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Abstract 

This paper is devoted to measuring the continuous diagnosis capability of a system. A key metric and its 

calculation models are proposed enabling us to measure the continuous diagnosis capability of a system directly 

without establishing and searching the sequential fault tree (SFT) of the system. At first a description of a D 

matrix is given and its metric is defined to determine the weakness of a continuous diagnosis. Then based on the 

definition of a sequential fault combination, a sequential fault tree (SFT) is defined with its establishment 

process summarized. A key SFT metric is established to measure the continuous diagnosis capability of a 

system. Two basic types of dependency graphical models (DGMs) and one combination type of DGM are 

selected for characteristics analysis and establishment of metric calculation models. Finally, both the SFT 

searching method and direct calculation method are applied to two designs of one type of an auxiliary navigation 

equipment, which shows the high efficiency of the direct calculation method. 
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1. Introduction 

 

Dependency theory is a popular approach to testability design and analysis, and it has been 

given much more attention with respect to aviation equipment development in recent years  

[1-4]. In this theory, a dependency matrix (D matrix) is used to detect and isolate faults 

quickly. Thus, dependency theory is an effective way to implement continuous integrated 

diagnoses in prognostics and health management (PHM) systems. 

A single-fault occurrence is a general assumption of dependency modeling [5-6]. 

Compared with the single-fault assumption, a multi-fault assumption reflects a practical 

situation better. Specifically, when a redundant system has fault-tolerant performance or when 

a complex system has no chance to be repaired during the operational process, multiple fault 

diagnosis (MFD) is worth considerable research effort [7, 8]. 

In the early 1990’s, J.D. Kleer and B.C. Williams presented a method for MFD based on 

function models [9]. W.R. Simpson and J.W. Sheppard provided an algorithm for multiple 

fault isolation based on information flow models
 
[10]. In the late 1990’s and early 2000’s, 

many optimal and near-optimal algorithms for MFD were presented, in which Lagrangian 

relaxation and subgradient optimization were used [11, 12]. L. Tung and C.N. Hadjicostis 

presented max-product algorithms for the generalized multiple fault diagnosis (GMFD) 

problem [13]. M. Tadeusiewicz and S. Hałgas provided a method that enabled efficient 

identification of faulty elements and addressed MFD in analog AC or DC circuits [14]. Z. 

Wang and M. Marek-Sadowska changed the test sets used in the test and diagnosis to apply a 

simple single fault for MFD [15]. In recent years, new techniques for MFD were researched 

to improve diagnosis resolution [16]. D. Grzechca and J. Rutkowski applied the SVM 
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(Support Vector Machine) algorithm to diagnosis and tests of analog electronic circuits with a 

high detection and localization level of circuit states [17]. With case-based reasoning and 

sequential fuzzy inference, several MFD methods were proposed [18, 19]. Using a self-

organizing neural network, a methodology for parametric fault clustering in analog electronic 

circuits was proposed for fast and efficient circuit diagnosis [20]. Based on the principle of 

single-fault activation and single-output observation and a Boolean satisfiability solver, Y.C. 

Lin and F. Lu provided two fault diagnosis methods for improving MFD resolution [21]. M. 

Tadeusiewicz and S. Hałgas proposed a two-stage algorithm for multiple soft fault diagnosis 

of analog nonlinear circuits considering the component tolerances [22]. 

The above MFD methods focus on diagnosis at the end of a system operations process. 

When a continuous diagnosis is running during an operational process, multiple faults usually 

appear for which the faults occur one by one; these faults can be considered to be sequential 

faults [23]. In this case, the effects of previous faults play a major role, and the next diagnosis 

can be performed based on previous diagnosis results. A continuous diagnosis capability is an 

ability to continuously detect and isolate sequentially occurred faults without repairs in a 

system using a D matrix and D sub-matrixes. The process of a continuous diagnosis is as 

follows: first, a first occurred fault is diagnosed by a diagnosis strategy based on the D matrix; 

second, for the first occurred fault, a dependency sub-matrix (D sub-matrix) is established 

based on the available test-points left in the D matrix; after that, a second occurred fault can 

be diagnosed by a new diagnosis strategy based on the D sub-matrix; then the latter faults can 

be diagnosed continuously until a D sub-matrix cannot be established. Those diagnosed faults 

constitute a sequential fault combination in a diagnosed sequence. The length of the 

sequential fault combination reflects the continuous diagnosis capability of a system. By 

analyzing the processes of continuous diagnoses, all sequential fault combinations can be 

obtained. In the shortest sequential fault combinations, the units corresponding to the first 

occurred faults are considered to be the weaknesses of the continuous diagnoses. 

In this paper, a key metric and its calculation models for a continuous diagnosis capability 

based on a D matrix are proposed. They enable us to measure the continuous diagnosis 

capability of a system directly without establishing and searching the sequential fault tree 

(SFT) of the system. At first a description of a D matrix and the definition of its metric are 

given in section 2. Then the definition of an SFT and its metrics are established in section 3. 

The characteristics of three types of dependency graphical models (DGMs) are analyzed with 

metric calculation models derived in section 4. The proposed metric and its calculation 

models are applied to two designs of one type of auxiliary navigation equipment in section 5. 
 

2. D matrix and its metric 
 

2.1. D matrix 
 

Dependency theory includes two models: a DGM and a D matrix [23]. A DGM of a system 

is a graphical description of the dependency relationships between the faults (which are 

marked as rectangles) and test-points (which are electrical connection points in the system for 

measurement, and marked as circles). A D matrix is a mathematical description of the above 

dependency relationships.  

A D matrix is described by the following [24]: 
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where the ith row [di1 di2…din] indicates the dependency relationships between the ith fault 

Fi and all of the test-points Tj (j=1,2,…n) and the jth column [d1j d2j…dmj]
T
 indicates the 

dependency relationships between the jth test-point Tj and all of the faults Fi (i=1,2,…m). If Fi 

can be tested by Tj, dij=1; otherwise, dij=0. 

The D matrix can be obtained from the DGM and usually needs to be simplified to 

eliminate redundant information. The simplification process is given in literature [23] and can 

be summarized in the following steps: 

1) Eliminate invalid test point; 

2) Eliminate undetectable fault; 

3) Combine ambiguity group. 

 

2.2. D matrix Metric  

 

Definition 1 - ||F||1: ||F||1 is defined as the 1-norm of a row vector in a D matrix. For the ith 

row [di1 di2…din], its ||Fi||1 is described as follows: 

 
1

1

n

i ij

j

F d


 . (2) 

||Fi||1 stands for the number of test-points that are dependent on Fi. In the DGM of a system, 

the fault effect of Fi will flow through the model and can be detected by some test-points. The 

number of these test-points is equal to ||Fi||1. 

The weakness of a continuous diagnosis can be determined using ||Fi||1. Given Fi, if ||Fi||1 is 

the maximum in all of the 1-norms of a D matrix, the module corresponding to Fi is a 

weakness. 

 

3. SFT and its metrics 

 

Based on the concepts given in literature [23], the more accurate description for sequential 

faults is presented as follows. 

 

3.1. SFT 

 

Definition 2 - Sequential fault combination: A sequential fault combination is defined as 

a set of faults (or fault ambiguity groups) that are diagnosed in sequence. 

For each possible first diagnosed fault, a sequential fault combination can be achieved 

based on a D matrix. 

Definition 3 - Sequential fault tree (SFT): An SFT is a tree description for all of the 

sequential fault combinations. 

Fig. 1 shows an SFT example, in which each horizontal permutation represents a 

sequential fault combination, and there are totally four sequential fault combinations. 

 

 
 

Fig. 1. The structure of a simple SFT. 

 

To measure the continuous diagnosis capability of a system, all of the sequential fault 

combinations should be determined to establish the SFT. The main steps of establishing an 
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SFT are as follows: 

1) Establish the DGM of a system; 

2) Establish the D matrix based on the DGM; 

3) Determine all of the sequential fault combinations and establish an SFT. 

 

3.2. SFT Metrics  

 

Definition 4 - Branch: A sequential fault combination is defined as a branch in an SFT. 

For the SFT of a DGM with k faults, let bk be the number of branches and bk equals the 

number of all of the sequential fault combinations. 

Definition 5 - Node: A fault in a branch is defined as a node. For the SFT of a DGM with 

k faults, let Nk be the number of nodes in the SFT and Nk equals the number of faults in all of 

the sequential fault combinations. 

Definition 6 - Lavg: Lavg is the average length of branches in an SFT, which is described as 

follows: 

 k
avg

k

N
L

b
 . (3) 

In the above metrics, Lavg is the key metric. 

 

4. Characteristic analyses and metric calculation models of typical DGMs 

 

According to Section 3, we can establish and search the SFT to measure the continuous 

diagnosis capability of a system. This SFT searching method is suitable for all of the systems, 

but it has two disadvantages: 1) the efficiency is low; 2) it is very hard to establish an SFT for 

a large system. Therefore, metric calculation models should be established for measuring 

directly. 

There are various DGM types for different systems, and most of them can be considered to 

be the combinations of series structures and parallel structures. Thus, two types of basic 

DGMs, series DGM and parallel DGM, are selected for fundamental research; and one type of 

combination DGM, fore-series-aft-parallel DGM, is selected for further research. 

 

4.1. Series DGM 

 

4.1.1. Characteristic analysis of a series DGM 

 

In a series DGM, all of the faults are connected in series without feedback. Fig. 2 shows a 

series DGM with four faults connected in series. The D matrix and the SFT of this DGM are 

shown in Figs. 3 and 4. 

 

 

 
Fig. 2. A series DGM. Fig. 3. D matrix of the series DGM. 

 

As shown in Figs. 3 and 4, a series DGM has two important characteristics: 1) the D matrix 

is or can be converted into an upper triangular matrix based on the exchanging rule of rows or 
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columns, and all of the elements above the main diagonal are equal to one; 2) in the SFT, 

when the arrangement of the first faults in all of the branches agrees with a decreasing order 

of ||F||1, the branches with a same first fault are generated by attaching all of the upper 

branches to this fault. The whole SFT can be generated by repeating this attaching process. 

 

 
 

Fig. 4. SFT of the series DGM. 

 

4.1.2. Metric calculation models 

 

According to the above characteristics, the metric calculation models of a series DGM with 

k faults can be derived as follows: 

The D matrix of the series DGM is an upper triangular matrix, so the value of ||Fi||1 

decreases regularly with increasing i. In the case of Fig. 3, k=4 and ||F1||1=4, ||F2||1=3, ||F3||1=2, 

||F4||1=1. Then the calculation model of ||Fi||1 satisfies the following equation: 

 
1

1 ( 1, , )iF k i i k     (4) 

In the SFT of the series DGM, the branches with a same first fault are generated by 

attaching all of the upper branches to this fault. The relationship between bk and k satisfies the 

following recurrence formula: 

 12 1

1 1

k k

k

b b k

b k

 


 
. (5) 

Using mathematical induction, the calculation model of bk is derived from (5), which is 

described as follows: 

 12k

kb  . (6) 

 

According to the above SFT characteristic, the relationship between Nk and k satisfies the 

following recurrence formula: 

 1 12 1

1 1

k k k

k

N N b k

N k

   


 
. (7) 

Using mathematical induction, the calculation model of Nk is derived from (7) and is 

described as follows: 

 22 ( 1)k

kN k  . (8) 

 

Substituting (6) and (8) into (3) yields: 
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4.2. Parallel DGM 

 

4.2.1. Characteristic analysis of a parallel DGM 

 

In a parallel DGM, all of the faults are connected in parallel. Fig. 5 shows a parallel DGM 

with four faults connected in parallel. The D matrix and the SFT of this DGM are shown in 

Figs. 6 and 7. 

As shown in Figs. 6 and 7, a parallel DGM has two important characteristics: 1) the D 

matrix is or can be converted to a unit matrix, which is based on an exchanging rule for rows 

or columns; and 2) in the SFT, each branch is a full permutation result of all faults, and the 

whole SFT can be considered to be a set of all full permutation results. 

 

 
 

Fig. 5. A parallel DGM. Fig. 6. D matrix of the parallel DGM. 

 

 
 

Fig. 7. SFT of the parallel DGM 

 

4.2.2. Metric calculation models 

 

According to the above characteristics, the metric calculation models of a parallel DGM 

with k faults can be derived as follows: 

The D matrix of the parallel DGM is a unit matrix, so the values of all ||Fi||1 are the same. 

In the case of Fig. 6, k=4 and ||F1||1=||F2||1=||F3||1=||F4||1=1. Then the calculation model of ||Fi||1 

satisfies the following equation: 
 

 
1

1 ( 1, , )iF i k  . (10) 

 

In the SFT of the parallel DGM, each branch is a full permutation result of all faults. The 

relationship between bk and k satisfies the following equation: 
 

 !k

k kb P k   (11) 

 

According to the full permutation characteristic, each branch has the same number of faults, 

i.e., k faults. The number of nodes in the SFT is the product of bk and k, so the relationship 

between Nk and k satisfies the following equation: 
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 !k kN b k k k     (12) 

 

Under this model, each branch is a full permutation result of all of the faults, so Lavg 

satisfies the following equation: 

 
avgL k . (13) 

 

4.3. Fore-series-aft-parallel DGM 

 

4.3.1. Characteristic analysis of a fore-series-aft-parallel DGM 

 

A fore-series-aft-parallel DGM can be divided into two sub-DGMs. One is a series DGM 

at the front of the whole DGM, the other is a parallel DGM at the back of the whole DGM. 

Fig. 8 shows a fore-series-aft-parallel DGM in which two faults are connected in series 

with two faults connected in parallel. The D matrix and the SFT of this DGM are shown in 

Figs. 9 and 10. 
 

  

Fig. 8. A fore-series-aft-parallel DGM. Fig. 9. D matrix of the fore-series-aft-parallel DGM. 

 

As shown in Figs. 9 and 10, a fore-series-aft-parallel DGM has two important 

characteristics: 1) the D matrix is a combination of a 0-matrix, a 1-matrix and the D matrixes 

of two sub-DGMs. And it is or can be converted into an upper triangular matrix; and 2) the 

whole SFT can be considered to be an interlaced combination of two sub-SFTs. The first sub-

SFT is the standard SFT of a series DGM, which is shown in Fig. 11(a). The second sub-SFT 

is a sum of the standard SFT of a parallel DGM and all SFTs of possible sub-parallel cases, 

which is shown in Fig. 11(b). 
 

 
 

Fig. 10. SFT of the fore-series-aft-parallel DGM. 

 

 
 

(a) The first sub-SFT. 

 
 

(b) The second sub-SFT. 
 

Fig. 11. Two sub-SFTs. 
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4.3.2. Metric calculation models 

 

According to the above characteristics, the metric calculation models of a fore-series-aft-

parallel DGM in which k1 faults are connected in series with k2 faults connected in parallel 

can be derived as follows: 

Set k=k1+k2. According to the structure of the D matrix, ||Fi||1 can be calculated by the 

following equation: 

 
1

1 ( 1, , 1)

1 ( 1 1, , )
i

k i i k
F

i k k

  
 

 
. (14) 

Let bk1 be the number of branches in the first sub-SFT. The first sub-SFT is a standard SFT 

of the series DGM, so the relationship between bk1 and k1 satisfies the following equation: 

 1 1

1 2k

kb  . (15) 

Let bk2 be the number of branches in the second sub-SFT. The second sub-SFT is a sum of 

a standard SFT of the parallel DGM and all SFTs of possible sub-parallel cases, so the 

relationship between bk2 and k2 satisfies the following equation: 

 
2

2 2

1

k
i

k k

i

b P


 . (16) 

The whole SFT is an interlaced combination of the two sub-SFTs, so the total number of 

branches bk satisfies the following calculation model: 

 2 11k k kb b b  （ ） . (17) 

Substituting (15) and (16) into (17) yields: 
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Let Nk1 be the number of nodes in the first sub-SFT. According to (8), the relationship 

between Nk1 and k1 satisfies the following equation: 

 1 2

1 2 ( 1 1)k

kN k   . (19) 

Let Nk2 be the number of nodes in the second sub-SFT. Based on (12), the relationship 

between bk2 and k2 is derived as follows: 
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N i P

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Based on the relationship of the interlaced combination, the total number of nodes Nk 

satisfies the following calculation model: 

 1 2 1 2( 1)k k k k kN N b b N     . (21) 

Substituting (15), (16), (19) and (20) into (21) yields: 
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Then a calculation model of Lavg is derived as follows: 
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5. Case study 

 

One type of auxiliary navigation equipment is used to calculate navigation parameters for 

some aircraft. This navigation equipment must implement a continuous diagnosis during its 

operations process. The navigation equipment has two designs with six function modules, 

which are as follows: Anti-shake module, High voltage module, Stable frequency module, 

Basic output module, Satellite communication module and Standard output module. For 

convenience, the faults of the six modules are marked sequentially as F1, F2, F3, F4, F5 and F6, 

and the output port test-points of the faults are marked sequentially as T1, T2, T3, T4, T5 and T6 

in the DGMs of both designs.  

 

5.1. Design-I 

 

The DGM and corresponding D matrix are shown in Figs. 12 and 13. The DGM of Design-

I is a typical fore-series-aft-parallel DGM, in which three faults are connected in series with 

three faults connected in parallel, i.e., k1=k2=3.  
 

 
 

Fig. 12. The DGM of Design-I. Fig. 13. The D matrix of Design-I. 

 

5.1.1. SFT searching method 

 

Using the SFT searching method, we have established the SFT of Design-I, which is 

shown in Fig. 14. 

 

 
 

Fig. 14. The SFT of Design-I. 
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In the SFT of Design-I, there are 64 branches and 260 nodes, and the average length of 

branches is 4.0625, i.e., bk=64, Nk=260, Lavg=4.0625. The shortest branch is ‘F1’, so the anti-

shake module is the weakness of a continuous diagnosis. 

 

5.1.2. Direct calculation method 

 

Using the direct calculation method, the metrics can be calculated based on the DGM and 

the D matrix without establishing an SFT.  

As shown in Fig. 13, the D matrix of Design-I is an upper triangular matrix. The values of 

D matrix metric were calculated according to (14) in section 4.3 and the results are shown in 

Table 1. Because the value of ||F1||1 is the maximum in the 1-norms, the anti-shake module 

corresponding to F1 is the weakness of a continuous diagnosis 

According to (18), (22) and (23), we have achieved the values of SFT metrics, as shown in 

Table 1.  

Compared with the SFT searching method, the direct calculation method can achieve the 

same results without establishing and searching an SFT. 
 

Table 1. Metric values of Design-I. 
 

D matrix metric SFT metrics 

||F1||1 ||F2||1 ||F3||1 ||F4||1 ||F5||1 ||F6||1 bk Nk Lavg 

6 5 4 1 1 1 64 260 4.0625 

 

5.2. Design-II 

 

The DGM and corresponding D-matrix are shown in Figs. 15 and 16. The DGM of 

Design-II is also a typical fore-series-aft-parallel DGM in which four faults are connected in 

series with two faults connected in parallel, i.e., k1=4, k2=2.  
 

 
 

Fig. 15. The DGM of Design-II. Fig. 16. The D matrix of Design-II. 

 

5.2.1. SFT searching method 

 

Using the SFT searching method, we have established the SFT of design-II, which is 

shown in Fig. 17. 
 

 
 

Fig. 17. The SFT of Design-II. 
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In the SFT of Design-II, there are 40 branches and 148 nodes, and the average length of 

branches is 3.7, i.e., bk=40, Nk=148, Lavg=3.7. The shortest branch is ‘F1’, so the anti-shake 

module is also the weakness of a continuous diagnosis. 

 

5.2.2. Direct calculation method 

 

As shown in Fig. 16, the D matrix of Design-II is an upper triangular matrix. The values of 

D matrix metric were calculated according to (14) in section 4.3 and the results are shown in 

Table 2. Because the value of ||F1||1 is the maximum in the 1-norms, the anti-shake module 

corresponding to F1 is the weakness of a continuous diagnosis 

According to (18), (22) and (23), we have achieved the values of SFT metrics, as shown in 

Table 2.  

 
Table 2. Metric values of Design-II. 

 
D matrix metric  SFT metrics 

||F1||1 ||F2||1 ||F3||1 ||F4||1 ||F5||1 ||F6||1 bk Nk Lavg 

6 5 4 3 1 1 40 148 3.7 

 
5.3. Results analysis 

 

Using Lavg, the continuous diagnosis capabilities of both designs can be measured and 

compared to determine a priority selection.  

In Design-I, Lavg=4.0625; and in Design-II, Lavg=3.7. So the average length of branches of 

Design-I is greater than that of Design-II, and Design-I is the priority selection. 

Additionally, the weakness of a continuous diagnosis can be determined by using the D 

matrix metric. In both designs, the values of ||F1||1 are the maximum, thus the anti-shake 

module corresponding to F1 is the weakness, and it should be designed of high reliability. 

 

6. Conclusions 

 

Sequential fault combination is a typical form of multi-faults. A dependency matrix can 

be applied to perform the continuous diagnosis of a system. How to measure the continuous 

diagnosis capability is worth considerable research effort. All of the sequential fault 

combinations of a system can be described as a sequential fault tree. A continuous diagnosis 

capability can be measured by establishing and searching a sequential fault tree to select an 

optimized design, and the best length metric is Lavg. For a series DGM, a parallel DGM and a 

fore-series-aft-parallel DGM, the metric calculation models of bk, Nk and Lavg are derived to 

measure continuous diagnosis capabilities directly, which can achieve the same results with 

high efficiency. Further effort should be devoted to establish more direct calculation models 

to measure the continuous diagnosis capabilities for complex DGM types. In addition, failure 

probabilities have an important influence on a continuous diagnosis capability and should be 

introduced in the direct calculation method to accomplish a more accurate decision. 
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