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Abstract  

This paper is devoted to multiple soft fault diagnosis of analog nonlinear circuits. A two-stage algorithm is 

offered enabling us to locate the faulty circuit components and evaluate their values, considering the component 

tolerances. At first a preliminary diagnostic procedure is performed, under the assumption that the non-faulty 

components have nominal values, leading to approximate and tentative results. Then, they are corrected, taking 

into account the fact that the non-faulty components can assume arbitrary values within their tolerance ranges. 

This stage of the algorithm is carried out using the linear programming method. As a result some ranges are 

obtained including possible values of the faulty components. The proposed approach is illustrated with two 

numerical examples. 
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1. Introduction 

 

Fault diagnosis of analog circuits is an open problem for design validation and testing of 

electronic devices [1-30]. A fault can be catastrophic (hard) if it leads to some topological 

changes (open circuit or short circuit) or soft if a parameter drifted from its tolerance range. 

Fault diagnosis includes detecting faulty circuits, locating faulty components and evaluating 

their values. If most circuit simulations take place before any testing, the diagnostic method is 

classified as the simulation-before-test (SBT) approach, otherwise the method is classified as 

the simulation-after-test (SAT) approach. 

Soft fault diagnosis is usually carried out using the SAT approach. Most of the works in 

this area are limited to a single fault, e.g. [6, 10, 12, 16, 21-23, 27]. Less papers have been 

devoted to multiple faults, e.g. [8, 11, 13, 17-18, 26]. To perform soft fault diagnosis a 

diagnostic test is arranged leading to diagnostic equations including circuit parameters as 

variables. For nonlinear circuits the diagnostic equation usually cannot be formulated in 

explicit analytical form. In addition, a difficult problem is fault masking due to scattering of 

the circuit parameters within their tolerance ranges.  

This paper deals with multiple soft fault diagnosis of DC nonlinear circuits, takes into 

account component tolerances and offers a two-stage algorithm. It enables us to locate the 

faulty components and evaluate their parameters, considering the component tolerances. At 

first a preliminary diagnostic procedure developed in Section 2 is performed, under the 

assumption that the non-faulty components have nominal values. The obtained results are 

approximate and considered as tentative. Then they are corrected, taking into account the fact 

that the non-faulty components can assume arbitrary values within their tolerance ranges. This 

stage of the algorithm is performed using the linear programming method described in 

Section 3. The proposed approach is illustrated with two numerical examples placed in 

Section 4. 
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To perform the first stage of the algorithm a diagnostic test is arranged. For this purpose 

we apply DC voltage sources to nodes accessible for excitation and measure voltages at 

accessible nodes. For different values of the voltage sources we obtain n  values of the 

voltages nu,,u 1  and form a vector  T1 nuu u , where n  is the number of circuit 

components considered as possibly faulty. Let  T1 nxx x  be a vector of the circuit 

parameters. Then the test equation has the form 

   uxf  , (1) 

where       T1 xxxf nff   is a nonlinear function. Generally, this function is not given in 

an explicit analytical form. However, the values of  xif   n,,i 1  and their derivatives 

with respect to jx  n,,j 1  can be found numerically for given values of nx,,x 1 . 

 

2. Preliminary multiple fault diagnosis 

 

Let  0x  be a vector composed of nominal values of the circuit components. We expand the 

function  xf  appeared in (1) into the Taylor series about  0x  and neglect the higher order 

terms, similarly as in [18] 

           000
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d
xxx
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Since the function  xf  is not given in explicit analytical form we cannot find   0
xf  and 
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d

d
x

x

f

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
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
 directly. To overcome this drawback we set  0

xx   and carry out the DC and the 

sensitivity analyses of the circuit. Substituting (1) into (2) yields 

 bAy  , (3) 

where:   0

d

d
x

x

f
A   is an nn  matrix,  0xxy   and   0xfub   are n-vectors. The 

elements of y  are deviations of the circuit components from the nominal values. To solve the 

equation (3) we first determine the rank of A  applying the singular value decomposition 

(SVD) [31]. Let the rank of A  be r    rArank , where nr  . We choose an integer rp   

such that 2p  in the case of single fault diagnosis, 3p  in the case of double fault 

diagnosis, and so on. We create all pn  submatrices of the matrix A  having the rank equal 

to p  using the procedure described in the Appendix. Let the number of these submatrices be 

M  and  i
A , where  Mi ,,1  be an arbitrary matrix belonging to this set. We write the 

equation 

     byA ii , (4) 

where  iy  is a vector consisting of p  elements corresponding to the columns of the matrix 

A  used to form  i
A . To solve the equation (4) we apply the method of normal equation: 

           bAyAA
TT iiii   (5) 
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and denote the solution by  i
1y . Adding the elements of  i

1y  to the corresponding elements of 
 0x  we obtain a vector, labeled  i

1x , that contains p  new values of the circuit components. 

The remaining elements of this vector are the same as in  0x , i.e. they are equal to the 

nominal values. The obtained  i
1x  is an approximate, specific solution of the test equation. To 

improve the solution the following iteration process, exploiting the idea of the Newton-

Raphson method, is proposed. For  i
1x  we find   i

1xf  and   i

1
d

d
x

x

f
, similarly as we did with 

 0x  and form up-dated matrix  i
1A  and vector     ii

11 xfub  . Then we solve the equation 

(4), with  i
A  replaced by  i

1A  and b  replaced by  i
1b , using the equation (5) adapted to this 

case. The solution is labelled  i
2y , whereas the corresponding parameter vector,  i

2x . The 

described process is continued, leading to the sequence      i
l

ii ,,, yyy 21 , where it is assumed 

that l-th element (vector)  i
ly  of this sequence satisfies a convergence criterion. Next we 

compute    



l

j

i

j

i~

1

yy . Thus, any element of  i~y  is a total perturbation of the corresponding 

circuit component value. 

Since the number of the submatrices  i
A , having the rank p , is M  we repeat the above 

described procedure for all of them. As a result a set   i~y  consisting of M̂  elements is 

created, where M̂  can be equal to M  or smaller than M , if some of the sequences 
    ,, ii

21 yy  are not convergent in a preset number of iterations maxL . The elements of 

different vectors  i~y  of the set   i~y  correspond to different combinations of p  circuit 

components. Thus, the set   i~y  consists of M̂  elements (vectors)    T

1

~~~
pii

i yy y , where 

pi,i 1  belong to the set  n,,, 21 . 

 

Procedure for selection of the faulty components 

 

The procedure described underneath enables us to locate up to 1p  faulty circuit 

components and evaluate their approximate values. Let us pick up arbitrarily 1p  numbers 

from the set  n,,, 21  and select all the p-dimension vectors of the set   i~y  containing the 

elements specified by the chosen 1p  numbers. Each of the selected p-dimension vectors 
 i~y  contains 1p  elements corresponding to the same 1p  circuit components and one 

additional element. Let the number of these vectors be  . We choose all the vectors 

containing this additional element equal to zero (close to zero) and check if their number 

 cˆ  , where c  has been set 0.5 and 4  on the basis of numerical experiments. If it holds 

and values of each of the 1p  elements in all the ̂  vectors are sufficiently close, the 1p  

circuit components are classified as possibly faulty. Their values are obtained by adding each 

of the 1p  elements to the corresponding element of  0x . The procedure for locating the 

faulty circuit components and evaluating their values is carried out for all combinations of 

1p  elements out of n  elements, i.e. 1p
nC  combinations. 

The developed method enables us to find a set of faulty circuit components if their number 

does not exceed 1p . Sometimes the method gives additionally one or more virtual sets that 
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also satisfy the diagnostic test, being the result of existence of some ambiguity groups. Thus, 

generally several vectors x  of the circuit components can be found. 

 

3. Correction of the faults considering the component tolerances 

 

The preliminary method developed in Section 2 enables us to locate faulty components and 

evaluate their values, under the assumption that the remaining components have nominal 

values. In reality, however, the components are not nominal but scattered within their 

tolerance frames. To take into account the influence of the disturbance we correct the obtained 

results [30]. 

Let us consider a vector x  containing the evaluated values of faulty components and the 

nominal values of the remaining components, obtained as described in Section 2 and label it 


x . Without any loss of generality we can assume that the first 1p  elements of the vector 


x  correspond to the circuit components that have been diagnosed as faulty. Consequently, 

the vector 
x  can be decomposed into two subvectors:  T11




  prr r  corresponding to the 

faulty components and  T  np zz z  corresponding to the nominal components, 

 















z

r
x . (6) 

In this section we assume that the non-faulty components are allowed to be arbitrarily 

dissipated within their tolerance frames and find deviations of the values of the faulty 

components from 



11 pr,,r  , taking into account the results of the test. Thus, we obtain some 

ranges of the values of the faulty components near the values 



11 pr,,r  , due to scattering of 

the values of the non-faulty components within their tolerance frames. 

Let the non-faulty components have their values jz  belonging to the tolerance ranges  

 jjj zzz   , n,,pj  , (7) 

where 

 jjj z   . (8) 

Thus, instead of the vector z  we consider the vector  Tnp zz z . The perturbations of the 

non-faulty components, within their tolerance frames, cause some perturbations of the 

obtained values of the faulty components, leading to the vector 

 rrr   , (9) 

where:  T11  prr  r , 

 jjj rrr  
, 11  p,,j  . (10) 

Thus, we need the lower and upper bounds on jr ,  11  p,,j  , labelled 


jr  and 


jr  

respectively, so that 

 
  jjj rrr  . (11) 

For this purpose we use the linear programming approach. 
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Let us define some range  jj ,  in which jr  is sought 

 jjj r   , 11  p,,j   (12) 

and introduce new variables jr~  

 jjj rr~   , (13) 

which, according to (12) satisfy the inequalities 

 jjr
~  20  , 11  p,,j  . (14) 

Similarly we introduce new variables jz~  

 jjj zz~   , (15) 

which, according to (8), satisfy the inequalities 

 jjz~  20  , n,,pj  . (16) 

On the basis of the test equation (1) we write 

         uzzx
z

f
rrx

r

f
xf ˆ

ˆˆ
ˆ 









  , (17) 

where:     TTT   zrx , f̂  and û  are n̂ -vectors selected from f  and u , respectively, 

where nn̂  . To choose n̂  and select n̂  appropriate equations from the system of n  test 

equations we use the following procedure. First we determine the rank of the matrix  



x

x

f
 

and label it n . If nn   then 1ˆ  nn , otherwise nn ˆ . Then, we consider all combinations 

of n̂  equations from among n  ones and select this combination which fulfils two 

requirements:   n̂
ˆ

rank 
















 
x

x

f
 and  

2

ˆˆ  xfu  is minimal. 

The equation (17) can be written in the form 

 i

n

pj

jij

p

j

jij dzsrs 







1

1

, n̂,,i 1 , (18) 

where:   xiii fud ˆˆ , n̂,,i 1 , and 
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




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





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
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f̂
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r

f̂

s

j
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j

i

ij





x

x 11

  (19) 

Substituting jjj r~r    (see(13)) and jjj z~z    (see (15)) into (18) yields 

 i

n

pj

jij

p

j

jij d
~

z~sr~s 







1

1

 , n̂,,i 1 , (20) 
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where: 

 







n

pj

jij

p

j

jijii ssdd
~


1

1

. (21) 

We select all the equations of the set (20) having 0id
~

 and multiply them by  1 . As a 

result we obtain a system of equations 

 i

n

pj

jij

p

j

jij d̂z~ŝr~ŝ 







1

1

, n̂,,i 1 , (22) 

where 0id̂   n̂,,i 1 . Let us introduce the slack variables 0jw~   n,,j 1  so that  

 jjj w~r~  2 , 11  p,,j  , (23) 

 jjj w~z~  2 , n,,pj  . (24) 

For each  11  p,,j   we formulate the linear programming problem:  
 

maximize jr~  

 subject to 

0~,0~,0~

,,,,2~~

,1,,1,2~~

,ˆ,,1,ˆ~ˆ~ˆ
1

1







 






jjj

jjj

jjj

i

n

pj

jij

p

j

jij

wzr

npjwz

pjwr

nidzsrs









  (25) 

and solve it using the simplex method [32-33]. As a result we find:    
maxpmax

r~,,r~ 11   . 

Similarly we find    
minpmin

r~,,r~ 11    minimizing jr~  for 121  p,,,j  . Using (13), 

yields 

     11  p,,j,r~rr jmaxjmaxjj  , (26) 

     11  p,,j,r~rr jminjminjj  . (27) 

Thus, we find the region including the values of the faulty components: 

   rrrr  , , where  T11



  prr  r ,  T11



  prr  r , valid for 

actual values of the non-faulty components belonging to their tolerance ranges. 

 

4. Numerical examples 

 

The proposed method was implemented in MATLAB and tested using several transistor 

circuits. Two of them are presented below. The calculations were executed on a PC Pentium 

Core 2 Duo E 6400.  

 

Example 1 

 

Consider the circuit shown in Fig. 1 [30], where nominal values of the circuit components 

are indicated, and their tolerance is 5%. All seven resistors of the circuit are considered as 
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possibly faulty. We assume that the nodes A and B are accessible for measurement. The 

transistors are characterized by the Ebers-Moll model with the following parameters: 

9975.0F , 8.0R , fA2210.IES  , fA7512.ICS  , mV8625.VT  . To perform a 

diagnostic test we measure voltages at the test nodes A and B at the three combinations of the 

voltage sources:   V151 inv ,   V152 inv ;   V51 inv ,   V152 inv ;   V151 inv ,   V02 inv  and 

at the test node B for   V61 inv ,   V62 inv , assuming an accuracy of μV10 . Underneath, 

four cases are described assuming  jj z.050  and  jj r.200  in the correction procedure. 

 

Fig. 1. A transistor circuit for Example 1. 

 

Case 1 

 

Components kΩ51751 .R  , kΩ30142 .R  , Ω51756 .R   are faulty 

 %35%,35%,35   and the others are within their tolerance ranges: kΩ2443 .R  , 

kΩ9564 .R  , kΩ7825 .R  , Ω02777 .R  . The preliminary method leads to the correct set 

of the faulty components  621 ,, RRR . The correction procedure, described in Section 3, gives 

the following results:   kΩ417721621 ..R  ,  kΩ711426132 ..R  , 

 Ω218081626 ..R  , including the actual values of the components. 

 

Case 2 

 

Components kΩ5213 .R  , kΩ434 .R  , Ω1356 R  are faulty  %50%,50%,50   

and the others are within their tolerance ranges: kΩ02651 .R  , kΩ0212 .R  , 

kΩ7825 .R  , Ω02777 .R  . The preliminary method leads to the correct set of the faulty 

components  643 ,, RRR , whereas the correction procedure gives the following results: 

 kΩ182280203 ..R  ,   kΩ4234034 ..R  ,  Ω82137671336 ..R  , including the 

actual values of the components. 
 

Case 3 

 

Components kΩ05583 .R  , kΩ1894 .R  , Ω53647 .R   are faulty  %35%,35%,35  

and the others are within their tolerance ranges: kΩ02651 .R  , kΩ0212 .R  , 

kΩ7825 .R  , Ω02786 .R  . The preliminary method leads to three sets of components: 

 741 ,, RRR ,  732 ,, RRR , and  743 ,, RRR . The last is the real one, whereas the others are 



 

M. Tadeusiewicz, S. Hałgas: MULTIPLE SOFT FAULT DIAGNOSIS OF NONLINEAR DC CIRCUITS CONSIDERING COMPONENT… 

 

virtual. The correction procedure eliminates the first set and gives the following results: 

 kΩ241666142 ..R  ,  kΩ566282573 ..R  ,  Ω740283637 ..R   and 

  kΩ105912563 ..R  ,  kΩ08101494 ..R  ,  Ω537373567 ..R  . Thus, the method 

provides the ranges of the actual values of the faulty components and another ranges of values 

of the virtual set of components.  
 

Case 4 

 

Components kΩ5401 R , kΩ442 R , kΩ455 .R   are faulty  %100%,100%,100  and 

the others are within their tolerance ranges: kΩ2443 .R  , kΩ9564 .R  , Ω02786 .R  , 

Ω02777 .R  . The preliminary method leads to the correct set of the faulty components 

 521 ,, RRR . The correction procedure gives the following results:  kΩ74551684981 ..R  , 

  kΩ224581402 ..R  ,   kΩ5050055 ..R  , including the actual values of the 

components. 

 

Some statistical results 

 

For statistical analysis 112 sets of faulty components  %35  were considered, including all 

combinations of double (42) and triple (70) faults. The method found the faulty set in %0.83 , 

in 59.8% uniquely. In each case the provided ranges of values of the faulty components 

effectively framed the actual values. In 12.5% the preliminary method failed. In 4.5% of the 

cases, values evaluated by the preliminary method were far away from the actual values and 

they were discarded during the first phase of the simplex method. The CPU time in each case 

was less than 5s.  

 

Example 2 

 

 
Fig. 2. A transistor circuit for Example 2. 

 

Let us consider the transistor circuit shown in Fig. 2, where nominal values of the circuit 

components are indicated. The tolerance of the components is 5%. All six resistors of the 

circuit are considered as possibly faulty. We assume that the nodes A, B, and C are accessible 

for measurement. The transistors are characterized by the Ebers-Moll model with the 

following parameters: 9975.0F , 8.0R , fA2210.IES  , fA7512.ICS  , 

mV8625.VT  . To perform a diagnostic test we measure voltages at the test nodes for 
  V121 inv  and 

  V52 inv , assuming the accuracy to be μV1 . We wish to diagnose double 



 

Metrol. Meas. Syst., Vol. XVIII (2011), No. 3, pp. 349–360. 

  

 3p  and triple  4p  faults. Underneath, three cases are described assuming in the 

correction procedure  jj z.050  and  jj r.200 . 

 

Case 1 

 

Components kΩ9441 .R  , Ω52534 .R   are faulty  %%, 3535   and the others are 

within their tolerance ranges: kΩ8742 .R  , Ω03853 .R  , kΩ8995 .R  , kΩ1026 R . The 

preliminary method, described in Section 2, leads to two sets of faulty components  41 R,R  

and  32 R,R , where the first set is true and the other is virtual. During the correction 

procedure, described in Section 3, the second set is eliminated. The correction procedure 

gives the following ranges of values of the faulty components:  kΩ941494041 ..R  , 

 Ω625352534 ..R  , that very well frame the actual values. 

 

Case 2 

 

Components kΩ0121 .R  , kΩ0092 .R  , and kΩ5135 .R   are faulty  %%,%, 358058  

and the others are within their tolerance ranges: Ω03853 .R  , Ω03924 .R  , kΩ1026 R . 

The preliminary method gives the correct set of faulty components  521 R,R,R . The 

correction procedure leads to the following ranges of values of the faulty components: 

 kΩ00212999111 ..R  ,  kΩ018998482 ..R  ,  kΩ18416790105 ..R  , including 

the actual values of the components. 
 

Case 3 

 

Components Ω253.54 R , kΩ565 .R   are faulty  %%, 3535   and the others are 

within their tolerance ranges: kΩ471 .R  , kΩ8742 .R  , Ω03853 .R  , kΩ1026 R . The 

preliminary method, described in Section 2, leads to four sets of faulty components  41 R,R , 

 42, RR ,  43, RR , and  54 , RR , where the last one is true and the others are virtual. During 

the correction procedure,  the second set is eliminated leading to the following results: 

 kΩ39737397071 ..R  ,  Ω40253392534 ..R  ;  Ω47384453843 ..R  , 

 Ω31253302534 ..R  ;  Ω44253352534 ..R  ,  kΩ110774045 ..R  , where the last 

set is true and the others are virtual. 

 

Some statistical results 

 

In the discussed circuit 40 sets of faulty circuit components were considered, including 25 

double and 15 triple faults. The method found the faulty set in 87.5%, in 72.5% uniquely. In 

each case the provided ranges of values of the faulty components effectively framed the actual 

values. In 12.5% the preliminary method failed. The CPU time in each case was between 2 

and 10 seconds. 

 

5. Conclusions 

 

The two-stage algorithm developed in this paper enables us to perform multiple soft fault 

diagnosis of DC nonlinear circuits, even if the deviations of the faulty components from their 



 

M. Tadeusiewicz, S. Hałgas: MULTIPLE SOFT FAULT DIAGNOSIS OF NONLINEAR DC CIRCUITS CONSIDERING COMPONENT… 

 

nominal values are large. The diagnosis includes location of faulty components and 

evaluation of their values, considering the component tolerances. The results are given in the 

form of some ranges where the values of the faulty components are contained. The numerical 

experiments carried out show that the evaluated ranges effectively frame the actual values of 

the faulty components. The method can be extended to dynamic circuits. The proposed 

approach is especially useful at the pre-production stage, where corrections of the 

technological process are possible and the time consumed by the diagnostic procedure is not 

crucial. 

 

Appendix 

 

Creating the submatrices  i
A  having the rank p  

 

To determine the rank of the nn  matrix A  the singular value decomposition (SVD) [31] 

is applied 

 TVUΣA  , (A.1) 

where: U  and V  are orthogonal nn  matrices, Σ  is an nn  matrix of the form 

 


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
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

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00

0
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


1
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where: 021  r   are called singular values of A  and r  is the rank of A  

  Arankr . Note that  

 









0

L
VΣ

T , (A.3) 

where: L  is an nr  matrix and 0  is   nrn   zero matrix. Taking into account the 

equations (A.1) and (A.3) we obtain 

 KLA  , (A.4) 

where: K  is an rn  matrix composed of the first r  columns of U . Since   rArank , the 

matrix K  has also the rank r . We consider all pr   submatrices of the nr  matrix L  and 

select these of them which have the rank equal to p  using SVD. Let us denote the 

submatrices by  i
L , M,,i 1 . For an arbitrary pr   submatrix  i

L  the corresponding 

pn  submatrix  i
A  of A ,    ii

KLA   has the rank equal to p  (see Lemma 1). 

Thus, to find all the pn  submatrices  i
A  of A  having the rank p  we operate with 

smaller submatrices  i
L . For each  i

L  we check which columns of L  have been selected to 

form  i
L  and use the same columns of A  to create  i

A . In this way the procedure for 

creating the pn  submatrices  i
A  having the rank p  is simplified. 

 

Lemma 1 

Let us consider an rn  matrix K   rn   and an pr   matrix S , where   rKrank , 

  pSrank . Then the matrix KS  has the rank equal to p . 
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Proof 

 

Let  pssS 1 ,  rkkK 1 , where is  is i-th column of the matrix S  and ik  is i-th 

column of the matrix K . Then  pKsKsKS 1  holds. Suppose that there exist such 

numbers pc,,c 1 , not all equal to zero, that       0 pppp cccc ssKKsKs  1111 . 

Since S  has rank p , its columns are linearly independent, hence, 0 ppcc ss 11 . Thus, 

  0 ppr ccww ssw  11

T

1  and 0 rrww kk 11 , where not all numbers 

rw,,w 1  are equal to zero. This is a contradiction because K  has, by the assumption, rank 

r . 

 

References 

[1] Bandler, J.W., Salama, A.E. (1985). Fault diagnosis of analog circuits. Proc. IEEE, 73, 1279-1325. 

[2] Zielonko, R., Królikowski, A. (1988). Measurement-diagnostic methods for analog electronic circuits. 

WNT, Warszawa. (in Polish) 

[3] Ozawa, T. (1988). Analog method for computer aided circuit analysis and diagnosis. M. Dekker, New 

York. 

[4] Rutkowski, J. (2003). Diagnostic dictionary methods of analog electronic circuits. WKŁ, Warszawa. (in 

Polish) 

[5] Kabisatpathy, P., Barua, A., Sinha, S. (2005). Fault diagnosis of analog integrated circuits. Springer, 

Dordrecht. 

[6] Rutkowski, J. (1993). A DC approach for analog fault dictionary determination. Proc. Europ. Con. Cir. 

Theor. Des., ECCTD’93, 877-880. 

[7] Materka, A., Strzelecki, M. (1996). Parametric testing of mixed-signal circuits by ANN processing of 

transient responses. Journal of Electronic Testing, 9, 187-202. 

[8] Fedi, G., Giomi, R., Luchetta, A., Manetti, S. Piccirilli, M. C. (1998). On the application of symbolic 

techniques to the multiple fault location in low testability analog circuit. IEEE Trans. Cir. Syst. - II, 45, 

1383-1388. 

[9] Tadeusiewicz, M., Korzybski, M. (2000). A method for fault diagnosis in linear electronic circuits. Int. J. 

Cir. Theor. Appl., 28, 245-262. 

[10] Catelani, M., Fort, A. (2002). Soft fault detection and isolation in analog circuits: some results and a 

comparison between a fuzzy approach and radial basis function networks. IEEE Trans. Instrum. Measur., 

51, 196-202. 

[11] Liu, D., Starzyk, J.A. (2002). A generalized fault diagnosis in dynamic analog circuits. Int. J. Cir. Theor. 

Appl., 30, 487-510. 

[12] Robotycki, A., Zielonko, R. (2002). Fault diagnosis of analog piecewise linear circuits based on 

homotopy. IEEE Trans. Instrum. Measur., 51, 876-881. 

[13] Tadeusiewicz, M., Hałgas, S., Korzybski, M. (2002). An algorithm for soft-fault diagnosis of linear and 

nonlinear circuits. IEEE Trans. Cir. Syst. - I, 49, 1648-1653. 

[14] Toczek, W. (2004). Analog fault signature based on sigma-delta modulation and oscillation-test 

methodology. Metrology and Measurement Systems, XI, 363-375. 

[15] Starzyk, J., Liu, D., Liu, Z., Nelson, D., Rutkowski, J. (2004). Entropy-based optimum test points 

selection for analog fault dictionary techniques. IEEE Trans. Instrum. Measur., 53, 754-761. 

[16] Toczek, W., Kowalewski, M. (2005). A neural network based system for soft fault diagnosis in electronic 

circuits. Metrology and Measurement Systems, 12(4), 463-374. 

[17] Tadeusiewicz, M., Hałgas, S. (2006). An algorithm for multiple fault diagnosis in analogue circuits. Int. 

J. Cir. Theor. Appl., 34, 607-615. 



 

M. Tadeusiewicz, S. Hałgas: MULTIPLE SOFT FAULT DIAGNOSIS OF NONLINEAR DC CIRCUITS CONSIDERING COMPONENT… 

 

[18] Tadeusiewicz, M., Hałgas, S., Sidyk, P. (2007). A method of soft fault diagnosis in transistor circuits. 

Electronics – Constructions, Technologies, Applications, 11, 31-33. (in Polish) 

[19] Aminian, M., Aminian, F. (2007). A modular fault-diagnostic system for analog electronic circuits using 

neural networks with wavelet transform as a preprocessor. IEEE Trans. Instrum. Measur., 56, 1546-1554. 

[20] Golonek, T., Rutkowski, J. (2007). Genetic-algorithm-based method for optimal analog test points 

selections. IEEE Trans. Cir. Syst. – II, 54, 117-131. 

[21] Kuczyński, A., Ossowski, M. (2009). Analog circuits diagnosis using discrete wavelet transform of 

supply current. Metrology and Measurement Systems, 16(1), 77-84. 

[22] Longfu, Zhou, Yibing, Shi, Jingyuan, Tang, Yanjun, Li. (2009). Soft fault diagnosis in analog circuit 

based on fuzzy and direction vector. Metrology and Measurement Systems, 16(1), 61-75. 

[23] Grzechca, D., Rutkowski, J. (2009). Fault diagnosis in analog electronic circuits - the SVM approach. 

Metrology and Measurement Systems, 16(4), 583-598. 

[24] Tadeusiewicz, M., Hałgas, S. (2010). A method for fast simulation of multiple catastrophic faults in 

analogue circuits. Int. J. Cir. Theor. Appl., 38, 275-290. 

[25] Załęski, D., Bartosiński, B., Zielonko, R. (2010). Application of complementary signals in Built-In Self 

Testers for mixed-signal embedded electronic systems. IEEE Trans. Instrum. Measur., 59, 345-352. 

[26] Wei, Zhang, Longfu, Zhou, Yibing, Shi, Chengti, Huang, Yanjun, Li. (2010). Soft-fault diagnosis of 

analog circuit with tolerance using FNLP. Metrology and Measurement Systems, 17(3), 349-362. 

[27] Sałat, R., Osowski, S. (2011). Support Vector Machine for soft fault location in electrical circuits. 

Journal of Intelligent and Fuzzy Systems, 22, 21-31. 

[28] Tadeusiewicz, M., Hałgas, S., Korzybski, M. (2011). Multiple catastrophic fault diagnosis of analog 

circuits considering the component tolerances. Int. J. Cir. Theor. Appl., published on line: 29 MAR 2011 

| DOI: 10.1002/cta.770 

[29] Pułka, A. (2011). Two heuristic algorithms for test point selection in analog circuit diagnoses. Metrology 

and Measurement Systems, 18(1), 115-128. 

[30] Tadeusiewicz, M., Hałgas, S. (2011). Fault diagnosis of nonlinear circuits considering component 

tolerances. Proceedings of X National Conference of Electronics, KKE’11, 890-895. CD-ROM. (in 

Polish) 

[31] Golub, G.H., Van Loan, C.S. (1996). Matrix Computation. The Johns Hopkins University Press, London. 

[32] Simonnard, M. (1962). Programmation lineaire. Dunod: Paris. 

[33] Sierksma, G. (1996). Linear and integer programming: Theory and practice. Marcel Dekker, New York. 

 


