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Abstract 

This paper presents the results of the theoretical and practical analysis of selected features of the function of 
conditional average value of the absolute value of delayed signal (CAAV). The results obtained with the CAAV 
method have been compared with the results obtained by method of cross correlation (CCF), which is often used 
at the measurements of random signal time delay. The paper is divided into five sections. The first is devoted to 
a short introduction to the subject of the paper. The model of measured stochastic signals is described in Section 
2. The fundamentals of time delay estimation using CCF and CAAV are presented in Section 3. The standard 
deviations of both functions in their extreme points are evaluated and compared. The results of experimental 
investigations are discussed in Section 4. Computer simulations were used to evaluate the performance of the 
CAAV and CCF methods. The signal and the noise were Gaussian random variables, produced by a 
pseudorandom noise generator. The experimental standard deviations of both functions for the chosen signal to 
noise ratio (SNR) were obtained and compared. All simulation results were averaged for 1000 independent runs. 
It should be noted that the experimental results were close to the theoretical values. The conclusions and final 
remarks were included in Section 5. The authors conclude that the CAAV method described in this paper has less 
standard deviation in the extreme point than CCF and can be applied to time delay measurement of random 
signals. 

Keywords: time delay estimation, random signals, conditional averaging, cross-correlation. 
 

© 2011 Polish Academy of Sciences. All rights reserved

 
1. Introduction 

 
Time delay estimation is a problem quite frequently studied in signal processing. The 

problem is significant in such areas as radar technology, radio-astronomy, location of 
interference transfer paths or contact-free measurements of transport parameters. 
Determination of the time delay of stochastic signals received from two or more sensors is 
commonly carried out with the use of statistical methods. This problem has been thoroughly 
presented in the literature [1-8] which describes a variety of methods consisting of the analysis 
of signals in the time and frequency domains. Among the traditional methods used for 
stationary signals, the most common one is direct cross-correlation (CCF) in the time domain 
and the phase of cross-spectral power density in the frequency domain [3, 9-12]. Other 
approaches can be used in specific conditions: differential methods [4, 6], the correlation 
method with the Hilbert transform [1, 13-15] or relatively unpopular methods based on 
conditional averaging of signals [16-19]. 

This paper presents the results of selected research into the features of the method which 
uses the function of conditional averaging of the delayed signal absolute value (CAAV) 
[16, 17]. Theoretical and experimental standard deviations of both functions in extreme points 
were evaluated and compared with a discrete estimator of CAAV and a direct discrete 
estimator of CCF for the assumed signal models. The signal to noise ratio values (SNR) were 
determined for the assumed signal models, where the analyzed method is characterized by 
smaller standard deviations of estimation for specific parameters of the analysis. 
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2. Measurement signal models 
 

In the case of many delay time estimations (i.e. measurements of transport parameters of 
solids and flows), the relation for signals x(t) and y(t) received from two sensors is usually 
given by the following formula [2]: 

 )t(z)t(xc)t(y +−⋅= 0τ , (1) 

where: x(t) is the stationary random signal with a normal probability distribution N(0, σx), 
frequency band B and the spectral power density: 
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c, G are the constant factors; τ0 = d/V is the transport delay equal to the quotient of the sensor 
sparing distance d and the average velocity of object V; z(t) is the white noise, non-correlated 
with signal x(t), with the distribution of N(0, σz). The autocorrelation function of signal x(t) 
has the following form: 
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3. Direct cross-correlation and the arithmetic conditional average value of the delayed 
signal absolute value in the time delay estimation 
 

Cross-correlation Rxy(τ) of signals described with the relation (1) can be given in the 
following form [1]: 

 )(Rc)]t(y)t(x[(E)(R xxxy 0ττττ −=+= , (4) 

where E[ ]  is the expected value operation. The function (4) achieves the maximum value 
for τ = τ0, so that the delay can be determined as the argument of the main extreme of this 
function:  

 { } { })(Rarg)(Rmaxarg xyxy 00 τττ == . (5) 

Following normalization, the correlation (4) is equal to: 
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while when replacing with τ = τ0: 
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Since signals x(t) and z(t) are non-correlated: 

  )(c zxy
22 σσσ += . (8) 

When replacing (7) with (8) and defining the signal to noise ratio as SNR =( σx/σz)
2 , the 

result is: 
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When there is no disturbance ρxy(τ0) = 1. 
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If signals x(t) and y(t) have the lengths Ttotal, the standard deviation of the CCF estimator 
can be formulated as follows [1]: 
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The relation (10) is just for the high values of Ttotal ( τ10≥totalT  and 5≥totalBT ).  

As for the computer methods of analysis, totaltotal NBT =2  [2, 13] is assumed, where 

t/TN totaltotal ∆= , and ∆t is the properly selected sampling interval. When estimating the CCF 

with the pairs of non-correlated samples divided into N cycles and by transforming (10) taking 
(9) into consideration, the result is the relation of the normalized standard deviation ε: 
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The discrete CCF estimator can be expressed as: 
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where: l = τ /∆t, n = t/∆t. 
To obtain of time delay τ0 it is possible to use also terms: a minimum of conditional 

variance ( )τσ
xy

2  or a minimum of conditional expected value 
0=xyA .The expected conditional 

value of the delayed signal absolute value for the condition x(t) = 0 (the formula is simplified 
as follows: y(t) = y and x(t) = x)  is defined as follows [16]: 
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where ( )
0=x

yp  is the conditional probability density for the signal absolute value y at the 

condition x = 0.   
A good estimator of the expected conditional value (13) is the arithmetic conditional 

average value of the delayed signal absolute value (CAAV). In practice, its determination 
entails detection of the non-cross-correlated instant of zero transition of the original signal x(t), 
starting the registration of the delayed signal y(t) fragments in those moments and averaging 
the set of their absolute value. The discrete estimator of CAAV can be formulated  
as follows [18]:  
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where M is the number of zero transitions of the original signal included during the 
determination of CAAV. 

The relationship of CAAV and the normalized CCF is defined by the formula [16]: 
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and the following relation applied for the normalized CAAV )(a y τ :  
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The transport delay can be determined as the argument of the main minimum of the 
function (15) or (16):  
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 )}(A{arg)}(Aarg{min yy 00 τττ == . (17) 

Examples of runs of the normalized functions CCF and CAAV for z(t) = 0 are given in 
Fig. 1. 

 
Fig. 1. Examples of normalized CCF and CAAV functions. 

 
An increase of the disturbance value results in the decrease in the main CCF maximum in 

lieu with the relation (9) and, correspondingly, an increase of the main minimum of CAAV.  
The relative standard deviation of the CAAV estimator, where τ = τ0, can be formulated as 

follows [18]: 
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The comparison of (18) and (11) results in the following:  
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The plot of relation (19) where the factor c = 1, defining several values of the N/M ratio, is 
given in Fig. 2. The analysed SNR range shows that the relative standard deviation of CAAV is 
always less than the corresponding deviation of CCF when the N/M ration is equal to or less 
than 10. In reality, the N/M ratio value depends on the correlation interval of the measurement 
signals, which determine the choice of non-correlated samples.  
 

 
 

Fig. 2. Plots of the relation (19) for selected values of N/M ratio. 
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4. Results of simulations 
 

For verification of theoretical considerations the practical analysis was conducted using an 
application in the LabVIEW software environment. Using the computer simulation it is 
possible to examination of influence of experimental parameters for CAAV and CCF 
characteristics. Reciprocally delayed stochastic signals were generated, which corresponded to 
the model (1), followed by the determination of discrete CCF (12) and CAAV (14) estimators 
for the given SNR values, taking into account the non-correlated sample pairs.  

The assumed number of samples was 200,000, the standard signal deviation σx = 1, c = 1 
and the transport delay l0 was 100 samples. The examples of runs of the obtained CCF and 
CAAV characteristics for σz = 0 have been presented in Fig. 3. The next stage of the practical 
analysis entailed multiple repetitions of the simulation and determination of the relative 
experimental standard deviations for the determined characteristics at the extreme points: 
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where: K is the number of test repetitions. 
 

  
 

Fig. 3. CCF and CAAV obtained from the simulation.  
 

The simulations were run for the given SNR values. Fig. 4 and 5 show example runs of 
CCF and CAAV at extreme points, where the single relative standard deviation range is shown 
as determined using the formulas (20) and (21), for K = 1000. The characteristics shown in 
Fig. 4 are obtained for σz = 0.  

 

  
Fig. 4. CCF and CAAV for σz = 0. 
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The runs of CCF and CAAV obtained for SNR = 4 (a), SNR = 1 (b) and SNR = 0.25 (c) 
accordingly where the given N/M = 2 for the modelled signals, are shown in Fig. 5. 

 a) 

  
 b) 

  
 c) 

  
  

Fig. 5. CCF and CAAV for SNR = 4 (a), SNR = 1 (b) and  SNR = 0.25 (c). 
 

By determining the quotient of the relations (21) and (20), the relative standard deviations 
of CAAV and CCF can be compared for the selected delay depending on the SNR. Fig. 6 
presents the plot of the relations:  

 [ ] ( )[ ] ( )SNRflR̂ˆ/)l(Âˆ xyy =00 εε ,  (22) 

compared to the theoretical run (19) for N/M = 1 and N/M = 2. 
 

 
Fig. 6. Plots of relations (19) and (22) for N /M = 1 and N /M =2. 
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The results of the practical analysis in the entire surveyed range of SNR do not depart 
greatly from the calculations (in favour of the CAAV characteristic), which can be specifically 
seen in the range of SNR values approximated to unity. 

 
5. Conclusion 

 
This work entailed the comparison of relative standard deviations of the direct cross-

correlation to the conditional average value of the delayed signal absolute value at the extreme 
points for the assumed signal models and the given SNR values. The theoretical analysis 
implies that the relative standard deviation of the CAAV values in the range of N/M equal to or 
less than 10 is always less than the corresponding CCF values irrespective of the SNR values.  
The computer simulations confirm the results of theoretical deliberations and show an 
influence of experimental parameters for CAAV and CCF characteristics. The standard 
deviation values of CCF and CAAV at the extreme points significantly affect the uncertainty of 
the transport delay determined by using the functions. This problem and metrological 
properties of another non-linear extreme characteristics are currently undergoing further 
investigation.  

 
Acknowledgements 
 

This work was supported by the Ministry of Science and Higher Education, Poland  
(grant No. N N505 466038).  

 
References 
 
[1] Bendat, J.S., Piersol, A.G. (2000). Random data - analysis and measurement procedures. John Wiley. New 

York.  

[2] Bendat, J.S., Piersol, A.G. (1993). Engineering applications of correlation and spectral analysis. John 
Wiley. New York. 

[3] Beck, M. S., Pląskowski, A. (1987). Cross-Correlation Flowmeters. Adam Hilger. Bristol.  

[4] Blok, E. (2002). Classification and evaluation of discrete subsample time delay estimation algorithms. Proc. 
of 14th International Conference on Microwaves. Radar and Wireless Communications, 764-767. 

[5] Carter, C.G. (1987). Coherence and time delay estimation. Proceedings of the IEEE, 75(2), 236-255. 

[6] Jacovitti, G., Scarano, G (1993). Discrete time technique for time delay estimation. IEEE Transactions on 
Signal Processing, 41(2), 525-533. 

[7] Lal-Jadziak, J. (2001). Accuracy in determination of correlation functions by digital methods. Metrology 
and Measurement Systems, 8(2), 153-164. 

[8] Lal-Jadziak, J., Sienkowski, S. (2009). Variance of random signal mean square value digital estimator. 
Metrology and Measurement Systems, 16(2), 267-278. 

[9] Piersol, A.G. (1981). Time delay estimation using phase data. IEEE Transactions on ASSP, 29(3), 471-477. 

[10] Hanus, R. (2003). Statistical error analysis of time delay measurement by using phase of cross-spectral 
density function. Systems Analysis Modelling Simulation, 43(8), 993-998. 

[11] Petryka, L., Hanus, R., Zych, M. (2008). Statistical signal analysis in the radioisotope two-phase flow 
measurements. PAK, 54(12), 866-868. (in Polish). 

[12] Hanus, R. (2008). Statistical error comparison of time delay estimation using cross-correlation function and 
phase of cross-spectral density function. Electrical Review, 84(12), 301-303. (in Polish). 

[13] Bendat, J.S. (1985). The Hilbert Transform and Applications to Correlation Measurements. Brüel&Kjær, 
BT0008-11. Naerum. Denmark. 

[14] Cabot, R.C. (1981). A note on the application of the Hilbert transform to time delay estimation. IEEE 
Trans. Acoust. Speech. Signal Processing, 29, 607-609. 



 
A. Kowalczyk, R. Hanus, A. Szlachta: INVESTIGATION OF THE STATISTICAL METHOD OF TIME DELAY ESTIMATION BASED ON… 

[15] Hanus, R. (2009). The application of the Hilbert transform to correlation measurements of time delay. 
Electrical Review, 85(7), 45-48. (in Polish). 

[16] Kowalczyk, A. (1989). Regression method of velocity measurement. Educational and Scientific Equipment, 
15(3-4), 34-36. (in Polish). 

[17] Hanus, R. (2001). Accuracy comparison of some statistic methods of time delay measurements. Systems 
Analysis Modelling Simulation, 40(2), 239-244. 

[18] Hanus, R., Kowalczyk, A. (2003). Estimators errors analysis of some statistical methods of time delay 
measurement. PAK, 49(7-8), 8-11. (in Polish). 

[19] Kowalczyk, A., Szlachta, A. (2010). The application of conditional averaging of signals to obtain the 
transportation delay. Electrical Review, 86(1), 225-228. (in Polish). 


