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Introduction

The particular problem considered in the pa-
per deals with foundations of manufacturing systems
management. The main activity of every manufac-
turing system is accompanied by interconnected aux-
iliary activities like storage and transportation which
have to be taken into account while managing such
systems as a whole. According to the most popular
and earliest approach, every activity is managed sep-
arately. However, it is obvious that the joint deriva-
tion of management decisions for component activ-
ities can improve the action of manufacturing sys-
tems in terms of the maximization of profit or the
minimization of cost (execution time). Correspond-
ing branches of operations research are foundations
for the development of management methods and

algorithms useful for real-world manufacturing sys-
tems.

The idea of integration and joint consideration
of different activities connected with manufactur-
ing has been developed since several last years in
the framework of operations research, in general
and combinatorial optimization, in particular. Pro-
duction, manufacturing, logistic and service systems
are mainly pointed out as prospective areas of ap-
plications. Location, vehicle routing, task schedul-
ing, queueing, assignment, inventory, resource allo-
cation are the most important combinatorial op-
timization problems which management algorithms
are suitable for manufacturing systems. Many com-
binations of these problems are investigated and re-
ported in the literature. Let us mention some of them
as the example: location routing problem [1, 2], lo-
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cation scheduling problem [3, 4], inventory location
problem [5], inventory routing problem [6, 7], rout-
ing scheduling problem [8–11], production invento-
ry problem [12], production transportation problem
[13]. The derivation of useful solution algorithms
for real-world applications takes advantage of the
progress in solution methods and techniques in op-
erations research and first of all in computer techno-
logy.

The particular routing scheduling problem is
considered in the paper being the combination of
known travelling salesman (TSP) and flow-shop sub-
problems. Both component sub-problems together
with their special cases are classical, thoroughly
studied topics in operations research. It is worth not-
ing the flow-shop with setup times and with batches
which are similar to the version considered in the
paper [14–18]. It is assumed in the routing flow-
shop that machines being executors of jobs are not
stationary, but they are able to move among jobs.
The flow of jobs is sometimes impossible due to
the difficulties in handling or relocating jobs that
are too big or too small, too heavy or cannot be
moved due to technological limitations. Such situ-
ations may occur for the production of ships, big
wagons, cars or small parts like transistors. In these
cases, moving machines can be used to drive from
one job located at its workstation to another one.
For example, to build a ship, four machines can
work alongside the ship: the first machine polish-
es the surface of the ship for further processing,
the second one rivets metal plates, the third one
paints with the anticorrosive paint, and the last one
paints the ship with the final color. Parts of the
ship cannot be moved due to its size; however, mo-
bile machines can move from one area to anoth-
er one. Taking into account the possibility of ma-
chine movement while considering task (job) schedul-
ing leads to so called routing scheduling problem
or task scheduling with moving machines (execu-
tors), e.g. [10]. The version with moving machines
can concern every particular task scheduling prob-
lem. Some results for parallel machines can be found
in [8, 9, 19].

This work is focused on the flow-shop prob-
lem and extends results presented in [10] where
the simple approximation algorithm is proposed to-
gether with the evaluation of its quality for the
routing flow-shop problem with unlimited buffers,
without ready times and with equal driving speeds
of machines. We propose to use this algorithm to
solve the considered problem, i.e. the version with
non-zero ready times and different speeds of ma-
chines.

The routing flow-shop problem without buffers is
considered in [20]. The authors present a recurrent
procedure for the calculation of makespan, which is
used by the heuristic greedy algorithm. The results
of this algorithm are compared for small instances of
the problem to the optimal solutions generated via
simple enumeration.

A 10/7-approximation algorithm for two-machine
routing flow-shop is given in [21]. The same work con-
tains also another approximation algorithm for m-
machine routing open-shop as well as for the routing
flow-shop with unlimited buffers and without ready
times. Both algorithms deal with the flow-shop bet-
ter than those presented in [10, 22]. In [21] the NP-
hardness of two-machine routing flow-shop is proved
via the reduction from the partitioning problem.

The uncertain version of classical task scheduling
with routing, when the execution times are not pre-
cise, but the corresponding intervals of given bounds
are only known, is investigated in [23, 24]. The objec-
tive function based on the regret is used. The Tabu
Search (TS) and Simulated Annealing solution algo-
rithms are developed and compared.

Investigations of this work refer to the version of
the flow-shop with non-zero ready (release) times,
see e.g. [25], where the branch and bound algorithm
is proposed to solve three-machine problem with
makespan as the criterion.

The flow-shop problems with routing are more
complex than their classical versions because driving
times and sometimes driving limitations have to be
taken into account. It is important to note that the
flow-shop with routing can be considered as the dif-
ficult and very rare investigated version of so called
task scheduling with setup times and sequence de-
pendent setups, e.g. [14].

The reminder of this work is organized as follows.
Three solution algorithms are presented after the for-
mulation of the considered routing flow-shop as the
combinatorial optimization problem. The first, ex-
act algorithm is based on the branch and bound ap-
proach (B&B). Two remaining heuristic algorithms
are developed on different bases. The first one direct-
ly uses the idea proposed in [10], i.e. it applies the
solution algorithm of the multiple TSP. The second
one employs the TS metaheuristics. The improve-
ment procedure is proposed for both heuristic algo-
rithms, which can foster the main algorithms by the
results of partial sub-problems of smaller sizes solved
by the branch and bound algorithm. The next sec-
tion presents the evaluation of all algorithms via sim-
ulation experiments. The conclusions following the
presentation of the case study concerning the main-
tenance of software products complete the paper.
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Routing flow-shop problem

Let us consider the flow-shop problem with m
machines and n jobs whereM = {M1, M2, . . . , Mm}
and J = {J1, J2, . . . , Jn} are sets of machines and
jobs, respectively. Indices i, j denote the current ma-
chine, job, correspondingly. A workstation is defined
as the place where job is located. There is no partic-
ular difference between the job and the workstation,
however the notion ‘workstation’ refers to the local-
ization of job. A depot as the workstation where all
machines start and finish their work, and no activity
is performed, is denoted by Jn+1. All jobs and the
depot constitute a set J = {J1, . . . , Jn, Jn+1}. Every
job is composed of m operations being its parts and
performed by consecutive machines. Operation Oi,j

refers to the part of job Jj , which is performed by
machineMi. Operations within particular job Jj are
performed by machines in the fixed order and consti-
tute a sequence (O1,j , O2,j , . . . , Om,j). The order of
machines denoted as (M1, M2, . . . , Mm) is given un-
like the order of jobs undergoing the decision. Due to
the movement of machines, every operation is com-
posed of two parts: driving of a machine between the
workstations and performing of an activity at the
workstation. We denote by p̂i,l,j and pi,j the driving-
up time of machineMi from workstation Jl to work-
station Jj , and the execution time of activity Oi,j ,
respectively. In a consequence, p̃i,l,j = pi,j + p̂i,l,j is
the execution time of operation Oi,j . The ready time
for job Jj denoted as rj means that the job cannot
start before this time elapses.

In order to formulate the corresponding opti-
mization problem, the decision variable being a se-
quence (permutation) of machines’ routes is defined
as Π = (Jπo

, Jπ1 , . . . , Jπn+1) ∈ Π where Π is the set
of all feasible permutations. Moreover, (π1, π2, ..., πn)
is the permutation of (1, 2, ..., n), π0 = πn+1 = n+1
represent the depot, πi 6= πk, and πi = j means
that job Jj is performed as the i-th. This work refers
to the permutation version of the flow-shop problem
both in its classical version and with routing, e.g.
[26, 27], so we assume that every machine follows
the same sequence and performs jobs in the same
order.

Two cases of the routing flow-shop can be con-
sidered with respect to buffers as the equipment of
workstations [20]. Workstations without buffers can
only host one machine, i.e. the machine that per-
forms an activity. No additional machines are allowed
to wait or stop at the workstation where an activity is
currently performed by another machine. Such a con-
straint influences the calculation of the makespan.
Before it drives up to the next workstation, the ma-

chine has to wait for leaving this workstation by the
previous machine. This requirement does not exist in
the case with buffers, which is discussed in the work.
Additionally, it is assumed that buffers have unlim-
ited capacity. The example of the routing flow-shop
for n = 4, m = 3 and Π = (Jπ0 , Jπ1 , Jπ2 , Jπ3 , Jπ4 ,
Jπ5), (π0, π1, π2, π3, π4, π5) = (5, 3, 4, 2, 1, 5) is
presented in Fig. 1.

Fig. 1. Example of a layout of workstations and machines’
routes.

Problem formulation

The makespan, being the time moment when the
last job is completed, serves as the criterion evaluat-
ing the decision variable Π . We propose to calculate
the makespan denoted as Cmax(Π) recurrently. Let
us denote by C(Π, i, k) the time moment when ma-
chine Mi can start to move to the next workstation
Jπk

∈ J where index k refers to the position in se-
quence Π . This time moment can be calculated for
machines Mi, i = 2, 3, ..., m as:

C(Π, i, k) = max[C(Π, i, k − 1) + p̃i,πk−2,πk−1
;

C(Π, i − 1, k) + p̃i−1,πk−1,πk
− p̂i,πk−1,πk

]
(1)

for k = 2, 3, ..., n, and as:

C(Π, i, 1) = max[C(Π, i − 1, 1) + p̃i−1,π0,π1

− p̂i,π0,π1 ; 0]
(2)

for k = 1.
The start times of jobs on machineM1 are calcu-

lated differently due to the ready times uh:

C(Π, 1, k) = max[C(Π, 1, k − 1)

+ p̃1,πk−2,πk−1
; rπk

− p̂1,πk−1,πk
]

(3)

for k = 2, 3, . . . , n + 2, rn+1 = rn+2 = 0 and

C(Π, 1, 1) = max[0; rπ1 − p̂1,π0,π1 ]. (4)

Finally, the makespan is the maximum of returns to
the depot by all machines

Cmax(Π) = max
i=1,2,...,m

[C(Π, i, n) + p̃i,πn−1,πn

+p̂i,πn,πn+1 ].
(5)

So, the considered routing flow-shop problem con-
sists in the determination of such sequence Π to
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minimize Cmax(Π) for given: M,J, pi,j , p̂i,l,j , rj ,
i = 1, 2, ..., m, l, j = 1, 2, ..., n.
As the result, Π∗ and Cmax(Π

∗) are obtained.
This optimization problem is at least NP-hard due
to the NP-hardness of it classical counterpart, i.e. the
version without routing [28]. The paper is focused on
efficient heuristic solution algorithms which are pre-
sented in the subsequent section.

Exact and heuristic solution algorithms

Three algorithms are presented in this section:
the exact algorithm, referred to as BB, based on the
branch and bound approach and two heuristic algo-
rithms. The first heuristic algorithm, referred to as
Alg1, was proposed in [10] for the simpler version of
the problem assuming the same ready times and the
same velocities of machines. As it is shown in [29],
this algorithm can be easily adopted for the consid-
ered problem but without the approximation prop-
erty reported in [10]. The second heuristic algorithm
uses TS metaheuristics. Moreover, the improvement
procedure with the usage of the branch and bound
approach is proposed. After joining it with Alg1 and
Alg2, two new hybrid algorithms are obtained called
AlgI1 and AlgI2, respectively.

Branch and bound exact algorithm

The branching procedure enables us checking all
feasible permutations Π , and it is illustrated as mo-
ves along a tree composed of vertices denoting partial
permutations. The leaves of the tree stand for full
permutations. The lower bounds of makespan Cmax

referred to as CLB, are calculated at every vertex,
and they make possible to limit the searching proce-
dure along the tree. Let us denote by Π(v) a partial
solution (permutation) ready at vertex v, which con-
tains jobs belonging to the set J(v) ⊂ J. The jobs
not scheduled yet form the set J′(v) = J\J(v). Then,
jobs from sets J(v) and J

′(v) belong to sub-solution
Π(v) = (Jn+1, Jπ1 , ..., Jπi

, ..., Jπ|J(v)|
), Jπi

∈ J(v)
and Π ′(v) = Π\Π(v), respectively.

Then, the lower bounds are calculated according
to the formula:

CLB(Π, k) = max
i=1,2,...,m

[C(Π, i, k + 1)]

+
∑

Jπl
∈J′(v)

pm,πl
+

∑

Jπk
∈J′(v)

pk
min − pmax

+ min
Jπl

∈J′(v)
p̃m,πl,n+1 + max[0;

min
Jπl

∈J′(v)
rπl

− max
i=1,2,...,m

(C(Π, i, k + 1))

− max
Jπl

∈J′(v)
p̃m,π|J(v)|,πl

],

(6)

and

pk
min = min

Jπl
∈J′(v)

p̃m,πl,πk
, pmax = max

Jπk
∈J′(v)

pk
min.

The right hand side of (6) includes respectively:
the makespan of partial solution Π(v), the sum of
execution times of activities related to the remain-
ing set of jobs J′(v), the sum of minimum driving-
up times to every remaining job from J′(v) adjusted
by pmax, the minimum of driving-up times from lo-
cations of jobs belonging to J′(v) to the depot; the
minimum ready time less the makespan of partial so-
lution and less the longest driving-up time from the
last job of partial solution to any remaining job.

TSP-based heuristic algorithm

The algorithm Alg1 is based on the solution of
TSP when the machines and workstations are treat-
ed as salesmen and visited cities, respectively. Let
us denote by Πε = (Jπo

, Jπ1 , . . . , Jπn+1) ε – approxi-
mate solution of TSP, being the sequence of all work-
stations with the beginning and the end at the depot
(all machines work according to the same sequence
Πε), ΠT

ε = (Jπn+1 , Jπn
, . . . , Jπ0) – the sequence of

workstations reverse to πε, Π – result of Alg1. Then,
Alg1 is composed of two steps.
Algorithm Alg1

Input: algorithm for TSP returning the solution Πε

Output: Π, Cmax(Π)
1. Determine Πε and ΠT

ε , as well as calculate
Cmax(Πε), and Cmax(Π

T
ε ).

2. If Cmax(Πε) ≤ Cmax(Π
T
ε ) set Π = Πε, other-

wise set Π = ΠT
ε , and calculate Cmax(Π).

Any known ε – approximation algorithm solving
TSP can be used to obtain Πε. The computation-
al complexity of Alg1 is determined by the used ε –
approximation algorithm.

Tabu Search algorithm

Let us start with introducing additional notions
and notation. We assume that moves as crucial ele-
ments of TS are limited only to insertions. The move
vπi,πk

(Π) ∈ Π denotes the replacement of positions
between jobs πi and πk in solution Π . The new so-
lution vπi,πk

(Π) is obtained as the result, which can
denote also another solution generated after perform-
ing the move. The moves on Π constitute the n – el-
ement set V(Π) called also the neighborhood of Π .
The tabu list TL = (T1, ..., Tl, ..., TL) of L elements
Tl contains attributes of solutions and moves referred
to as av(Π, v) ∈ Av(Π, v) where Av(Π, v) is the
set of attributes defined in the paper as A(Π, v) =
{(πi−1, πi), (πi, πi+1), i = 1, 2, ..., n}. All moves for
Π are divided into forbidden V2(Π) ⊆ V(Π) and
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free V1(Π) ⊆ V(Π) ones, i.e. V1(Π) ∪ V2(Π) =
V(Π). The move for which Cmax(vπi,πk

(Π)) ≤

Cmax(Π̃) holds, where Cmax(Π̃) is the makespan for

the current best solution Π̃ generated by Alg2, is
called the prospective forbidden move and is an ele-
ment of the subset V21(Π) ⊆ V2(Π) of prospective
forbidden moves. Other elements of V2(Π) form a
subset V22(Π) = V2(Π)\V21(Π) which comprises
non-prospective forbidden moves. Alg2 starts with
initial population Π0 generated randomly or being
the result of another heuristic algorithm and ends
after N iterations.
Algorithm Alg2

Input: TL = ∅, κ = 1, Π̃ = Π = Π0, n, N
Output: Π̃, Cmax(Π̃)
1. Determine V (Π) performing n times the moves

vπi,πk
(Π), where πi, πk are randomly generated in-

dices of jobs.
2. Determine sets V1(Π), V21(Π), V22(Π), and go

to Step 4 if V1(Π) ∪ V21(Π) = ∅.
3. Find the move v∗πi,πk

(Π) minimi-
zing Cmax(Π) i.e. Cmax(v

∗

πi,πk
(Π)) =

min
vπi,πk

(Π)∈V1(Π)∪V21(Π)
Cmax(Π) and go to Step 5.

4. If |V22(Π)| = 1 denote element of V22(Π) as
v∗πi,πk

(Π), and go to Step 5 else repeat Steps 4a
and 4b until V1(Π) ∪ V21(Π) 6= ∅ or Tl = TL,
l = 1, 2, ..., L:
a. Set TL = TL⊕ TL, i.e. join TL to the end of TL.
b. Determine new sets V1(Π), V21(Π), V22(Π) and
go to Step 3.
5. Set TL = TL ⊕ av(Π, v∗πi,πk

(Π)), Π =
v∗πi,πk

(Π).
6. Calculate Cmax(Π).

If Cmax(Π) < Cmax(Π̃) set: Π̃ = Π , Cmax(Π̃) =
Cmax(Π), and κ = 1.
7. If κ < N set κ = κ + 1, and go to Step 1 else

stop the algorithm.

Improvement procedure

This procedure consists in the application of B&B
to the solution (permutation) attained by any heuris-

tic algorithm. Let us present it for Π̃ obtained by
Alg2 (the case of Π produced by Alg1 follows ac-
cordingly). More precisely, B&B is simultaneously

used for sub-permutations Π̃λ of Π̃ where Π̃ =(
Π̃1, ..., Π̃λ, ..., Π̃Λ

)
, and Λ = ⌈n/η⌉ is the num-

ber of sub-permutations of the length η. Every sub-
permutation consists of a part of Π̃ , i.e.

Π̃λ = (J0, Jπ(λ−1)η+1
, Jπ(λ−1)η+2

, .., Jπλη
, Jn+1),

λ = 1, 2, ., Λ − 1,

Π̃Λ = (J0, Jπ(Λ−1)η+1
, Jπ(Λ−1)η+2

, ..., Jπn
, Jn+1).

Then, after excluding the excessive depots necessary
for partial solutions, all partial solutions are merged
into one final solution.

B&B based improvement procedure (IP)

Input: Π̃, η
Output: Π̃BB , Cmax(Π̃BB)

1. Divide permutation Π̃ into Λ sub-
permutations Π̃1, Π̃2, ..., Π̃λ, ..., Π̃Λ.
2. Repeat for λ = 1, 2, ..., Λ:
Solve the routing scheduling problem using the

BB exact algorithm for the following data: M,Jλ =
(Jπi

)
i∈(λ−1)η+1,λη

, λ = 1, 2, ..., Λ − 1, JΛ =

(Jπi
)
i∈(Λ−1)η+1,n

, and corresponding values of pi,j ,

p̂i,l,j , rj , to obtain

Π̃λ,BB = (J0, Jeπ(λ−1)η+1,BB
, Jeπ(λ−1)η+2,BB

, ...,

Jeπλη,BB
, Jn+1), λ = 1, 2, .., Λ − 1,

and

Π̃Λ,BB = (J0, Jeπ(Λ−1)η+1,BB
, Jeπ(Λ−1)η+2,BB

, ...,

Jeπn,BB
, Jn+1).

3. Compose the final solution (after excluding
excessive depots necessary for partial solutions) as

Π̃BB = (J0, Π̃1,BB, Π̃2,BB, ..., Π̃Λ,BB, Jn+1), and

calculate Cmax(Π̃BB).

Hybrid algorithms

When launching the improvement procedure with
Π , being the result of Alg1, as the initial solution, we
have hybrid algorithm AlgI1. Analogously, merging
of Alg2 with the improvement procedure gives AlgI2
as the result.

Evaluation of solution algorithms

All presented algorithms were coded in C#
and evaluated during simulation experiments. The
computations were performed on Intel Core U7300
1.3 GHz and 4.00 GB of RAM. The presented re-
sults are mean values of ten independent runs of
the algorithms for different randomly generated data
sets. Each data set was randomly generated accord-
ing to the rectangular distributions from the inter-
vals: pi,j , p̂i,l,j ∈ {1, 2, ..., 50}, rj ∈ {0, 1, ..., 20}.
The algorithms were launched for the following para-
meters: Alg1 – the cheapest insertion method as the
algorithm solving TSP, [30]; Alg2 – n = 6, N = 6000
and Π0 generated randomly; IP – η = 8. Due to the
lack of basis for comparison in the form of bench-
marks or results of other algorithms, the heuristic
algorithms were mutually compared for greater in-
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stances and were referred to the BB exact algo-
rithm for small instances. The values of criterion
Cmax and the execution times T are the basis for
evaluation. The notation is proposed to distinguish
the algorithms: Cmax,x, Tx, x ∈ {BB, Alg1, AlgI1,
Alg2, AlgI2}. The results for different numbers of

jobs n and machines m are presented in Tables 1–
4 where profits δC,1, δC,2 in terms of Cmax caused
by the application of IP in Alg1 and Alg2 are also

inserted, where δC,1 =
Cmax,Alg1 − Cmax,AlgI1

Cmax,AlgI1
100%

and δC,2 =
Cmax,Alg2 − Cmax,AlgI2

Cmax,AlgI2
100%.

Table 1
Comparison of heuristic and exact algorithms.

m n
Cmax,x

δC,1 δC,2
Tx

BB Alg1 AlgI1 Alg2 AlgI2 BB Alg1 AlgI1 Alg2 AlgI2

2 2 105 105 105 105 105 0% 0% < 0.01 < 0.5 < 0.5 < 0.5 < 0.5

2 3 150 150 150 150 150 0% 0% < 0.01 < 0.5 < 0.5 < 0.5 < 0.5

2 4 178 185 178 178 178 4% 0% < 0.01 < 0.5 < 0.5 < 0.5 < 0.5

2 5 206 209 206 207 206 1% 0% < 0.01 < 0.5 < 0.5 1 1

2 6 239 247 239 249 239 3% 4% < 0.01 < 0.5 < 0.5 1 1

2 7 274 282 274 282 274 3% 3% < 0.01 < 0.5 < 0.5 2 2

2 8 306 318 306 319 306 4% 4% < 0.01 < 0.5 < 0.5 2 3

2 9 336 349 336 344 336 4% 2% < 0.01 < 0.5 < 0.5 3 3

2 10 369 382 374 380 374 2% 2% 2 < 0.5 < 0.5 4 4

2 11 400 413 406 419 410 2% 2% 18 < 0.5 < 0.5 4 5

2 12 421 433 426 437 430 2% 2% 53 < 0.5 < 0.5 5 5

2 13 461 478 470 479 470 2% 2% 1181 < 0.5 < 0.5 6 6

2 14 494 516 501 508 504 3% 1% 7328 < 0.5 < 0.5 8 8

4 2 163 163 163 163 163 0% 0% < 0.01 < 0.5 < 0.5 0 0

4 3 211 211 211 211 211 0% 0% < 0.01 < 0.5 < 0.5 0 0

4 4 243 249 243 243 243 2% 0% < 0.01 < 0.5 < 0.5 1 1

4 5 270 283 270 270 270 5% 0% < 0.01 < 0.5 < 0.5 2 2

4 6 304 321 304 310 304 6% 2% < 0.01 < 0.5 < 0.5 3 3

4 7 350 366 350 356 350 5% 2% < 0.01 < 0.5 < 0.5 3 4

4 8 384 413 384 395 384 8% 3% < 0.01 < 0.5 < 0.5 5 5

4 9 408 437 408 415 408 7% 2% < 0.01 < 0.5 < 0.5 6 6

4 10 441 483 449 454 449 8% 1% 2 < 0.5 1 7 7

4 11 472 506 480 492 482 5% 2% 9 < 0.5 1 8 9

4 12 511 544 524 531 522 4% 2% 69 < 0.5 < 0.5 11 11

4 13 534 576 551 552 541 5% 2% 303 < 0.5 < 0.5 11 11

4 14 564 620 583 582 575 6% 1% 1105 < 0.5 < 0.5 14 14

6 2 211 211 211 211 211 0% 0% < 0.01 < 0.5 < 0.5 < 0.5 < 0.5

6 3 257 257 257 257 257 0% 0% < 0.01 < 0.5 < 0.5 < 0.5 < 0.5

6 4 302 311 302 302 302 3% 0% < 0.01 < 0.5 < 0.5 1 1

6 5 331 347 331 332 331 5% 0% < 0.01 < 0.5 < 0.5 3 3

6 6 372 389 372 385 372 5% 3% < 0.01 < 0.5 < 0.5 4 4

6 7 417 446 417 429 417 7% 3% < 0.01 < 0.5 < 0.5 5 5

6 8 448 473 448 463 448 6% 3% < 0.01 < 0.5 < 0.5 6 7

6 9 479 509 479 493 479 6% 3% < 0.01 < 0.5 < 0.5 8 8

6 10 516 566 529 531 522 7% 2% 2 < 0.5 1 10 10

6 11 549 593 559 569 558 6% 2% 10 < 0.5 1 12 12

6 12 583 627 601 608 597 4% 2% 57 < 0.5 1 14 15

6 13 626 669 642 653 640 4% 2% 553 < 0.5 1 17 18

6 14 660 724 679 680 674 7% 1% 4361 < 0.5 1 23 24
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Table 2
Comparison of heuristic algorithms for m = 2.

n
Cmax,x

δC,1 δC,2
Tx

Alg1 AlgI1 Alg2 AlgI2 Alg1 AlgI1 Alg2 AlgI2

20 717 702 706 699 2% 1% < 0.5 1 16 17

30 1053 1034 1057 1039 2% 2% < 0.5 1 40 41

40 1383 1359 1400 1368 2% 2% < 0.5 2 84 85

50 1740 1708 1769 1722 2% 3% < 0.5 3 175 177

60 2073 2043 2135 2064 1% 3% < 0.5 3 195 197

70 2398 2369 2479 2393 1% 4% < 0.5 3 263 266

80 2754 2715 2859 2756 1% 4% < 0.5 4 366 369

90 3056 3026 3207 3079 1% 4% < 0.5 5 476 481

100 3385 3355 3542 3402 1% 4% < 0.5 6 694 700

Table 3
Comparison of heuristic algorithms for m = 4.

n
Cmax,x

δC,1 δC,2
Tx

Alg1 AlgI1 Alg2 AlgI2 Alg1 AlgI1 Alg2 AlgI2

20 842 799 793 783 5% 1% < 0.5 1 42 43

30 1194 1139 1154 1125 5% 3% < 0.5 2 94 96

40 1555 1473 1497 1463 6% 2% < 0.5 3 180 183

50 1890 1831 1875 1819 3% 3% < 0.5 4 275 278

60 2244 2164 2250 2176 4% 3% < 0.5 6 427 432

70 2601 2519 2628 2531 3% 4% < 0.5 6 582 587

80 2952 2844 2994 2892 4% 4% < 0.5 7 977 984

90 3265 3156 3338 3195 3% 4% < 0.5 9 1167 1176

100 3576 3489 3684 3521 2% 5% < 0.5 11 1808 1818

Table 4
Comparison of heuristic algorithms for m = 6.

n
Cmax,x

δC,1 δC,2
Tx

Alg1 AlgI1 Alg2 AlgI2 Alg1 AlgI1 Alg2 AlgI2

20 955 902 898 883 6% 2% < 0.5 2 62 63

30 1366 1277 1287 1255 7% 3% < 0.5 3 152 154

40 1738 1632 1657 1615 6% 3% < 0.5 4 282 286

50 2074 2000 2047 1975 4% 4% < 0.5 7 427 432

60 2398 2304 2404 2313 4% 4% < 0.5 8 679 686

70 2813 2694 2819 2687 4% 5% < 0.5 9 849 856

80 3139 3028 3206 3067 4% 5% < 0.5 10 1430 1440

90 3463 3359 3573 3398 3% 5% 0 12 1637 1648

100 3803 3705 3927 3729 3% 5% 0 14 2532 2545

Some conclusions can be drawn from Table 1.
Alg2 is better than Alg1 for the majority of tested
instances. However, the computational time required
by the former algorithm is slightly greater. The IP
gives up to 8% enhancement in terms of the criterion
Cmax (Alg1 for m = 4, n = 8). The mean enhance-
ment for Alg1 and Alg2 is equal to 3.9% and 1.5%,
respectively. The profit of applying IP is gained at
the cost of the very slight increase of the computa-
tion times. Alg1 and Alg2 are worse than BB up to
9.9% (Alg1 for m = 4, n = 14) as well as 4.7% and

2.3% worse on average, respectively. The computa-
tional times of all heuristic algorithms do not exceed
24 seconds.

The analysis of results from Tables 2–4, i.e. for
greater instances, enables us to formulate the fol-
lowing conclusions. Alg1 and Alg2 return compara-
ble results; the advantage of one of them is not no-
ticed. The IP improves Alg1 and Alg2 up to 6%.
The average improvement of Alg1 and Alg2 is equal
to 4.2% and 4.4%, respectively. The computational
times of Alg2 are considerably longer in comparison
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with Alg1. The application of IP does not substan-
tially extend them. All these times are still accept-
able for real-world applications.

Case study

The proposed solution algorithms for the consid-
ered routing flow-shop can be used for the variety
applications, especially in manufacturing, logistics
and production systems. They can be also applied
for complex systems when machines have the wider
meaning going beyond technological facilities as well
as the first parts of operations, i.e. driving-ups are
not directly connected with the movement. The case
study concerns such more general application. Let us
consider a computer software company maintaining
software products used by its clients. Such products
need current repair, updating and can be developed
by the company upon clients’ requests or on its own
initiative. Every such job requires a number of dif-
ferent specialists. A current problem in the company
consists in the management of a given sets of jobs
and specialists to minimize the total execution time,
which is strictly connected with the maximization
of the company’s profit. It turned out that the de-
scribed management problem can be modelled as the
routing flow-shop to minimize the makespan. Each
job Jj contains four following operations:

O1,j – detection of faults in a software product or
receiving a corresponding maintenance request from
clients,

O2,j – verification of the request by a manager
and launching of successive operations,

O3,j – carrying out of the necessary changes and
improvements in a code;

O4,j – testing of corrected software.

Four workers are involved in this maintenance
process: auxiliary worker (i = 1), manager (i = 2),
computer programmer (i = 3) and software tester
(i = 4). Each job requires the preparation phase
which can be only followed by the appropriate ac-
tivity. This preparation phase corresponds to the
driving-up times in the problem considered and can
be caused e.g. by: preparation of necessary libraries,
setting-up of the software environment, preparation
of data bases. Moreover, while starting the mainte-
nance process, some jobs can be not ready due to dif-
ferent technical reasons at the client’s side that can
be conveniently modelled via non-zero ready times.

Examples of the driving-up times and the execu-
tion times of activities for n = 4 are given in Ta-
bles 5–8. The following ready times were assumed:
r1 = 65, r2 = 110, r3 = 63, r4 = 113. The man-
agement problem consists in the determination of

permutation of jobs for which the total execution
time of all given jobs is minimal. It is obvious that
solutions returned by the algorithms with the im-
provement procedure were optimal which means that
Π∗ = (J0, J1, J4, J2, J3, J5), and Cmax(Π

∗) = 2044.
The TS based heuristic algorithm Alg2 returned al-
so the optimal solution, which was easy attainable
for the problem consisting of four jobs, but the TSP
based heuristic algorithm Alg1 returned the worse
solution: Π = (J0, J1, J3, J4, J2, J5), and Cmax(Π) =
2083.

Table 5

Driving-up times bpi,l,j for i = 1, 3.

l \ j 1 2 3 4 5 (depot)

1 0 140 144 96 52

2 140 0 148 52 100

3 144 148 0 124 180

4 96 52 124 0 104

5 (depot) 52 100 180 104 0

Table 6

Driving-up times bpi,l,j for i = 2, 4.

l \ j 1 2 3 4 5 (depot)

1 0 35 36 24 13

2 35 0 37 13 25

3 36 37 0 31 45

4 24 13 31 0 26

5 (depot) 13 25 45 26 0

Table 7

Execution times of activities pi,j .

i \ j 1 2 3 4 5 (depot)

1 95 388 291 345 0

2 278 324 257 267 0

3 52 131 63 157 0

4 352 99 199 217 0

Conclusions

The selected routing flow-shop problem is con-
sidered in the paper. The permutation version with
unlimited buffers as well as non-zero ready times and
different speeds of machines is investigated. Due to
the NP-hardness of the problem, the heuristic solu-
tion algorithms were the main subject of researches.
Four particular algorithms have been proposed and
evaluated via computer simulation. The algorithm
referred to as AlgI2 is recommended for further ap-
plications. It is the hybrid algorithm composed of
the TS metaheuristics and the Improvement Proce-
dure which can advance TS by applying the branch
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and bound procedure for selected small parts of the
problem.

Further works will be focused on other versions of
the problem, in particular on the case with the sum
of completion times as the task scheduling criterion.
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