thickness: 5 mm: 1 - n=1014, 2 - 

n=3.8·1013, 3 - 1013 m-3; 4 – the result of measurement. 
 
Changes in the distance of the "graphite-austenite" and 

"austenite-liquid" phase boundaries from the centre of eutectic 
grain are shown in Figure 2, while Figure 3 shows an increase in 
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the volume fraction of graphite and austenite. As can be seen from 
these figures, the increasing speed of migration of the "austenite-
liquid" phase boundary before the end of solidification does not 
increase the speed of volume changes. 

The heterogeneity of carbon concentration in the cross-section 
of an austenite layer in the EDF at the end of crystallisation is 
shown in Figure 4. The heterogeneity of chemical composition of 
the metal matrix has an impact on the course of phase 
transformations in solid state and on the formation of final 
microstructure in  casting. 
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Fig. 2. Changes in the position of „graphite-austenite” (Gr) and 
„austenite-liquid” (γ) phase boundaries in castings with the wall 

thickness of 3 mm (the densities of eutectic grains: 1 - n=1015, 2 - 
n=9.7·1014, 3 - n=5·1014 m-3) and 5 mm (the densities of eutectic 

grains: 1 - n=1014, 2 - n=3.8·1013, 3 - 1013 m-3) – the results of 
simulation 

 
The known mathematical models of diffusion fields in a 

eutectic grain of the nodular graphite cast iron assume a spherical 
symmetry of EDF [23]. In this field, the volume fraction of metal 
matrix increases with increasing distance from the graphite grain. 

For an averaged Voronoi cell, the probability that a random 
point in the structure of eutectic grain will be located at a distance 

from the nucleus centre smaller than r is described with a 
cumulative  distribution function: 

 

( ) 





 π−−= 3

3
4exp1 nrrP  (20) 

 
The probability density function  

 

( ) 





 π−⋅π= 32

3
4exp4 nrnrrp  (21) 

 
has its maximum at the point 
 

( ) 312 −π= nRVP
 (22) 

 
The value of RVP can be called a characteristic radius of the 

averaged Voronoi polyhedron. Among the random points selected 
in the sample volume composed of Voronoi polyhedra, the points 
located at a distance RVP from the nucleus centre will occur at 
maximum frequency. In addition, according to (21), at a  distance 
from the nucleus centre not exceeding the value of RVP will be 
located 48.7% of the grains volume, while the fraction of an area 
lying at a distance larger than 2·RVP from the centre will amount 
to less than 0.5%. These values for the examined density of grains 
are summarised in Table 3. 

Theoretically, in a Voronoi cell, the maximum distance of a 
point from the centre is not limited [17], but according to (22), the 
probability of occurrence of the areas where this distance would 
increase to a value above 2·RVP  rapidly decreases to zero. 

Carbon concentration changing along the radius of an 
austenite envelope after the end of crystallisation is shown in 
Figure 5. In this figure, concentrations are indicated at points 
located at a distance of one and two characteristic radii from the 
centre of the grain. The concentration of carbon higher than at the 
point distant by 2·RVP from the grain centre may occur in less than 
0.5% of the alloy volume and, according to equation (22), with 
increasing concentration the probability of its occurrence rapidly 
decreases. 
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Fig. 3. Changes in the volume fraction of graphite (Gr) and  
austenite (γ) in castings with the wall thickness of 3 mm (the 

densities of eutectic grains: 1 - n=1015, 2 - n=9.7·1014, 3 - 
n=5·1014 m-3) and 5 mm (the densities of eutectic grains: 1 - 

n=1014, 2 - n=3.8·1013, 3 - 1013 m-3) – the results of simulation 
 

 
Table 3.  
Characteristic radii of the averaged Voronoi polyhedrons 

Grain density, m-3 RVP, μm 2·RVP, μm 

1013 25,1 50,3 

3.8·1013 16,1 32,2 

1·1014 11.7 22.4 
5·1014 6.8 13.6 

9.7·1014 5,5 11.0 

1015 5,4 10,8 
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Fig. 4. Changes of carbon concentration in austenite along the 
EDF radius in castings with the wall thickness of 3 mm (the 
densities of eutectic grains: 1 - n=1015, 2 - n=9.7·1014, 3 - 

n=5·1014 m-3) and 5 mm (the densities of eutectic grains: 1 - 
n=1014, 2 - n=3.8·1013, 3 - 1013 m-3); ▲– the concentration at a 
distance RVP from the grain centre, ■ – the concentration at a 

distance 2·RVP from the grain centre 
 
 

5. Conclusions 
 

A mathematical model of carbon diffusion in a eutectic grain 
during the crystallisation of nodular graphite cast iron was 
developed. As a geometry of the elementary diffusion field, an  
averaged Voronoi cell was adopted. 

The solidification of eutectic cast iron with nodular graphite 
in castings with the walls of 3 and 5 mm thickness was simulated. 
The cooling curves were obtained which are qualitatively 
consistent with the typical cooling curves plotted for thin-walled 
castings made from the nodular graphite cast iron. 

The distribution of carbon concentration values in an austenite 
envelope along the eutectic grain radius was disclosed. 
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