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Abstract 
 

The problem considered in the paper is motivated by production planning in a foundry equipped with a furnace and a casting line, 
which provides a variety of castings in various grades of cast iron/steel for a large number of customers. The goal is to create the order of 
the melted metal loads to prevent delays in delivery of goods to customers. This problem is generally considered as a lot-sizing and 
scheduling problem. However, contrary to the classic approach, we assumed the fuzzy nature of the demand set for a given day. The paper 
describes a genetic algorithm adapted to take into account the fuzzy parameters of simultaneous grouping and scheduling tasks and 
presents the results achieved by the algorithm for example test problem.  
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1. Introduction 
 
The main goal of an efficient production planning is to 

correctly distribute production tasks in the periods of time while 
taking into account customer needs and economic factors. A 
common way to support a production management is to use 
hierarchical information systems built on the basis of different 
decision support tools integrated with a common database.  

As production planning and scheduling is the key factor of 
companies’ success, it is necessary to develop new methods and 
algorithms solving such problems. Appropriate tool for planning 
and scheduling can become a link between management, 
marketing, production process, inventory management, logistics, 
distribution and technology. One of the newest approaches to 
solve scheduling problems is the application of fuzzy sets that 
belong to Computational Intelligence (CI) tools. Intelligent 
planning and scheduling allows the enterprise to be less sensitive 
to the changes in demand and its structure, to shorten the 

production cycles, to decrease inventory levels and 
simultaneously to keep a high level of service.  

A short-term planning problem in foundries is especially 
complex, because production processes are of a continuous-
discrete type. Their production programs are characterized by a 
very high level of quality requirements for particular products and 
simultaneously a large number of relatively small orders. In order 
to solve such problem a lot sizing model with additional 
technological constraints related to the casting production process 
is commonly used. 

Lot sizing with fuzzy parameters has been rather rarely 
studied in the literature, especially when compared to the shop 
scheduling problems. Yan et al. [8] examined lot sizing 
production planning problem with profits, customer demands and 
production capacity characterized by fuzzy variables with 
trapezoidal membership functions. To solve the problem they 
proposed standard genetic algorithm hybridized with fuzzy 
simulation. Rezaei and Davoodi [5] studied a lot-sizing problem 
with supplier selection under fuzzy demand and costs (price, 
transaction cost and holding cost) with triangular membership 
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functions. Also in this case a standard genetic algorithm was used 
to determine upper and lower bound for production quantities. 
Most recently Sahebjamnia and Torabi [6] considered a multi-
level capacitated lot sizing problem with uncertain setup, holding, 
and backorder costs expressed as a fuzzy numbers with 
trapezoidal membership functions. They proposed a heuristic in 
which uncertain constraints as well as imprecise objective 
functions are converted into the crisp values by using the expected 
interval and value of the ill-known parameters, respectively. Then 
they solved such problem using a standard branch and bound 
solver. 

The aim of this paper is to present the effective genetic 
algorithm for production planning and scheduling in the single 
furnace-single casting line system, when some parameters are of 
fuzzy nature. Section 2 provides a mixed integer programming 
(MIP) model for this problem. In Section 3, the details of 
proposed heuristic are given. The computational experiments are 
described in Section 4, and finally, the conclusions are drawn in 
Section 5. 
 
 
2. Fuzzy lot-sizing and scheduling  

model 
 

The MIP model presented in this section is an extension of 
Araujo et al. [1] lot sizing and scheduling model for automated 
foundry. The extended model takes into account the assumption 
that the demands can be sometimes expressed as fuzzy numbers. 
The fuzziness of the demand may originate mainly in faulty 
castings. 

We use the following notation: 
Indices 
i=1,…,I - produced items; k=1,…,K - produced alloys 
t=1,…,T - working days; n=1,…,N - sub-periods 
Parameters 

itd – fuzzy demand for item i in day t; wi - weight of item i 
ai

k = 1, if item i is produced from alloy k, otherwise 0 
s - setup penalty; C - loading capacity of the furnace 
hit

–, hit
+ - penalty for delaying (–) and storing (+) production of 

item i in day t 
Variables 

,it itI I− + 
- fuzzy number of items i delayed (–) and stored (+) at the 

end of day t 
zn

k = 1, if there is a setup (resulting from a change) of alloy k in 
sub-period n, otherwise 0 
yn

k = 1, if alloy k is produced in n in sub-period, otherwise 0 
xin - number of items i produced in sub-period n. 

Production planning problem is defined as follows: 
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The goal (1) is to find a schedule that minimizes the sum of 
the costs of delayed production, storage costs of finished goods 
and the setup cost, if the alloy is changed during furnace load. As 
the numbers of stored and delayed products are expressed as 
fuzzy numbers the objective function is also expressed in a fuzzy 
way. 

Equation (2) balances fuzzy inventories, delays and the 
volume of production of each item in each period. Constraint (3) 
ensures that the furnace capacity is not exceeded in single load. 
Constraint (4) sets variable zn

k to 1, if there is a change in alloys in 
the subsequent periods, while constraint (5) ensures that only one 
alloy is produced in each sub-period. Variable xit is an integer 

number, while variables ,it itI I− + 
are fuzzy variables. 

 
 

3. Solution heuristic 
 

Genetic algorithms (GA) have been successfully applied to a 
wide range of lot-sizing problems, including some fuzzy lot-
sizing problems described in Section 1. An extensive review of 
another genetic algorithms applications to solve the lot-sizing 
problem can be found in [4]. As we underlined earlier, most of the 
authors have used a standard version of genetic algorithm with 
some modifications that tailor the algorithm to the specific of the 
lot-sizing problem. In [3] we have presented three different 
strategies on how to represent a schedule for a foundry as a 
chromosome. Later [7] we have focused on the most efficient one 
regarding the memory complexity.  

 
i 1 2 3 4 5 6 7 8 9 10 

x1i 9 97 6 20 32 49 30 89 10 34 

x2 i 50 3 66 28 64 28 62 16 43 73 

x3 i 33 35 61 81 15 41 13 36 4 27 

o1 i 3 8 5 6 1 9 1 9 3 7 

o2 i 4 6 3 8 2 10 3 8 1 10 

o3 i 2 9 2 10 4 7 5 7 4 6 

a i 1 2 1 2 1 2 1 2 1 2 
Fig. 1. Solution representation used in proposed GA 

 
In the representation that is shown in Figure 1 the vector 

coding the solution consists of three parts (segments in a 
chromosome): vectors x representing the quantity of items that are 
produced in a given subperiod, vectors o representing the orders’ 
numbers of the produced items, and vector a representing alloy 
type that is produced in this subperiod. Such representation 
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enables for a direct application of the standard one-point 
crossover, however mutation operators require the application of 
special approach. We defined three different mutation operators: a 
mutation operating on items that adds or subtracts value of 1.0 in 
a randomly chosen  element of a vector x, a mutation that operates 
on orders and changes the order number in a randomly chosen 
element of vector o to another order produced from the same 
alloy, and finally a mutation that operates on alloy and changes 
alloy type in a randomly chosen element of vector a. Different 
mutations allow the genetic algorithm for a very precise 
exploitation of the solution space. The outline of the algorithm is 
shown in Figure 2. 

 

 
Fig. 2. Outline of genetic algorithm used in experiments. 

The above representation of solutions can be used also for the 
fuzzified version of the lot-sizing problem in a foundry. The only 
problem is how to evaluate the objective function expressed in a 
fuzzy way. There are many approaches that can be used to solve 
this problem, including probabilistic, ranging and centroid ones 
[2]. We have chosen the method basing on deffuzification, as it is 
the fastest and easy to implement. In the experiments described in 
the following section we will express demand as fuzzy numbers 
with a triangular membership function. Thus we will use the 
following formula for the deffuzification of the objective 
function: 

4
6A

a b cM + +
=

 
(7) 

where: 

( , , )A a b c= is a fuzzy function and its membership function is 
expressed as: 

,

( ) ,

0,
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c xx if b x c
c b
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In the genetic algorithm we have used a binary tournament in 
order to select solutions to a new population. Thus we first have 
to defuzzify two objective functions and on that basis we choose 
the better of the two solutions.  
 
 
 

4. Computational experiments 
 
 
4.1. Test problems 

 
Experiments have been conducted using similar procedure 

that has been described by de Araujo [1]. However, this time 
demand has been fuzzified for some part of orders. In order to 
demonstrate the use of fuzzy parameters we considered one 
planning problem with 50 items made from 10 different alloys. 
Five different sets of experiments have been conducted, in each 
different number of orders has been fuzzified. In the first variant 
demand was crisp for all orders. For the remaining ones, the 
demand was fuzzified by 5%, 10% and 20%, respectively. The 
characteristic of the problem is given in Table 1.  

The values for demand, weight and delaying cost were 
determined using uniform distribution within a given range. For 
the variants in which the demand was expressed by fuzzy 
numbers original value was replaced with the fuzzy number with 
triangular membership function. 
 
Table 1. 
Test problems characteristics. 
Parameter Value 
number of items (I), number of alloys (K) (50,10) 
number of days (T) 5 
number of subperiods (N) 
furnace capacity C [kg] 

10 
5,000 

demand ( itd ) [items/subperiod] [10, 60] 
weight of item (wi) [kg] [2, 50] 
setup penalty (s) [PLN] 100 
delaying cost (hi

–) [PLN/item] 
holding cost (hi

+) [PLN/item] 
[3.00, 9.00] 
wi * 0.02 + 0.05 

fuzziness of the demand (triangular) 0%, 5%, 10%, 20% 
 
 
4.2. Results of the experiments 
 

Genetic algorithm was run for 20 times for each variant of the 
problem. The following parameters have been used: 
– population size: 50 individuals, 
– number of generations: 50,000. 

A single run for the algorithm took 2 minutes for the crisp 
version of the algorithm and 4 minutes for the fuzzy version. The 
results for 20 runs have been collected in Table 2. Column ‘costs’ 
represents the penalty function expressed in PLN, column 
‘production’ shows the production volume of castings scheduled 
for all periods, while column ‘furnace utilization’ provides the 
ratio of sum of castings’ weights scheduled to the overall furnace 
capacity (C). 

 
 
 
 
 
 
 
 

Initialize population P with random values 
Evaluate population P and print the best solution 
while terminal_condition not met 
   Select solutions for recombination with binary tournament 
   Perform one-point crossover with probability 0.5 
   Perform mutation on vector x with probability 0.2 
   Perform mutation on vector o with probability 0.02 
   Perform mutation on vector a with probability 0.02 
   Evaluate population P and print the best solution 
while end 
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Table 2. 
Results of the experiments for crisp and fuzzy demand 

demand  costs produc- 
tion 

furnace 
utilization 

crisp average 
std.dev. 

63,453 
3,366 

7,672.7 
225.9 

0.918 
0.018 

fuzzy 5% average 
std.dev. 

55,763 
3,890 

7,689.6 
238.1 

0.926 
0.013 

fuzzy 10% average 
std.dev. 

54,716 
4,080 

7,740.5 
253.0 

0.940 
0.014 

fuzzy 20% average 
std.dev. 

52,980 
2,866 

7,578,9 
252.1 

0.921 
0.017 

 
We can see that introducing fuzzy parameters into production 

scheduling process may bring significant benefits. First of all 
furnace utilization can be improved. From 91.8% baseline value it 
is possible to achieve 94% utilization of the furnaces, depending 
on the level of fuzziness that was set for the demand. Much less 
impact, almost negligible, can be observed for production volume. 
From the obvious reason the total costs decrease with the increase 
of fuzziness in the demand, as less number of castings is delayed 
or manufactured earlier. However, the most interesting 
observation is that the benefit from introduction of fuzzy demand, 
measured as the furnace utilization and castings production 
volume, can be observed to only certain point (in analysed case it 
was 10%). This phenomena should be examined in more detail, as 
it may be caused by the particular structure of the data used in the 
experiments, but when confirmed, it indicates that the impact of 
fuzziness on the parameters should be carefully studied before 
applying such solution into planning and scheduling practice. 
 
 

5. Conclusions 
 

In this paper, the mathematical programming model presented 
earlier [7] for a small foundry has been extended to more complex 
problem, in which demand is expressed in the form of fuzzy 
numbers. The model is based on a well-known lot-sizing problem 
extended to handle the fuzzy constraints. A dedicated version of a 
genetic algorithm has been used for the lot-sizing and scheduling 
problem in single furnace-single casting line environment. The 
genetic algorithm proposed by authors can achieve good results 
within few minutes, and it can potentially handle more complex 
problems in which more parameters are described as fuzzy-
numbers or e.g. intervals. 

A computational experiment conducted by the authors has 
shown that introduction of fuzzy sets into standard planning and 
scheduling models may bring significant improvement in the 
capacity utilization of furnaces and casting lines. It has also 
indicated that further research should be done in this field, as too 
extensive fuzzification of parameters may worsen the quality of 
generated schedules. Also some improvements should be 
introduced to the algorithm itself in order to speed up the schedule 
generation process, as it takes twice as much as the schedule with 
crisp parameters only. 
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