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Abstract

Freeform surfaces have wider engineering applinatidesigners use B-splines, Non-Uniform Rational B
splines, etc. to represent the freeform surface€CAD, while the manufacturers employ machines
controllers based on approximating functions orninggl. Different errors also creep in during maai
operations Therefore the manufactured freeform surfaces havée verified for conformance to des
specification. Different points on the surface prebed using a coordinate measuring machine anstigutk
geometry of surface established from the measuoéutpis compared with the design surface. The sag
points are distributed according to different sigigs. In the present work, two new strategiessifiduting the
points on the basis of uniform surface area andini@mh points are proposed, coreithg the geometrical natt
of the surfaces. Metrological aspects such as ptoh&act and margins to be provided along the dides als
been included. The results are discussed in tefrdewation between measured points and subssiutace 8
well as between design and substitute surfacescamgared with those obtained with the methods tepdr
the literature.

Keywords: freeform surface, coordinate measuringhime, machining errors, probe size, sampling etias,
substitute geometry
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I. Introduction

Freeform features find wider applications in thesdand moulds, patterns and models,
plastic products,etc. used in many fields ranging from automotive andosgace to
biomedical, entertainment and geographical datagssing [1]. Designers use B-splines,
Non-Uniform rational B-splines,etc in creating freeform surfaces for engineering
applications and often specify profile toleranc&$anufacturers employ machines with
controllers based on approximating functions oringsl Also during the machining
operations, errors are introduced due to tool defie, workpiece deflection, guideway
errors, spindle runout, machine vibratietc Therefore, the manufactured freeform surfaces
are verified using contact and non-contact methdd® coordinate measuring machines
(CMMs) using contact probes measure a large nurobatiscrete sample points. These
measured points are used to create the substiéamejry for the feature being measured.
The substitute geometry is compared with the desigent (CAD model) to determine
conformance. It is intuitive that the measuremeartugacy increases with increased sample
size, however the sample size is often limited &gt @nd time constraints. Thus, for a given
sample size, the sampling strategy used is expdctedetermine the locations of these
measurement points such that the surface may betig#ly characterized.

Verification of freeform features is a challengitagk. The common measurement strategy,
especially in the inspection planning softwareoiglistribute the sample points in a uniform
pattern [2]. Though the method is very simple, @ynoften result in inadequate sampling
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when there are sharp changes in curvatures anacessaily more sampling at relatively flat
regions, both of which are undesirable in the meamant process. A number of research
efforts to overcome this problem have been repomethe literature. Cho and Kim [3]
proposed a sampling method using the surface meamatare. Their method divides the
surface into sub-regions and ranks them accordiniipeir mean curvature. A factor called
region selection ratio, ranging between 0 and Lsed in such a way that sample points are
spread over the surface for larger region selectitio and accumulated at the regions of high
curvature for smaller region selection ratio. Pagtlal [4] proposed three sampling methods,
viz. uniform distribution, curvature dependent disition and hybrid distribution. The
uniform distribution places sample points in theddhe of the surface grid. The curvature
dependent distribution uses the normal curvatudepdaces more sample points at regions of
high normal curvature. The hybrid method distrilsutee sample points in a user-specified
proportion between the uniform and curvature depehdistribution methods.

Edgeworth and Wilhelm [5] proposed an iterative métbased on the surface normal data
in which an interpolating curve between sample {goion an initially sampled surface is
developed and areas requiring further samples daetified for a complete measurement.
ElKott, et al. [6, 7] proposed four sampling algorithms basedsorface feature. The equi-
parametric sampling method distributes the sampboigts equally along the knot vectors.
The patch-size-based sampling method divides thiaciinto patches at the knot vectors.
The share of points along tlkeandv parametric directions is proportional to the sitgéhe
patch. The patch mean Gaussian curvature methdd the surface patches on the basis of
their mean Gaussian curvature and the share oflegmomts will be larger for patch with
higher ranking. The fourth method combines patele sind mean Gaussian curvature-based
methods with user specified weights.

Ainsworth, et al [8] proposed three sampling criteria, namely ardhlength criterion
specifying the maximum chordal deviation betwees lthe connecting any two points and
the surface; a minimum sample density criterioncgpieg the maximum allowed distance
between any two neighboring points on the surfacel a parameterization based sampling
criterion taking the number of samples per knotsasa specified by the user. Obeidat and
Raman [9] proposed three heuristic algorithms &ngling of freeform surface patches using
maximum Gaussian curvature, mean Gaussian curgatume the point with average of the
mean Gaussian curvature and minimum Gaussian cuevats critical points. The first
algorithm starts with three sample locations inhepatch corresponding to the critical points
and places additional sample points in low densdtiches. In the second algorithm, the initial
sample points are placed according to the firsbrittygn and the remaining points are added
according to a particular patch size. The thirdoatgm first allocates sample points using
patch mean Gaussian curvature ratio, additionapkamoints are added according to patch
size ratio.

It is seen that different strategies have beenrtegdn the literature for verification of
freeform features using a CMM. Given the numbesarinple points, the sampling strategy
has to distribute these points over the surfacsuch a way that the feature is effectively
characterized. At the sample positions, the measeme is carried out and the measured
points are used to construct the substitute gegmmatrsurface The linear and normal
deviations of the measured point from substitutdéase are shown in Fig. 1. It is observed
from the literature that the effect of probe siretlve sampling results is not considered, while
this is very important as the probe may not maksam with the work surface at the same
point as that of the sampling point chosen. Nexgartant observation is that these strategies
lack metrological sense, which emphasizes thats#mple points cannot be located at the
edges as the edge measurement is unreliable. [¥se®s can cause potential changes in the
results obtained during verification. The abovaiésshave already been considered by the
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authors for freeform profiles [10] and are beingeexed here to freeform surfaces. Two new
surface geometry based sampling strategies havedreposed in the present work. The first
strategy is based on the surface area and the dsestoategy is based on the concept of
dominant points. Three existing sampling strategre@mely the uniform distribution in
Cartesian space and parametric space and distmbutased on patch-size are also
implemented. The results obtained using all thaeserhethods are reported and discussed. It
is seen that uniform surface area based methodrpesfwell in capturing higher form error
values with low positional errors.

2. CAD model of freeform surface

The freeform features used in this study use tha-Doiform Rational B-Splines
(NURBS) representation [11]. The NURBS is used ha it is the de facto industrial
standard for computer aided design (CAD) due talidity to accurately represent various
shapes, including the primitives such as the sgheardinders, etc. to even very complex
freeform features. The CAD model of freeform suefas referred to as design freeform
surface or simply design surface in the presenkwor

The design surface used in this work i€%continuous, Non-uniform Rational B-Spline
(NURBS) surface. The NURBS surface is defined ugimd)*(m+1) control points, denoted
asP;j. The NURBS surface with degregs g), defined in parametric spaag V), is given as:

n

Z_Zm:Ni,p(u) Nj,q(v) Wi Pl
S(U, \b — i=0 j=0

n m !

22 NLUN (D,
i=0 j=0 (1)

The {P;;} are the control points forming a bidirectionalntm! net, the {v;} are the
weights and Nip(u)} and {N;4(v)} are the non-rational B-spline basis function&rud in the
knot vectordJ andV respectively. The value o , (u) can be estimated using the following
recursive relations, choosing 0/0 = 0, if the demators in the equation become zero.

y \J[0,1].

N, (u) = uu __qq N,p—l( u) 4 Yepa —Y |\|i+1’p_1( U, 2)

i+p l'Ii+p+1_ +1

where,N; o (u) = 1 Ui U < U1
0; otherwise

The above equation can be used to comjte (v) by appropriately replacing the
variables.

The data used for designing the example surfageeés below.
Surface degreep,(q): 3, 3 Number of control pointsn{1) * (m+1)) :5*5
Control points (mm):
Poo(0,0,20) R0, 12.5,30) B0, 25,33) B30, 37.5, 20) P40, 50, 25)
P1(12.5, 0, 23) Py(12.5, 12.5, 27) Py(12.5, 25, 30) P(12.5, 37.5, 17) £4(12.5, 50, 23)
P.o(25, 0, 25) PR1(25, 12.5, 25) P425, 25, 27) P25, 37.5,22) P25, 50, 25)
P;«(37.5, 0, 20) P4(37.5, 12.5, 27) £x(37.5, 25, 20) P«37.5, 37.5, 20) £4(37.5, 50, 14)
P,o(50, 0, 27) R1(50, 12.5, 23) P450, 25, 25) R450, 37.5,27) P«50, 50, 22)
Knot vectors:U = {0.0, 0.0, 0.0, 0.0, 0.3600, 1.0, 1.0, 1.0, 1.0}

v ={0.0, 0.0, 0.0, 0.0, 0.3717, 1.0, 1.0, 1.0, 1.0}
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Fig. 2 shows the design freeform surface. The desigface is discretized in Cartesian
space with suitablex and Ay spacing along the andy axes. The correspondingandv
parameter values at each point on Cartesian spac®mmputed. The mean curvatur® @nd
Gaussian curvatur] are also computed [12] using the following equradi

_EN-2FM+GL. _ _ LN- M
2(EG-F?) ' (EG- P’ 3)
¢ .Q C.Q S .a ~ g - ~ . §ux§v
E:S14°Su; F:SH.SV; G:Sv.Sv; L:n.Suu; MI}’ZOSW; N = neS ; n= S Xg ,

where,S, is the first derivative along; S, is the first derivative along; S, is the second
derivative alongy; S,y is the derivative 0§, alongv andS,, is the second derivative along
The symbols x and indicate the cross and dot products respectively.

Normal deviation

Substitute surfac

Design surface

Measured point

Linear deviation

Points on substitute
surface
» 0 0

|

X

Fig. 1. Freeform surface showing the measured
point and deviations.

Fig. 2. 3-D plot of the design surface.

3. Measurement strategies

In the present work, performance of all the rembrédgorithms is analyzed with 5%
margins from all boundaries/edges. The start andpaints are set at 5% of the feature size
along that direction in Cartesian space. For thasgm, the lower and upper bounds of the
surface along thex-axis, denoted asmn and xmax respectively, are computed. The
corresponding parameter values arg andunaxrespectively. Similarly, the lower and upper
bounds of the surface along ti#@xis, denoted agmin andymax respectively, are computed.
The corresponding parameters valuesvareandvmax respectively. The general flowchart for
all measurement strategies is shown in Fig. 3.

3.1. Existing methods
3.1.1. Uniform distribution in Cartesian space

The sample points are distributed with nearly eqacing along th& andy axes. The
spacing between sample points along each axis dementhe feature size and the number of

sampling points along that axis. Then, the positin, y*,-) of all the sampling points can be
obtained from the equation given below.
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- H Xmax_Xmin o= - ymax_ ymin o —
X —)ﬂmn"'("l)m"—lw-"\lu andy; =y, + (- 19m 1= 1L.N, @)

WbergNu andN, are the sample sizes along ihandy axes respectively. Using the computed
(X, yj) values, the nearest poing,(y) on the discretized surface is obtained. The $amp
points thus obtained are shown in Fig. 4a.

Specify design surface:
Degree p, g), control pointsPi,j(n*m) and knot vectord, V)

v

Discretize design surface in Cartesian space wWwithdpacindAx, Ay)
and compute the correspondimgandv-parameters

v

Specify sample size: Number of poirNs (=N,*N,)

i Distribute samplig points according to measurement strategy sel i

e

Simulate manufactured surface with spacifug Q\y)

v

Select CMM probe size and measure at sample poipts

v

Construct substitute surface based on CMM ddta

v

Compute deviation: measured points and subsstut@ce;
substitute surface and design sur

Enc

Fig. 3. General flowchart for the present work.
3.1.2. Uniform distribution in parametric space

The sample points are distributed with nearly egpacing along tha andv parametric
directions. The spacing between sample points a&aup parametric direction depends on
the range of the parameter and the number of sagqpoints along that direction. The
positions of sample points'(, v*,-) are given by the following equation:

. o U —u . Vo=V
u =u_ +(i-1)—™—":j=1,..N, andv. =v_ + (- 1D)™==—T0 j= 1 ..N
i min ( ) (Nu _1) u j min (i )m ] v (5)
wbergNu andN, are the sample sizes along thandv directions respectively. The computed
(uj, vj) values are used to select the nearest paintg)(from the discretized design surface.

The sample points obtained by this method are showig. 4a.
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3.1.3. Distribution based on patch size

The patch size ranking strategy proposed by ObeaitddtRaman [9] is suitably modified to
work for a given sample size. The knot vectdds Y) are used to divide the given design
surface into patches and the patch sizes are cechplfia patch has bounds asi; andu, and
v bounds as; andv,, the patch size is computed as-{ w) * (v — w). The given sample size
Ns is shared among the patches based on their Jikesselection of sample points is based
on mean Gaussian curvatur&.(The points are selected in the ordeKefyx Kavgs, Kavgmini
etc The Gaussian curvatures are computed as:

Kavg = (Kmax+ Kmin)/2; Kavge = (Kavgl + Kmay/2; Kavgmin1= (Kavgl + Knin)/2
Kavgmiriz = (KavgmiriL + Kmin)/2; KavgmirB = (Kavgmirﬁ + Kmin)/2. (6)

3.2. Proposed methods
3.2.1. Distribution based on surface area

The proposed method starts with computation ofeserfirea (4 by approximating the
design surface to consist of planar triangulaet®obtained using the discretized data. The
total surface area is obtained as:

N-1M-1

(Ak,Zl + Ak,2I+1)’
k=0 I= (7a)

wherel\ o is the area of a triangle with vertices &t [{, (k+1,1) and k+1, [+1)], Ax2+1 is the
area of a triangle with vertices ak|[(), (k, I+1) and k+1,1+1)] and N + 1), M + 1) are the
number of points on the discretized surface altvegxtand y directions respectively. The area
per sample point is computed as:

A

= (N, -1)(N, -1)’

A:

(7b)

where,N, andN, are the number of sample points along the respeaties. Starting fromx;(
= Xmin ¥j = Ymin), the &i+1, Yj+1) values are selected such that the aspect raticeba thex and
y axes are maintained and at the same time thecsuaf@a betweeni(y;) and &+1, Yj+1) IS
nearly equal toA, with i varying from 1,...N,—1) andj varying from 1,...K,~1). The
sample points thus obtained are shown in Fig. 4b.

3.2.2. Distribution based on dominant points

The points on a freeform surface with maximum locedan curvature are identified as
dominant points [13]. The computation of curvatureutlined in Section 2. Along with
these points, four points defining the cornersha surface are taken to obtain the initial
sample set. The initial sample points are useddtm fregions on the surface in Cartesian
space. Additional sample points are added onetahe starting with the largest region in
terms of surface area. The sample point is takdmetoearly mid-point of the region. After
adding the point, the region is divided into foubgegions. The procedure is continued until
the required sample size is obtained. Fig. 4b shibesample points in this case.
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Fig. 4. Sample positions on surface (sample sige; 8x6) with 5% margin. a) Existing methods.
b) Proposed methods.

4. Simulation of manufacturing errors

In general engineering practice, two types of arsarch as systematic error and random
error are encountered. The systematic errors foloparticular, identifiable pattern so that
they can be accounted for more precisely. The mandoors do not have any identifiable
pattern and hence can be assumed to follow cqtaipability distribution. Both these types
of errors are considered here for simulating thaeufectured surfaces.

4.1. Systematic errors

Systematic errors consist of different wavelengittee long wavelength errors come from
various sources such as errors in machine tookguagls, deflection of workpiecetc, while
other wavelength errors are due to vibrations, glmgncurvatures of surface machinedk.
The effect of these errors can be simulated bygusppropriate mathematical functions [14].

4.1.1. Quadratic form error (&)

The quadratic error, representing the error of foran be approximated using a second-
order polynomial as given in Eq. (8).

5, =B +hx+ byr xwr B+ b ©

where, by, by, by, bs, by, andbs are the coefficients of the second-order polynanirathe
present workpg = 4.5(10%, b= b, = -1.7(10%, bs = —4.5(10°% andb, = bs = 3.7(10°) are
taken to get a maximum value @fas 0.0105 mm.
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4.1.2. Sinusoidal form error (&)

The sinusoidal form error can be approximated uaisgmbination of sinusoidal functions
as given below:

o, = Asin(w, x+ w, y)+ Bcos(w % w Y) ©)
where,wy is given by277A, andwy is given by277A,; Ax andA, are wavelengths of sinusoidal
components along the and y direction respectively. The amplitudes afesand cosine
components A and B are taken to be 0.005 mm. Tiveleagths can be assigned values of 1,
2 and 3 to simulate different sinusoidal form esrofhe maximum value of this error
component &) is 0.010 mm.

4.1.3. Machining form error (dy)

When the cutting tool encounters changing machintogditions as in the case of
machining of different curvatures in a given suefadorm errors are introduced. The
machining error distribution is computed on theida$ the mean curvature as shown below:

Jm = fS(IS_OIS)’ (10)
where,fs is the maximum machining error. Indexbased on mean curvature of the surface is
given byis = (H — Hmin)/(Hmax — Hmin). The termsH, Hnmin and Hyax are the mean curvature,
minimum mean curvature and maximum mean curvatiitbeosurface respectively. A value

of 0.010 mm is chosen fdy so that the maximum value of this error comporiéntis 0.010
mm.

4.2. Random error (&)

The random errors in a machining process can bairauat by appropriately conducting a
machine capability study. This error may be addaeslystematic errors and the measurement
can be simulated. During the measurement, noisealtiee measuring instrument also gets
added. The information about relevant range ofatim for this random error component can
be obtained from the CMM manufacturer’s calibratobrart.

The random errors have to be lower than the systemaors. Since the systematic error
components used in the present research have imeigedlto about 0.010 mm, the random
error has to be less than this value. The preserk vepresents the random errods @ue to
machining and measurement processes by a nornuabdi®n with a mean value of 0.0 mm
and standard deviation of 0.001 mm, so that thed W@ue ofd; is about 0.006 mm.

4.3. Combined manufacturing error

The combined manufacturing error is obtained byesugposing all the error components
on the design surface. Fig. 5 shows a 3-D plotoshlmned errors and the maximum linear
error introduced is 25.28m. If S(x, Vi, z;) is any sample point on the design surface and its
coordinates on the manufactured surface are rapgeebbySy(Xi, Vi, Z;’), thenz;’ is given by
(zj+ oy &t dnt &). The coordinateSy(xi, ¥, Z;') have to be used for arriving at probe contact
during a CMM measurement.
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5. Computation of probe contact point

In view of the manufacturing errors present on fieeform features, the probes make
contact with the feature at points different frohre tsample points chosen [10]. Hence,
computing the measurement errors based on samjiés plone may lead to erroneous
results. Therefore, the actual point of contacttted probe with the feature needs to be
established first.

Lingadurai and Shunmugam extended a general mathodmputing the envelope of a
circle rolling over the profile [15] to compute ttieree dimensional envelope using a toroidal
element [16]. In this paper, the computation ofpgr@ontact for freeform surfaces is done
using a hemispherical element in place of toroigément. This approach requires
discretization of bottom half of the probe (hemisptal shape) to the same discretization
spacing, namelyAx and Ay (Fig. 6) and the ordinate data for the prqkg|) at different
sections are to be computed.

The CMM measurement is simulated by positioninggtabing system over the freeform
surface such that the sample poit ) coincides with the centre of probig,(). The probe
is then moved steadily downwards until it makestacinwith the manufactured surface. For
computing the probe contact point, the sum of tteb@ and surface ordinatés, +z';;) is
computed within the region of interest. The poinivaich the maximum value of this sum
(znay occurs gives the probe contact pomt () with the surface. This procedure is repeated
for all sample points to get the measurement daga {

Eoo

Eq : Bottom half of probe

max : Freeform
surface

Combined Error, mm

Fig. 5. 3-D plot of combined error Fig. 6. Probe contact point.
(Quadratic error + Sinusoidal& A,=1) error
+ Machining error + Random).

6. Substitute surface and computation of deviations
6.1 Substitute surface

The degrees, knot vectors, number of control pcamd their weights of the substitute
surface are taken to be as those of the desigacgurfet &} consist of a set olNs measured

points and {,V}, I=1,...Ns be the corresponding location parameters in uacespThe

objective is to fit a substitute NURBS surface wile[(n+1)*(m+1)] control points,
represented as:
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n

sz: Ni,p(U) Nj,q (V) Wi PJ
SV =" ; uI[o,1].

m

22 NL@N, (W) w,
i=0 j=0 (11)

A two-step linear approach is reported in the ditere for fitting of NURBS surfaces. In
the first step, the weights are identified anddbetrol points are computed in the second step
[17]. Since the weights are taken to be 1.0, ituced to a single-step procedure and the

algorithmic detail for computing the control poimgsgiven in Appendix-A.
6. 2. Computation of deviations

The deviation of a measured point from the sulistiturface is computed in the vertical
(linear) and normal directions as shown in Fig.he Tistance between the measured point
and corresponding point on the substitute surfémegathez-axis gives the linear deviation.
The shortest distance between the measured poaihth@nsubstitute surface represents the
normal deviation. Leg represent the deviation ane,{, enin) denote the maximum and
minimum values of the deviations respectively. Tdren error is taken to be deviation of the
measured points from the substitute surface alsccitmputed as:

As=|@nax— 6ninl- (12)

Depending on the nature of the deviations consitjere form errods may be expressed
as a linear or normal value.

The substitute surface established from the medspoents may also be positioned
differently with reference to the design surfacke Teviations between the substitute and the
design surfaces are computed on a point-to-poisistes linear or normal values following
the procedure outlined above. For quantifying thirsor, the maximum and minimum
deviations are represented fy.x andpmin. The form and positional error values are given in
Table 1 for different measurement strategies.

7. Results and discussion

The NURBS surface taken for the present work isuftispatch surface with data as given
in Section 2. The example surface shows substavdigtion in its geometry (Fig. 2) and
different measurement strategies shown in Fig.r8bmaapplied conveniently. The surface is
more suitable for an algorithm involving patch-siznking as suggested by Obeidat and
Raman [9]. One can easily visualize the naturehefd@xample surface using contour plots
given in Fig. 4 and the distribution of sample peirThe distribution of sample points based
on uniform Cartesian and parametric spacing leads tmore ordered scheme which is
independent of the geometric nature of the surfélbe.uniform surface area method is giving
slightly better distribution which depends to soewdent on the surface geometry. The
strategies based on patch size ranking and dompwnts show much better distribution of
sample points with a smaller number of points attér regions.

At the sample positions, data corresponding to Chkflgasurement is obtained on the
manufactured surface which represents superimpsgstematic and random errors on the
design surface. The contact points are determisadjuhe procedure outlined in Section 5.
The probe sizes are assumed to be 0.0 and 1.0 nttmsipaper. Using the measured points,
the substitute surface is established by the proeediven in Appendix A. The linear and
normal deviations of the measured points from thiesstute surface are computed and the
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form error €nay is arrived at using Eq. (12). Similarly, the deions of the substitute surface
from the design surface are computed to arriveoattipnal errorspmax and pmin. The form

and positional error values obtained for differer@asurement strategies and sample sizes are
included in Table 1.

Table 1 Results obtained by different measurenteategjies for freeform surfaces (Control pointss)5#ith
5% margin and discretization interval &t=Ay=100um. a) Linear errori{m). b) Normal errory{m).
a)

Probe diameter: 0.0 mm
Error Existing Methods i Proposed Methods
E(r)rnosrls intro- Sample Uniform Cartesian Uniform Parametefr Patch Size Rank Unlfoxr:esaurface Dominant Points
dered c:uge)d size Form Pos. Form Pos. Form Pos. Form Pos. Form Pos.
H Error Error Error Error Error Error Error Error Error Error
All Errors +8.63 +8.74 +9.45 +8.90 +12.38
aan=D | 1981 35 | 988 1008 | 392] 1123 | 291 | 3081 | 40| 158 32| L1414
All Errors (6x6) +9.18 +9.60 +8.66 +9.68 +11.98
+ Random 25.29 4.80 -11.01 4.80 1259 2.72 2971 7.67 1355 3.57 17.48
All Errors +8.75 +8.86 +14.76 +8.92 +8.70
(Ax=Ay=1) 19.31 64 6.37 -11.23 6.22 -11.19 3.57 -22.41 6.66 -10.81 4.28 -11.92
All Errors (8x8) +9.22 +10.19 +12.56 +9.65 +10.17
+ Random 25.29 6.45 10.81 7.18 11.83 4.96 2073 7.72 -10.98 5.27 11.27
Probe diameter: 1.0 mm
All Errors +8.44 +7.99 +9.25 +8.88 +12.60
(A=Ay=1) 19.31 36 6.03 -12.00 3.62 -11.13 263 -29.15 6.52 -11.63 3.25 -14.19
All Errors (6x6) +9.57 +8.81 +11.25 +9.27 +18.70
+ Random 25.29 7.26 11.36 4.65 11.94 4.04 3513 6.19 11.65 3.45 12.45
All Errors +8.57 +8.62 +14.58 +8.92 +8.74
aan=D | 19831 ea | 834 1108 | 81| 1000 | 35° | 2180 | 872 | 1083] #%°| 1179
All Errors (8x8) +9.21 +9.10 +13.01 +8.96 +9.73
+ Random 25.29 6.13 12.26 6.94 11.95 4.71 -36.63 9.76 11.02 5.72 11.31
b)
Probe diameter: 0.0 mm
Error Existing Methods i Proposed Methods
E(r)rnosrls intro- Ssgl— Uniform Cartesian Uniform Parameter Patch Size Ran Unlfoxr:esaurface Dominant Points
dered czu;e)d size Form Pos. Form Pos. Form Pos. Form Pos. Form Pos.
H Error Error Error Error Error Error Error Error Error Error
All Errors +8.18 +8.23 +8.99 +8.46 +11.79
On=D | 1878 3g | 925 p0p | 321 | 195 | 2% ogoa | 993 1146 313 1276
All Errors (6x6) +8.73 +9.06 +8.22 +9.19 +11.41
+ Random 24.62 4.31 -10.75 4.27 1251 2.72 27.82 7.12 13.43 3.52 -15.80
All Errors +8.30 +8.39 +14.07 +8.47 +8.27
(A=Ay=1) 18.78 64 565 -11.17 579 -11.12 3.47 -20.53 6.19 -10.71 4.06 -11.03
All Errors (8x8) +8.77 +9.65 +11.96 +9.16 +9.20
+ Random 24.62 6.03 -10.76 6.90 11,52 4.89 19.06 7.15 10.85 5.12 1111
Probe diameter: 1.0 mm
All Errors +8.02 +7.59 +8.79 +8.43 +12.01
(A=My=1) 18.78 36 541 -11.92 3.35 -11.02 249 -27.44 6.05 -11.51 3.12 -12.81
All Errors (6x6) +9.10 +8.37 +10.70 +8.80 +17.84
+ Random 24.62 6.56 11.27 4.57 11.82 3.81 32.05 5.74 -11.49 3.31 11.17
All Errors +8.14 +8.19 +13.90 +8.47 +8.31
aan=D | 1878 ea | 902) 1090 | 572 | 1080 | 3°°| 1099 | 820 072 494 1102
All Errors (8x8) +8.75 +8.69 +12.39 +8.96 +8.85
+ Random 24.62 5.90 12.16 6.80 11.23 4.52 3356 9.10 11.02 5.44 -10.66

Table 1a gives form and positional errors basetin@ar deviationi(e. alongz-axis). With
all errors, namely systematic and random, combirted, total manufacturing error is
25.29um. With a probe diameter of 0.0 mm and sample GiZ26 (6x6), the uniform surface
area method is able to capture a maximum form efof.67 um when all the errors are
present. Without random error added, again theoumifsurface area method is able to capture
6.40um. In terms of positional error, the uniform sudaarea method is one among the three
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methods (uniform Cartesian: 9.18 + 11.01 = 20.18n, uniform parametric:
9.60 + 12.59 = 22.1Am and uniform surface area: 9.68 + 13.55 = 23u23 yielding lower
values, when all errors are present. The samaigsvithen only systematic error is present.
When the sample size is increased to 64 (8x8),eTafa) shows that higher form error values
are captured and the positional errors are reduced.

With a probe of 1.00 mm diameter and larger sarsgzle of 64 (8x8), the uniform surface
area method captures the highest form error val®76 pm and lowest positional error of
19.98 (.e. 8.96 + 11.02um.

The form and positional error values based on fimeaiations are given in Table 1b. It
may be seen that the total error on the manufattaweface is 24.62m considering the
normal direction, while it is 25.29m in the linear direction. The values of form and
positional errors are also reduced in the norma&ction, but the relative performance of the
measurement strategies remains the same as thahgée linear direction.

8. Conclusions

This paper deals with practical aspects of verdyireeform surfaces with a CMM. The
measurement margins and probe size have been eogwidn the present work. Two
measurement strategies based on uniform distributicCartesian and parametric space yield
ordered sample points irrespective of the natureuoface geometry. Other three strategies
viz. patch size ranking, uniform surface area amghidant points based methods consider the
geometric nature of the surface. The possible naatwifing errors have been added to the
design surface and data points corresponding tari@surement using a CMM have been
arrived at for different sampling methods by coesialy the probe contact.

Even though the distribution of points with unifosurface area based method is slightly
better than those using uniform Cartesian and patrésrspacing methods, it exhibits superior
performance in terms of capturing higher form exalues with low positional error.

The present study can be extended to cover free$onfaces of varying complexities and
the performance of the different measurement gfiedecan be further evaluated.

Appendix — A
Construction of Substitute Surface

Taking {S} as a set ofNs measured points andU{,\}, I=1,...Ns will be the

corresponding location parametersunv space. To fit a substitute surface, the NURBS
surface with N=[(+1)*(m+1)] control points is taken [17] as:

n

ZiNi,p(U) N; o (V) w; B
S(GVY="02 . yvo[0,1] -

n m

22 N @ N (W) w,
0 (13)

After rearranging the terms on the left and righutdh sides, the above equation (13) can be
compactly written in matrix form as:

i=0 j

BX=XBw BY= YBw BZ ZB\ (14)
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where:

| Nop (@ Nog(W) - - o N (W) N (W) ]

Nop @ Nog() -+« Ny (W) Ny o)

X=[% o Xo] =[wyx .. V\Q)&]T; Y=[Y o XT=[wy .. \NM]T;
z=[z, .. z,] =[wz .. vsz; w=[w .. V\{\JT;

X = Diag[x'1 x'NS] Y= Diag[ Yoo Y'NS] Z= Diag[z'l Z'NS] (15)

{X Y z} are the control points in Cartesian space axnd i, z } are the measured points.
The control points can be obtained by estimatimgvileights matrixv. Taking all the weights
to be equal to 1, the control points can be obthimesolving (14) in homogenous space. The
coordinates of the control points in Cartesian spgan be computed as:

Xk:Xk/Wk ; yk=Yk/wk; Zk:Zk/Wk; fork=1,..N. (16)
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