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Abstract      

This overview paper presents and compares different methods traditionally used for estimating damped sinusoid 

parameters. Firstly, direct nonlinear least squares fitting the signal model in the time and frequency domains are 

described. Next, possible applications of the Hilbert transform for signal demodulation are presented. Then, a 

wide range of autoregressive modelling methods, valid for damped sinusoids, are discussed, in which frequency 

and damping are estimated from calculated signal linear self-prediction coefficients. These methods aim at 

solving, directly or using least squares, a matrix linear equation in which signal or its autocorrelation function 

samples are used. The Prony, Steiglitz-McBride, Kumaresan-Tufts, Total Least Squares, Matrix Pencil, Yule-

Walker and Pisarenko methods are taken into account. Finally, the interpolated discrete Fourier transform is 

presented with examples of Bertocco, Yoshida, and Agrež algorithms. The Matlab codes of all the discussed 

methods are given. The second part of the paper presents simulation results, compared with the Cramér-Rao 

lower bound and commented. All tested methods are compared with respect to their accuracy (systematic errors), 

noise robustness, required signal length, and computational complexity. 
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1. Introduction 

 

The need for frequency and damping measurement appears in many fields [1]: electrical 

(e.g. power quality measurement [2-3]), mechanical, electromechanical, optical, biological, 

human, economical and social, geophysical, astrophysical, chemical. The literature on this 

subject is extensive and a significant amount of time is required to get a complete and 

consistent view in this field based on numerous different sources. There are many specialized 

computational environments with implemented standard estimation methods. Matlab is a 

prime example of such a sophisticated program. However, using toolbox functions for 

frequency and damping estimation is not always straightforward. 

This paper aims to provide a 'reader’s digest' of joint frequency and damping estimation 

methods. The paper is constructed as a practical overview and tutorial, and should be useful in 

selecting a suitable method for the case investigated by the reader. For this reason Matlab 

implementations of all the described and tested estimation methods are given in [4]. 

Additionally, the most efficient methods are presented in Appendix B and some basics of 

Matlab calculations are given in the text. 

The paper is structured as follows. In section 2, the measurement model of interest is 

formulated. In section 3, direct signal model fitting methods (nonlinear least squares minimi-

zation) in time and frequency are introduced. In sections 4 to 6, the application of the Hilbert 
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transform, linear prediction (auto-regressive) parametric modelling and the discrete Fourier 

transform (DFT) for frequency and damping estimation are presented respectively. In section 

7, the Cramér-Rao lower bound (CRLB) for statistically-efficient estimation of frequency and 

damping is given. The obtained simulation results of the tested methods are given in section 

8. The paper ends with final conclusions, references and two appendices.  

 

2. Signal model 

 

The assumed signal model is 

    sin cos , 0,1, 2,..., 1Dn Dn

n x xx Ae n Ae n n N          , (1) 

where: A > 0 - signal amplitude, 0 < x <π, - signal angular frequency in radians (x = 2fx/fs 

and x = 2π rad corresponds to half of the sampling frequency fs in hertz), -π < φ ≤ π - phase 

angle in radians, n - index of the sample, N - the number of samples, D ≥ 0  damping of the 

digital signal. 

We assume that the signal is embedded in the possible measurement disturbance n (e.g. 

noise, drift, interference, etc.), i.e. 

 , 0,1, 2,..., 1n n ny x n N    . (2) 

The remaining part is devoted to estimating x, D, A and  based on the measured signal 

yn. We will concentrate only on the damped signal, as an undamped signal is a special case 

with D=0. When x and D are known, finding values of A and  is straightforward (see 

Appendix A), therefore in most methods we only find values of x and D. In turn, in 

parametric modelling methods x and D can be calculated from coefficients of the linear self-

prediction model, therefore further discussion is terminated once those coefficient are 

calculated. 

 

3. Estimation based on direct model fitting 

 

3.1. Time domain 
 

Minimization of cost functions defined as [5]: 

 
1

2

0

( , , , ) ( cos( ) )
N

T x n x

n

C A DC y A n DC 




      , (3) 

 
1

2

0

( , , , , ) ( cos( ) )
N

Dn

T x n x

n

C D A DC y A n e DC 






      , (4) 

represents a straightforward approach to estimating parameters of the (un)damped sinusoidal 

signals given by (1); DC stands for a constant value that may be present in the measurement 

signal. Important drawbacks of this approach are as follows: 

1) The above cost functions are difficult to minimize as they have many local minima, and a 

good starting point (close enough to the correct minimum) has to be selected. 

2) It is difficult to choose a suitable signal model, as the measurement signal could be 

disturbed by different signals (e.g. drift, other sinusoids, etc.). 

3) The method has a high computational complexity. 

A practical example of the time domain optimization-based approach represents an OMI 

algorithm [6], reported to be very successful in mechanical spectroscopy for estimating 

resonant frequency and logarithmic decrement. 
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3.2. Frequency domain 

 

The cost function for estimating signal parameters can also be defined in the domain of 

DFT coefficients as [5]: 

  


k

j
kxF

keVVAC 2)]([),,(  , (5) 

  


k

j
kxF

keVVADC 2)]([),,,(  , (6) 

where Vk denotes the DFT spectrum of the measured signal yn analyzed with the window wn 

(i.e. vn=ynwn), )( kj
eV

  is the theoretical spectrum of the windowed undamped sinusoidal 

signal (D = 0), and )( kj
eV

  - of the windowed damped sinusoidal signal (D > 0). These 

spectra are given by: 

 )(
2

)(
2

)(
)(0)(0 xx jjjjj eWe

A
eWe

A
eV

   , (7) 

 
( ) ( )0 0( ) ( ) ( )
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x xj jj j jA A

V e e W e e W e     , (8) 

where W(e
jΩ

) is a spectrum of the window wn, ( )jW e   is a spectrum of the damped window 
Dn

n nw w e , introduced in [7], and jD  . For example, spectra of the rectangular and 

Hanning windows are as follows: 

 
)2/sin(

)2/sin(
)( 2/)1(




  N

eeW Njj
R , (9) 
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while for damped windows one has: 

 
)2/sin(

)2/sin(
)( 2/)1(




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eeW Njj
R , (11) 

 1 1( ) ( )

1( ) 0.25 ( ) 0.5 ( ) 0.25 ( ), 2 /j jj j

H R R RW e W e W e W e N        . (12) 

For a rectangular window and k = 0, 1, 2,..., N/2, minimization of (5-6) (i.e. fitting the 

signal spectrum model) is equivalent to minimizing (3-4) [5]. In (5-6) only a few DFT bins 

with the highest magnitude can be used, e.g. 3 out of 1024. In such a case we gain robustness 

against disturbances not included in the signal model at the cost of higher noise sensitivity. 

The cost function (5) can be simplified by excluding the signal amplitude A [8] or 

amplitude A and phase φ [9]. In the last case the function depends only on frequency Ωx. 

Matlab implementation of the frequency domain optimization (6), based on [9], is given in 

the program fOptyDFT() [4]. The Rife-Vincent class I windows of order 0 to 6 [7-11] and 

Hamming and Blackman windows are implemented in the function window_cos(). In the 

optimization, three DFT bins with the highest magnitudes are used. The starting point is 

computed by the interpolated DFT algorithm described in [7]. 

 

4. Discrete Hilbert transform methods 

 

Applying the Hilbert transform (HT) [12-14] to estimation of frequency and damping has 

been reported in many publications; however, the HT was mainly used for measuring 
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damping [15-19]. Its usage in estimating frequency is discussed in [19]. The HT shifts the 

signal in phase by /2 rad, e.g. cos(xn) becomes sin(xn). An analytic signal (AS) is 

defined as a complex signal with the input samples in its real part and their HT in the 

imaginary part, e.g. for input cos(xn) we have exp(jxn) = cos(xn)+jsin(xn). For a 

discrete time signal of the form (1), its AS version is 

 ( ) xj na Dn

nx Ae e
   (13) 

and damping and frequency are given by (approximation of derivative): 

 )mean(|)),diff(ln(| )(
n

a
nn DDxD  , (14) 

 )mean(),diff( )(
nx

a
nn x  , (15) 

where “diff” is the difference between two consecutive values as implemented in the Matlab 

function diff and |.|,  denote the magnitude and angle of a complex number respectively. 

In computer implementation, an analytic signal can be calculated by convolution or 

modification of DFT coefficients [13, 20]. When x and D are known, we find values of A 

and  using the method described in Appendix A. 

Matlab implementation of the AS (or Hilbert) estimation method of frequency and 

damping is given in the program fHilbert() [4]. The calculated instantaneous frequency 

and damping have strong oscillations at the beginning and the end of the observation interval. 

Therefore 1/4 of samples is discarded at the beginning and the end of the computed data. In 

the last program line variable temp is used for damping estimation via line fitting, which is an 

option for computing the mean value. A summary of Matlab calculations is presented below. 

 

 
 

5. Parametric modeling methods – solving linear equations 

 

5.1. Initial problem setup 

 

The signal xn (1) is an impulse response hn of the following linear digital filter (u – input, v 

– output):  

 1 1 1 1 2 2n n n nv bu a v a v     , (16a) 

 2

1 1 2sin( ), 2 cos( ),D D D

x xb Ae a e a e        , (16b) 

having a transfer function H(z) with a complex pole z1 (zero of denominator) as follows 

(a0 = 1): 

 
1 1

1 1

1 2 1 * 1

0 1 2 1 1

( )
(1 )(1 )

b z b z
H z

a a z a z z z z z

 

   
 

   
, 1

1
xjp Dz e e e

  . (17) 

Therefore the following linear self-prediction (auto regression) is valid for xn: 

 1 1 2 2 1 2, 0, sin( )D

n n n xx a x a x x x Ae

          . (18) 

N = length(x); ind = round( N/2-N/4 : N/2+N/4 ); win = hanning(N)'; 

Xh = hilbert(win.*x)./win; 

Om = diff( unwrap( angle(Xh) ) );  Om = mean(Om(ind)); 

D = -diff( log( abs(Xh)) );        D  = mean(D(ind)); 



 

Metrol. Meas. Syst., Vol. XVIII (2011), No. 4, pp. 505–528. 

  

In order to estimate frequency x and damping D, one should find such values of coefficients 

a1 and a2 for given N noisy measurements {y0, y1, …, yN-1}, where yn = xn + n, that the linear 

prediction model 1 1 2 2n n ny a y a y     fits best the measurement data yn. 

Many solutions for this optimization task are briefly summarized below. In general, the 

typical calculation path for algorithms covered in this section is as follows: 

1) calculate coefficients a1, a2 of the signal self-prediction model (a0 = 1), 

2) find complex roots (zeros) z1 = e
p1

=e
-D

 e
jx

, z2= z1
* 

of the polynomial a0+a1z
1

+a2z
2

 (or 

a0z
2
+a1z+a2) describing the denominator of the transfer function of the second order 

digital system (17); in Matlab function roots([a0, a1, a2]); 

3) calculate x and D of the discrete-time signal: 

    1 1, lnx z D z    , (19) 

      1 1Im ln , Re lnx z D z    , (20) 

4) estimate signal amplitude and phase (see appendix). 

Having the transfer function H(z) one can calculate the frequency response setting 

z = exp(jΩ), 0 ≤ Ω < 2π, and find its greatest magnitude corresponding to the angular 

frequency Ωx of the analyzed signal. However, estimation of damping is not possible using 

just the magnitude of the frequency response. 

 

5.2. Classical solution to the linear prediction problem using signal samples (covariance 

methods) 

 

There are several methods used in digital filter design, e.g. the Pade approximation 

procedure and the Prony least squares autoregressive model fitting [21] for finding 

coefficients {bk, ak} of the digital filter difference equation (and thus the transfer function 

H(z)) for the desired/given filter impulse response hn. In our case hn = xn is a damped sinusoid, 

and the calculated coefficients {ak} are used to estimate frequency and damping, as stated 

above in (19)(20). Therefore, using the input-output relationship (16) leads to the well-known 

Prony digital filter design method [21]. 

It follows that the linear equation to be solved for a1 and a2 is: 

 

0 1 2

1 2 32

1

3 2 1N N N

y y y

y y ya

a

y y y  

   
   

          
   
   

,    Ya y , (21) 

where Y is a (N2)2 matrix with the Hankel structure (the lower row is the upper row shifted 

one position to the left). In practice, estimation is based on a large number of samples (as 

many as thousands) with the hope that measurement noise will be averaged and cancelled this 

way and thus the obtained result will be more correct. 

For N = 4 we have four measurements y0, y1, y2, y3, (21) consists of two equations with two 

unknowns and the solution is (in Matlab): 

 1 , det( ) 0  a Y y Y ,    a = -inv(Y)*y, (22) 

where Y
-1

 is an inverse of the square matrix Y. In turn, for N > 4 the matrix Y is not square, 

its inverse Y
-1

 does not exist, therefore both sides of (21) are multiplied by Y
T
 (“T” denotes 

transposition): 
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 ( )T T Y Y a Y y  (23) 

Now, the matrix Y
T
Y is square and a solution of (23) is: 

 1( )T T a Y Y Y y ,    a = -pinv(Y)*y, (24) 

in which the pseudo inverse of Y: 

 1( )I T TY Y Y Y , (25) 

replaces Y
-1

 used in (22). 

In Matlab the matrix Y
I
 can be computed directly from its definition or using the built-in 

function pinv(Y). Knowing the vector a we can calculate x and D from (19-20). 

In Matlab the optimal ordinary least squares solution of (21) that takes into account 

features of the matrix Y is given by a = -Y\y. A summary of Matlab computations is given 

below (note that Matlab starts indexing from 1 not 0). 

 
 

Equation (21) can be solved using the following Matlab functions: arcov(), lscov(), 

prony(), stmb(). In the last two, transfer function coefficients of the digital linear system 

having the given (pre-defined) impulse response are to be found. The measured signal y, input 

to both functions, is treated as an impulse response h of the system, while coefficients a of the 

transfer function denominator, returned from the functions, are the solution of (21). Different 

methods belonging to this group are closely related to algorithms of matrix algebra and 

numerical analysis [22]. 

The simulations have shown that the Steiglitz-McBride method [23] (Matlab stmb() 

function), being equivalent to the iterative quadratic maximum likelihood approach [24]), 

gives very good results for estimating single damped sinusoids embedded in white Gaussian 

noise. Firstly, initial estimation of coefficients a0 is found using the LS Prony solution (24) of 

(21). Then, the unitary input impulse-excitation (Kronecker delta function) and the response 

to it (analyzed hn in our case) are both filtered using the recursive digital IIR filter with 

calculated weights a0, and the filtered signals are used in the input-output LS model fitting the 

results with new coefficients a1. Now weights a1 are used for filtering the original input and 

output of the digital system, coefficients a2 are found, etc. After a few iterations, the 

processing loop is stopped and aK is the final result. 

The Matlab implementation of the selected covariance methods is given in programs 

fLPsig() and fSTMCB() [4]. In the first, three algorithms are employed for solving (21). 

Note that the tls() function is not taken from Matlab libraries but from the book [25]. In the 

second program, given in appendix B, the Prony method can be used instead of the Steiglitz-

McBride method. The Burg estimation method using simultaneous forward and backward 

linear prediction is not appropriate for damped sinusoids and has not been tested (despite the 

presence of the Matlab function arburg()). 

 

5.3. SVD-based solutions of linear prediction problems using signal samples (SVD-based 

covariance methods) 

 

In this approach, a principal component approximation of the pseudo-inverse matrix Y
I
 

(25), more robust to noise, is used. The selected linear prediction order is greater than 2 and 

equals P, such that min(P, NP)  2K where K – assumed number of sinusoids present in the 

N = length(y); Y = hankel(y(1:N-2), y(N-2:N-1)); y = y(3:N).'; 

a = -Y\y; % a = -pinv(Y)*y; 

z = roots( [1 fliplr(a')] ); p = log(z); 

D = -real(p(1)); Om = imag(p(1)); 
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analyzed signal (in our case K = 1). Additionally, the backward (not forward) signal self-

prediction is exploited [26], i.e. yn=b1yn+1b2yn+2 …bPyn+P  instead of yn=a1yn1a2yn2. 

Therefore (21) is now replaced by: 

 

1 1 01

2 1 12

2 1 1

P P

P P

N P N N N PP

y y y yb

y y y yb

y y y yb





    

    
    
      
    
    

    

, ,N P P P N P  Y b y  (26) 

and as before in (24): 

  
1

T T I
    

  
b Y Y Y y Y y . (27) 

In this approach the singular value decomposition (SVD) [25] of the Hankel-type matrix Y is 

performed: 

 
 min ,

1

P N P

H

k k k

k






 Y u v , (28) 

where k – singular values of Y (1  2  3 …), and uk, vk – left and right singular vectors 

of Y. The SVD of matrix Y produces a diagonal matrix S of the same dimension as X, with 

non-negative diagonal elements in non-increasing order, and unitary matrices U and V so that 

Y = USV
T
. The SVD results are the ones used for computation of Y

I
 [25]: 

 
 min ,

1

1
P N P

I H

k k

k k





 Y v u . (29) 

The exact solution (27) is given by: 

 
 min ,

1

1
P N P

I H

k k

k k





      b Y y v u y . (30) 

In the Kumaresan-Tuft (KT) method [26] P = 3N/4 and the summation (30) is limited to 

2K (<P) terms, i.e. to the doubled number of expected real sinusoidal signals, completing the 

principal component approximation of the pseudo inverse matrix Y
I
 (in our case K = 1). Next, 

zeros (roots) zk of the polynomial b0z
P
 + b1z

P-1
 + … + bP-1z

1
 + bP (b0=1) are found (in Matlab: 

roots([b0,b1,…,bP])), and only the 2K that lie outside the unit circle are considered (in 

our case just 2 poles: z1 and its conjugate companion z1
*
; see proof in [26]). Finally, as before, 

equations (19-20) are used to calculate x and D, but the value of D has to be negated. In turn, 

when the polynomial bPz
P
 + bP-1z

P-1
 + … + b1z

1 
+ b0 is used, we are looking for zeros inside 

the unit circle, and the value of D calculated from (19-20) is not negated. In the program 

fKT() [4] in appendix B, the Matlab code of the Kumaresan-Tufts algorithm is given. It is a 

modified version of the lpsvd.m function taken from matNMR software [27] that works with 

real not complex signals. 

The total least squares (TLS) solution of the discussed problem was proposed in [28] and 

its mathematical foundations are presented in [25, chapter 7.7, program tls.m]. In this 

method, solving (26) is replaced with the minimization task in respect of bP: 

 , 2
minN P P P N P  Y b y , (31) 
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in which the noisy character of not just matrix YNP,P but also of vector yNP is taken into 

account. Here the SVD is performed on the augmented matrix given below (with added last 

column –yNP): 

 
min( , 1)

, 1 1

1

| ( ... )
N P P

T H

N P P N P P k k k

k

diag   
 

  



       Y y U V u v , (32) 

For 1 1... 0P P        the solution is simply computed as [25]: 

 1

1

(1: )

( 1)

P
P

P

P

P








v
b

v
. (33) 

The SVD-based TLS approach presented above is applied in Matlab functions 

fLPsig()and fLPcor() [4] to the forward (not backward) self-prediction formulation, and 

the prediction order P equals 2K, i.e. double the number of real signal components. The 

function tls.m from [25] is used there. 

In a more general case it is assumed that the smallest significant value is repeated 

1 1 2 1... ...k k k P             and a different (more difficult) formula for bP 

calculation is used [25]. While bP is known, the subsequent steps are the same as in the KT 

algorithm described above. This approach is implemented in function fTLS.m [4], which is a 

modification of tls.m from [25], where the exact known number of damped sinusoids is 

taken into account. 

The constraint total least squares (CTLS) solution, proposed by Abatzoglou and Medel 

(1987), is not discussed here, since it is related to the IQML method [24], which is equivalent 

to the Steiglitz-McBride algorithm [23] presented in the previous section. 

In turn, in the Matrix Pencil method [29, 30] / 3P N    , the matrix YNP,P in (26) is 

denoted as Y1 and a new matrix Y0 is introduced: 

 

0 2 1

1 1

0

1 3 2

P P

P P

N P N N

y y y

y y y

y y y

 



   

 
 
 
 
 
 

Y . (34) 

Next, the reduced rank pseudo-inverse of Y1 is calculated (K – number of signal sinusoidal 

components, in our case K=1) and used for finding a new matrix Z: 
 

                                                     

In the first 2K (we have K=1) the biggest singular-values of matrix Z are equal to roots zk of 

the polynomial with coefficients a; therefore, as before, for K=1, we use equations (19-20) to 

estimate x and D. Let us remember that the linear eigenvalue Matrix Pencil problem is 

defined for two squares matrices A and B as solving the equation (AB)u=0, u  0 [25]. In 

the program fMatPen() [4] in appendix B Matlab code of the Matrix Pencil algorithm is 

given based on Fortran program from [30]. 

Further improvements of the Kumaresan-Tufts and Matrix Pencil methods were proposed 

in [31] and [32] respectively, while the application of higher order statistics was introduced in 

[33]. A simple description of the KT method is given in [34]. 
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5.4. Classical solution of the linear prediction problem using the autocorrelation function 
 

For N = 4, equation (23) can also be interpreted as: 

( ) ( )T T Y Y a Y y   
0 1 2 2

1 0 1 1

r r a r

r r a r

     
      

    
  

0 1 1 1

1 0 2 2

r r a r

r r a r

     
      

    
  yy yy R a r , (36) 

where 

 
3

0

1
, 0,1, 2

2

N

k n n k

n

r y y k
N







 

 . (37) 

Vector a, which is the solution of (36), minimizes the mean square prediction error (MSE). 

The generalization of (36) is known as the Yule-Walker equations and can be solved by the 

Matlab functions aryule() and lpc(). An estimate of the autocorrelation function rk (37) 

of yn needs to be found first, Ryy and ryy are calculated next, and finally the equation 

Ryya = ryy (36) is solved using one of the many existing methods, e.g. the one presented 

previously for solving (21). However, in this case, the matrix of the linear equation (Ryy) is 

square and symmetric in contrast to Y, and new possibilities exist, e.g. iteratively solving the 

equation (36) for increasing dimension of Ryy using the Levinson-Durbin algorithm (function 

levinson() in Matlab). For example, such a method is used for fast calculations of vocal 

tract filter coefficients in digital speech coders in GSM telephony. Algorithms belonging to 

this group represent well-known classical ARMA techniques widely presented in [20, 35-37]. 

After multiplying both sides of (21) by y0 and taking an expected value in the statistical 

sense, the following equation is obtained: 

 

0 1 2

1 2 32

1

3 2 1N N N

r r r

r r ra

a

r r r  

   
   

          
   
   

,    yy yy R a r  (38) 

which offers new computational possibilities for N > 4 in comparison to (36), since in this 

case the matrix Ryy is not square and a can be calculated, for example, from equation 
1( )T T

yy yy yy yy

 a R R R r , similar to (24), and not from equation 
1

yy rr

 a R r , similar to (22), 

which is a solution of (36). 

Matlab implementation of autocorrelation-based estimation methods (36)(38) is given in 

the program fLPcor() [4].    

 

5.5. EVD-based (signal subspace) solution of the linear prediction problem using 

autocorrelation 

 

Setting xn = yn  n in (18) we obtain: 

 T Ty a ε a , (39a) 

where (a0 = 1) 

 1 2 1 2 1 2 0 1 2[ ], [ ], [ ], [ ]T T T T

n n n n n n n n ny y y x x x a a a          y x ε a  (39b) 

After left-multiplication (39) by y and calculation of expected values of both sides, we have: 

 [ ] [ ]T TE Eyy a yε a , (40) 
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since signal xn is uncorrelated with noise n. Finally: 

 2

yy R a a , (41) 

so the vector a of interest is an eigenvector of the square, symmetric autocorrelation matrix 

Ryy associated with eigenvalue 
2
 (it should be noted that the eigenvalue problem for the 

given matrix A is solving the equation Av=v; v  0 – eigenvector of A, - corresponding 

eigenvalue of A). The eigenvector a lies in the noise subspace and is orthogonal to 

eigenvectors lying in the signal subspace. Therefore, it is necessary to perform the following 

steps:  

1) calculate the estimate of the autocorrelation function ryy of noisy measurement signal yn, 

for example using (37) as before, then build the autocorrelation matrix Ryy: 

 

0 1 2

1 0 1

2 1 0

yy

r r r

r r r

r r r

 
 
 
  

R , (42) 

2) compute its eigenvalue decomposition (EVD), e.g. using function eig() in Matlab: 

 
3

1 2 3

1

,T

yy k k k

k

   


  R v v , (43) 

3) find eigenvector v3 associated with the smallest eigenvalue 3  = 
2
 and set a = v3. 

However, due to scaling incorporated in EVD, only the signal frequency can be found from 

roots {z, z
*
} of the polynomial a: x = |imag(ln(z)). 

The signal subspace methods (Pisarenko, EV, Min-Norm, MUSIC, ESPRIT) are very well 

presented in [38] and [28]. Their brief description can also be found in [20]. In program 

fPisarenko() [4], only the Matlab code of the Pisarenko method is given. The other 

methods are not discussed since performing this algorithmic family is significantly inferior to 

the SVD-based methods, making direct use of signal samples (section 5.3: Kumaresan-Tufts, 

TLS, Matrix Pencil). 

For example, in [39] the Min-Norm EVD-based method, the extension of the Pisarenko 

approach is compared with the Prony and FFT techniques in application to power system 

analysis. 

 

6. DFT methods 

 

The Fourier transform (FT) of an infinite discrete sequence is a continuous function of 

angular frequency , defined as 

 ( )j j n

n

n

X e x e


  



  . (44) 

In (44) we intentionally use notation ( )jX e   instead of ( )X   in order to stress the 

connection between the FT and the Z transform [13]. For finite length sequences, DFT 

(discrete Fourier transform) is defined as: 

 





1

0

)/2(
N

n

knNj
nk exX  , 0,1, 2,..., 1k N  . (45) 

The DFT can be efficiently calculated by FFT (fast Fourier algorithms) proposed in [40], or 

by recursive algorithms [41, 42] when the calculation of spectra of consecutive signal 
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fragments (shifted by 1 sample) is required. Comparing (44) and (45), it can be observed that 

in the DFT (45) the Fourier transform (44) is computed only for frequencies k=(2π/N)k, thus 

the DFT samples the continuous Fourier spectrum of discrete-time signal. 

The DFT is derived for infinite periodic signals [13]; as a consequence the results of 

frequency estimation are correct only for measurement signals containing an integer number 

of cycles (periods for sinusoidal signals (1), D = 0). It means that the frequency of the signal 

must be equal to the DFT frequency 

 
2

, 0,1,2,..., 1x k k k N
N


      . (46) 

A sinusoidal signal with frequency x = k is known as synchronously or coherently 

sampled. In practice, the condition (46) for pure sinusoidal signals is closely fulfilled at the 

stage of acquisition by the PLL (Phase Locked Loop) that keeps the integer ratio between 

signal frequency fx and sampling frequency fs. It is also possible to coherently resample a non-

coherently acquired signal [43]. 

For non-coherently sampled signals, DFT analysis is affected by spectral leakage and 

sampling of continuous spectrum [13, 44]. Both phenomena can be the source of unacceptable 

estimation errors. The influence of spectral leakage is reduced by appropriate time windows, 

and the impact of sampling of the continuous spectrum is mitigated by interpolated DFT 

(IpDFT) algorithms. 

Let us now rewrite (1) in the form: 

  ( ) ( )
cos( )

2
x xj n j nDn Dn Dn

n x

A
x Ae n e e e e

             . (47) 

From the definition (45), the DFT of the first term of the sum in (47) is 

  ( )
DFT xj nDne e

 
1
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e e
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   



  , (48) 

where (2 / )k N k  . By using the sum of the geometrical sequence from (48) we obtain 

 
*

*
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N N
j j

k j j
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X e e

e e

  

 



   

  
  

  
, (49) 

where xD j
e   

  [5, 45]. 

Equation (49) always holds, except for D = 0 and x = k; in this case we have 

 , 0
2

j

k x k

N
X A e for D and     . (50) 

The frequency of the coherently sampled sinusoidal signal is equal to the frequency of the 

only nonzero DFT bin with index k. Amplitude and phase are given from (50) by 

 NXA k /||2  and kX . (51) 

For a coherently sampled damped signal (1), its frequency equals the frequency of the DFT 

bin with the highest modulus, although the neighboring bins do not equal zero. As we have 

three unknowns (damping, amplitude and phase), we have to use at least two DFT bins 

(which are complex numbers) do determine them. 

Let us approximate the DFT spectrum for positive frequencies by the first term of (49) and 

define the following ratio of DFT bins: 
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From (52) we get 

 
2 /

1

1
kj

j N

R
e

Re 
 







 (53) 

and finally 

 Re{ln( )}D    and Im{ln( )}x   . (54) 

Solution (54) is known as the Bertocco algorithm [45]. 

The DFT analysis is only correct when a signal contains an integer number of cycles, that 

is when (47) holds. In practice it is more likely that kx  . The objective of interpolated 

DFT (IpDFT) algorithms is to interpolate the spectrum in the neighborhood of the k-th DFT 

bin of the highest magnitude. The Bertocco algorithm (54) presented above is an example of 

such an algorithm and it is a zero-order member of the Bertocco-Yoshida (BY) family of 

algorithms, while the Yoshida algorithm [46] is a second-order member of this group. 

Definitions and properties of BY algorithms are given in [7, 9]. 

Taking into account more than two DFT bins, derivation of alternative IpDFT methods is 

possible having smaller systematic errors. In this part we present the Yoshida algorithm only, 

since in general it performs well in comparison to other BY methods which are rectangular-

window-based. In the Yoshida algorithm, the following ratio R between DFT frequency bins 

is computed [46]: 
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kkk
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R . (55) 

Four successive DFT bins in (55) have the greatest magnitudes (depending on the signal’s 

frequency, the magnitude of Xk or Xk-1 is the highest). The frequency and damping are then 

calculated from the formulas: 

 )}1/(3Re{
2

 Rk
N

x


, )}1/(3Im{

2
 R

N
D


, (56) 

where k is the index of the DFT bin with the greatest magnitude. Matlab implementation of 

the Yoshida algorithm is given in the program fYoshida() [4] presented in appendix B. 

In the BY family of estimation methods [7, 9], the rectangular window is used, i.e. the 

DFT is computed from a fragment of the signal. In order to describe some other IpDFT 

algorithms let us assume that the measurement signal xn, before the DFT computation, is 

multiplied by the sequence wn known as window function [13, 44]. This operation reduces the 

spectral leakage in the DFT spectrum by the cost of lower spectral resolution. Let us write the 

signal frequency in the form 

 5.00,
2

)(  



N

kx , (57) 

where, as before, k is the index of the DFT bin with the greatest magnitude. The DFT 

interpolation task can then be stated as follows [10, 47-50]: based on the DFT spectrum 

Vk=DFT{xnwn} of the signal xn, analyzed with the known window wn, determine the signal 

frequency correction δ. Analytical solution of this problem is only possible for Rife-Vincent 

class I windows (RVCI), defined in [7, 9-11]. The rectangular window is a 0-order RVCI 

window and the Hanning (Hann) window is a 1-order RVCI window. 
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An IpDFT polynomial approximation-based algorithm, valid for sinusoids without 

damping and for any window, even non-cosine ones, is proposed in [11]. 

In [51, 52], an algorithm combining linear algebra and an IpDFT concept known as the 

LIDFT-(The DFT Linear Interpolation Method) is proposed and discussed. 

In the following part we restrict ourselves to using the Hanning window, as in general it 

gives reasonable tradeoffs between systematic errors and noise immunity. Let us define the 

following ratios of squared DFT bins of the damped signal analyzed with the Hanning 

window: 

 
22

11 ||/|| kk VVR   and 
22

12 ||/|| kk VVR  , (58) 

where k is the index of the DFT bin with the greatest magnitude. Then the frequency 

correction and damping are: 
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Equation (59) for estimating the frequency was derived in [7], while solutions (60-61) for 

damping were first given in [53]. 

Program fIpDFTd() [4], presented in Appendix B, implements the IpDFT algorithm 

defined by (59-61). Estimating amplitude and phase is also possible using this method [9]. 

The implementation allows the use of RVC1 windows of orders ranging between M=0 and 

M=6. 

For estimating the frequency of a pure sinusoidal signal analyzed with the Hanning 

window, the following IpDFT formula can be used [49]: 
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VVV
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 , (62) 

which is based on 3 maximum DFT bins (k as before). Implementation of a three-point IpDFT 

algorithm for sinusoidal signals is given in program fIpDFT() [4] for RVCI windows of 

order between 0 -6. 

 

7. Statistical efficiency 

 

Statistical efficiency of estimators is determined by comparison with the Cramér-Rao 

Lower Bound (CRLB). An unbiased estimator that reaches the CRLB is the optimal MVU 

(Minimum Variance Unbiased) estimator [54]. For the sinusoidal signal (1) D = 0 with 

disturbance εn being a zero-mean Gaussian noise with variance σ
2
, the CRLB for frequency 

estimation (denoted as “(E)”) is given by [54] 

  ( )

2

12
var

( 1)

E

x
N N

 


, (63) 

where  is the signal noise ratio 

 )2/( 22  A , ),(log10/ 10 NS  (dB). (64) 

For a damped sinusoidal signal (1) with disturbance εn being a zero-mean Gaussian noise with 

variance σ
2
 the CRLB is [55] 
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   
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For signals analyzed with a rectangular window, (3-4) and (5-6) are the optimal MVU 

estimators. The reader should note the strong dependence of the variance on N, motivating 

using high values of N, which means high sampling rate and long observation time. 

 

8. Experimental results and practical method comparison 

 

In this section we present comparative results of testing the methods described above for 

frequency and damping estimation. We begin with systematic errors, as they give insight into 

whether the method is biased, followed by a discussion on the robustness against additive 

zero-mean Gaussian noise. 
 

 
Fig. 1. Example model test signals. 

 

Fig. 1 depicts test signals for minimum and maximum values of damping considered in the 

simulations, that is for D = 10
-5

 and D = 10
-2

. The length of the signals was set to N=512 

samples and the frequency equals Ωx = 10.4(2π)/N = 0.12763 rad, which means that the signal 

contains 10.4 cycles and its frequency lies between DFT bins with indices k=10 and k=11, 

that is the signal is not coherently sampled. We assume that the test signal can begin with 

some non-zero values, because signal acquisition can start after time t = 0 when the impulse 

response begins. 

In the following part, estimation methods are distinguished in figure legends by the names 

of the Matlab functions presented in the paper. All the functions are summarized in Table 1. 
 

Table 1. Estimation methods considered in our final simulation (Matlab source code in [4]). 
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8.1. Systematic errors 

 

Systematic errors of frequency and damping estimation are presented in Figs. 2-4. The 

errors are defined for ideal signals without any distortion. For the given value of frequency 

and damping, test signals were generated with the phase being changed from –π to π with 

the step π/20, and systematic error was defined as the maximum absolute difference between 

the estimated and true value of frequency or damping. 

Fig. 2 presents results for the signal frequency swept between the 8th and 12th DFT bin 

with the step 0.25. For frequencies Ωx={8, 9, 10, 11, 12}2π/N rad the signal is coherently 

sampled, which results in local minima of errors for DFT-based methods. The best precision 

in disturbance-free conditions is obtained by the optimization-based model fitting in the DFT 

domain. In practice, for the correct signal model the estimation error is only bound by the 

numerical precision of computer calculations. Systematic errors for DFT-based methods are a 

few orders higher than those of parametric methods, except fLPcor(x,1,1,4) and 

fPisarenko(x, 1,1) that perform poorly in the given comparison. For damping 

estimation, fLPsig(x,1,3), fSTMCB(x,1,2), fKT(x,1) and fTLS(x,1) are on a similar 

level of 10
-14

-10
-15

, and fMatPen(x,1) is slightly better, closer to 10
-15

. 

Fig. 3 depicts systematic errors for signal frequency swept between frequencies 2.1(2π)N 

rad and 50(2π)N rad with the step 2.5(2π)N rad. As a result, the test signals contain from 2.1 

to 50 cycles. The signal was never coherently sampled in the above setup. 
 

 
Fig. 2. Systematic errors of damping and frequency estimation as a function of frequency change in a small 

interval: Ωx=(8:0.25:12)2π/N rad. 
 

 
Fig. 3. Systematic errors of damping and frequency estimation as a function of frequency change in a large 

interval: Ωx=(2.1:2.5:50)2π/N rad. 
 

 

Fig. 4. Systematic errors of damping and frequency estimation as a function of damping. 
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Fig. 3 clearly shows that by using enough signal cycles and an adequate window, 

systematic errors for IpDFT methods can be negligible, as is the case for fIpDFTd(x,6). For 

a small number of cycles, IpDFT methods can by strongly biased by spectral leakage, caused 

by two closely located poles that shift towards each other. This is the main disadvantage of 

IpDFT methods as compared to parametric ones, which give correct estimates even for a 

small number of signal cycles. 

Fig. 4 shows estimation errors for increasing damping. As expected, errors for the IpDFT 

algorithm for sinusoidal signals, i.e. fIpDFT(x,1), increase with damping, since the effect 

of the damped window is not taken into account in the derivation of this method. 

 

8.2. Noise 

 

Noise robustness of the considered frequency and damping estimators is shown in Figs. 5-7 

using mean values and standard deviations of the observed estimation errors. For the given 

value of frequency and damping, the test signal was generated with the phase being a 

random variable with uniform distribution in the interval from –π to π rad, and 

additionally embedded in Gaussian noise with standard deviation corresponding to the 

assumed S/N ratio, defined by (64). For each frequency and damping, 200 realizations were 

generated, and the mean value and standard deviation (std) of estimation errors were 

computed. 

As seen from Fig. 6, the DFT-based methods fIpDFTd(x,1), fIpDFTd(x,6) and 

fHilbert(x,1) are poor damping estimators, whereas the Yoshida technique performs well 

and is comparable with parametric methods. 
 

 
Fig. 5. Mean value and standard deviation of frequency estimation. 

 

 
Fig. 6. Mean value and standard deviation of damping estimation. 
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Fig. 7. Standard deviation of damping and frequency estimation with respect to CRLB. 

 

The best results are clearly shown in Fig. 7. Algorithms fSTMCB(x,1,2), fOpty-

DFT(x,0), and fMatPen(x,1) perform similarly well and are all optimal, as they 

practically reach the CRLB. Slightly worse results were obtained for fTLS(x,1), fKT(x,1) 

and fYoshida(x), which is the only DFT-based method amongst the best performers. Note 

that fLPcor(x,1,1,4) which seems to behave well in Fig. 7 has strong bias, as seen from 

mean value errors shown in Figs. 5-6. 

 

8.3. Signal length and computational complexity 

 

Figs. 8-9 present results for frequency and damping estimation for S/N=30 dB, Ωx=0.1 rad 

and changing signal length N = {100, 158, 251, 398, 631, 1000} samples, that is for NΩx/(2π) 

≈ {1.59, 2.51, 3.99, 6.33, 10.04, 15.92} cycles. Mean values and std were computed from 200 

realizations. Note that for fixed Ωx=0.1 rad and D=10
-3

, the signal contains relatively more 

noise when N increases. For this reason, after some value of N the std can start increasing.  

The comparison of the best methods with respect to the CRLB is shown in Fig. 10. It is 

shown that the Yoshida algorithm requires a sufficient number of signal cycles for accurate 

performance, whereas parametric methods give good results even when the signal contains 

about 1.6 cycles. 

Fig. 11 shows the normalized computational time estimated during simulations performed 

in the Matlab environment. All times were divided by the maximum time obtained for a single 

estimation. Computational complexity of DFT-based methods approximately equals the 

complexity of the FFT algorithm, as additional computing in IpDFT is negligible. It is shown 

in Fig. 11 that for N=1000, computational time of fKT(x,1) is about 4 orders higher than for 

fYoshida(x). For N=4096 (not shown in Fig. 11), this time is approx. 6 orders higher. 

For fOptyDFT(x,0), computational time depends on the performed number of iterations 

during the optimization search. The DFT of the signal is computed only once and the model is 

fitted to the three frequency bins. Note that in time domain optimization the computational 

complexity is higher because in each iteration a new signal is generated (synthesized) and 

compared, in the sense of the chosen metric, to the measurement. 
 

 
Fig. 8. Mean value and standard deviation of frequency estimation. 



 

T.P. Zieliński, K. Duda: FREQUENCY AND DAMPING ESTIMATION METHODS – AN OVERVIEW 

  

 

 
Fig. 9. Mean value and standard deviation of damping estimation. 

 

 
Fig. 10. Standard deviation of damping and frequency estimation with respect to CRLB. 

 

 
Fig. 11. Normalized computational time. 

 

9. Conclusions 

 

Damped sinusoidal signals are a solution of second order differential equations describing 

many real-world natural and technical phenomena. There are many widely used methods for 

estimating their parameters, especially the frequency and damping [4]. This paper briefly 

highlights and compares their metrological features. 

The performed simulations show that for damping and frequency estimation, direct fitting 

in the DFT domain (fOptyDFT()) should be preferred, although for a reasonably small 

number of samples some parametric modeling methods can also be used, in particular the 

Steiglitz-McBride (fSTMCB()) and Matrix Pencil algorithms (FMatPen()), which are very 

accurate and robust to noise. For higher N, the computational complexity of the last two 

techniques could be a significant problem. Importantly, the Steiglitz-McBride method, 

iteratively solving the constraint total least squares problem, is already implemented in 

Matlab, while the Matrix Pencil code is very short and simple. 

For signals containing thousands of samples, the IpDFT Yoshida method (fYoshida()) 

which generally performs very well in damping estimation is advised, while the modified 
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Agrež algorithm (fIpDFTd()) is suggested for frequency estimation. The IpDFT methods are 

also a good choice for providing a starting point to iterative minimum search algorithms. 
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Appendix A. Estimation of amplitude and phase for known frequency and damping 

 

In practice the most important parameters of the damped sinusoidal signal (1) are 

frequency x and damping D, which can equal zero. When they are already known, the 

remaining parameters, i.e. amplitude and phase, can be estimated using the least squares (LS) 

approach or the Fourier transform (FT), as shown below. 

 

A1. LS solution for amplitude and phase 

 

 Assume that x and D are known and rewrite the signal (1) into complex form:  

 
*
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  and “*” stands for complex conjugation. 

Equation (A.1) can be rewritten using matrix notation: 
 

                                       
 

LS solution of (A.2) is given by [25]: 
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and signal amplitude and phase are given by: 

 ||2 cA  , c . (A.4) 

For pure sinusoidal signal, matrix E is built with D=0 and the solutions (A.4) for amplitude 

and phase estimation still hold. The presented LS solution can be calculated iteratively as an 

adaptive RLS (Recursive Least Squares) filter. In [56], adaptive estimation of instantaneous 

frequency and amplitude of sinusoidal signal is presented with the use of RLS and LMS 

adaptive filters. 

 

A2. FT solution for amplitude and phase 

 

 For known x and D, amplitude and phase of the signal (1) can be estimated by using 

the discrete-time Fourier transform for the frequency bin x: 
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and nw  is an arbitrary damped time window [7]: 

 Dn

n nw w e . (A.7) 

By putting D=0 in (A.7), amplitude and phase of the pure sinusoidal signal can also be 

estimated from (A.5). 

 

Appendix B. Matlab source codes of four efficient algorithms for estimating frequency 

and damping 

 
%================================================================================================================================= 

Program 1. Estimation of x and D using the iterative Steiglitz-McBride method of linear system identification 

(with comparison to the noniterative Prony method). 
%================================================================================================================================= 

function [Om, D] = fSTMCB(x, NB, NA) 

% x - analyzed signal – sum of damped sinusoids 

% NB – transfer function numerator order   (calling choose NB=1) 

% NA - transfer function denominator order (calling choose NA=2) 

% Required Matlab functions stmcb() and prony()from Signal Process Toolbox 

[B, A] = stmcb(x, NB, NA);    % Steiglitz-McBride method 

%[B, A] = prony(x, NB, NA);   % Prony method 

[z,p,k]= tf2zpk(B, A); 

[val ind] = max(abs(p)); 

Om = abs( angle(p(ind(1))) ); 

D = abs( log(val) ); 
%================================================================================================================================= 

Program 2. Estimation of x and D using the linear-prediction SVD-based Kumaresan-Tufts method [26, 27]. 
%================================================================================================================================= 

function [Om, D] = fKT(x,K) 

% x - analyzed signal – sum of real damped sinusoids 

% K - assumed number of sine components 

% author: Yung-Ya Lin, 12/11/97, function lpsvd.m from matNMR [27] 

M = 2*K;                              % number of complex components 

N = length(x);                        % number of signal samples 

L = floor(N*3/4);                     % linear prediction order L = 3/4*N 

Y = hankel( x(2:N-L+1), x(N-L+1:N) ); % backward prediction matrix 
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y = x(1:N-L)';                        % backward prediction data vector 

[U,S,V] = svd(Y,0);                   % singular value decomposition 

S = diag(S);                          % diagonal elements only 

bias = mean(S(M+1:min([N-L,L])));     % bias compensation 

b = -V(:,1:M)*(diag(1./(S(1:M)-bias))*(U(:,1:M)'*y)); % polynomial coeffs 

z = roots([ 1; b]); p=log(z);         % roots, logarithm 

p = p( find(real(p)>0) );             % roots outside the unit circle 

Om = imag(p); [Om indx] = sort( Om, 'descend' ); Om = Om(1:K); % frequency 

D = real(p(indx(1:K)));                                        % damping 
%================================================================================================================================= 

Program 3. Estimation of x and D using the linear-prediction SVD-based Matrix Pencil method [29, 30]. 
%================================================================================================================================= 

function [Om, D] = fMatPen(x,K) 

% x - analyzed signal – sum of real damped sinusoids 

% K - assumed number of real damped sine components 

M = 2*K;                                  % number of complex components 

N = length(x);                            % number of signal samples 

L = floor(N/3);                           % linear prediction order L = N/3 

X = hankel(x(1:N-L),x(N-L:N)); ));        % X1=X(:,2:L+1),X0=X(:,1:L) 
[U,S,V] = svd(X(:,2:L+1), 0); S = diag(S);% SVD of X1 

p = log( eig( diag(1./S(1:M)) * ((U(:,1:M)'*X(:,1:L))*V(:,1:M)) ) ); 

Om = imag(p); [Om indx] = sort( Om, 'descend' ); Om = Om(1:K); % frequency 

D = real(p(indx(1:K)));                                        % damping 
%================================================================================================================================= 

Program 4. Estimation of x and D using the Yoshida IpDFT method [46]. 
%================================================================================================================================= 

function [Om, D]=fYoshida(x) 

%x = A*cos(Om*n+p).*exp(-n*D) 

N = length(x); 

K = [1:round(N/2)]; 

Xw = fft(x); 

[Xabs, ind] = max(abs(Xw(K))); 

k = [K(ind)-1 K(ind) K(ind)+1]; 

if (K(ind)-2)>0 

   if (abs( Xw(K(ind)+2) ) > abs( Xw(K(ind)-2) ))  k = [k K(ind)+2]; 

   else                                            k = [K(ind)-2 k]; 

   end 

else 

   k = [k K(ind)+2]; 

end 

R = (Xw(k(1))-2*Xw(k(2))+Xw(k(3)))/(Xw(k(2))-2*Xw(k(3))+Xw(k(4)));  %(55) 

D = (2*pi)/N*imag(-3/(R-1)-1); %(56) 

if (k(4)-K(ind) == 1) Om = (2*pi/N)*real(K(ind)-1-3/(R-1)-2);  %(56) 

else                  Om = (2*pi/N)*real(K(ind)-1-3/(R-1)-1);  %(56) 

end 
%================================================================================================================================= 

Program 5. Estimation of x and D using the generalized Agrež algorithm [7] 
%================================================================================================================================= 

function [Om,D1,D2] = fIpDFTd(x,M) 

% x = A*cos(Om*n+p).*exp(-n*D) 

% M - order of RVCI window from 0 to 6 

% 0-rectangular window, 1-Hanning (Hann) window 

N = length(x); 

K = [1:round(N/2)]; 

[wind, Am] = window_RVCI(N,M); 

Xdft = fft(x(:).*wind(:)); 

[R1,R2,ind,Vk] = ratio(Xdft,K); 

delt = -(2*M+1)/2*(R1-R2)/(2*(M+1)*R1*R2-R1-R2-2*M); %(64) 

% delt=0.5 

while abs(0.5-delt)<1e-3; 

    x = [x 0]; 

    N = length(x), 

    [wind, Am] = window_RVCI(N,M); 
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    Xdft = fft(x(:).*wind(:)); 

    [R1,R2,ind,Vk] = ratio(Xdft,K); 

    delt = -(2*M+1)/2*(R1-R2)/(2*(M+1)*R1*R2-R1-R2-2*M); 

end 

% Damping from (60) and (61) 

D1 = abs( (2*pi/N)*sqrt(abs( ((delt+M)^2-R1*(delt-M-1)^2)/(R1-1)))); 

D2 = abs( (2*pi/N)*sqrt(abs( ((delt-M)^2-R2*(delt+M+1)^2)/(R2-1)))); 

% Frequency from (57) 

if ind(2)>ind(3) Om=(K(ind(1))-1+delt)*2*pi/N;  

else             Om=(K(ind(1))-1-delt)*2*pi/N;  

end 

%----------------------------- 

function [wind, Am] = window_RVCI(N,ord); 

% RVCI cosine windows 

% N - window length, ord – window type 

A(1,:)=[1 0 0 0 0 0 0 ]; 

A(2,:)=[1 1 0 0 0 0 0 ]; 

A(3,:)=[1 4/3 1/3 0 0 0 0 ]; 

A(4,:)=[1 3/2 3/5 1/10 0 0 0 ]; 

A(5,:)=[1 8/5 4/5 8/35 1/35 0 0 ]; 

A(6,:)=[1 105/63 60/63 45/126 5/63 1/126 0 ]; 

A(7,:)=[1 396/231 495/462 110/231 33/231 6/231 1/462]; 

A(8,:)=[0.54 0.46 0 0 0 0 0 ]; 

A(9,:)=[0.42 0.5 0.08 0 0 0 0 ]; 

dw = 2*pi/N; Om = (0:N-1)*dw; 

NW=A(ord+1,:); ind=find(NW); Am=NW(ind); 

wind=zeros(1,N); 

for k=1:length(ind) 

    wind=wind+(-1)^(k-1)*NW(k)*cos((k-1)*Om); 

end 

%----------------------------- 

function [R1,R2,ind,Vk] = ratio(Xdft,K); 

[Xabs, ind] = max(abs(Xdft(K))); 

Vk = Xdft(K(ind)); 

if K(ind)>1 

   if abs(Xdft(K(ind)+1))>abs(Xdft(K(ind)-1)) 

      Xabs(2)=abs(Xdft(K(ind)+1)); 

      Xabs(3)=abs(Xdft(K(ind)-1)); 

      ind(2)=ind(1)+1; ind(3)=ind(1)-1; 

   else 

      Xabs(2)=abs(Xdft(K(ind)-1)); 

      Xabs(3)=abs(Xdft(K(ind)+1)); 

      ind(2)=ind(1)-1; ind(3)=ind(1)+1; 

   end 

else 

   Xabs(2)=abs(Xdft(K(ind)+1)); 

   Xabs(3)=Xabs(2); 

   ind(2)=ind(1)+1; ind(3)=ind(1)-1; 

end 

Xabs = Xabs.^2; 

R1 = Xabs(2)/Xabs(1); %(58) 

R2 = Xabs(3)/Xabs(1); %(58) 
%================================================================================================================================= 

 


