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Abstract  

Products of Gaussian noises often emerge as the result of non-linear detection techniques or as parasitic effects, 

and their proper handling is important in many practical applications, including fluctuation-enhanced sensing, 

indoor air or environmental quality monitoring, etc. We use Rice’s random phase oscillator formalism to 

calculate the power density spectra variance for the product of two Gaussian band-limited white noises with 

zero-mean and the same bandwidth W. The ensuing noise spectrum is found to decrease linearly from zero 

frequency to 2W, and it is zero for frequencies greater than 2W. Analogous calculations performed for the square 

of a single Gaussian noise confirm earlier results. The spectrum at non-zero frequencies, and the variance of the 

square of a noise, is amplified by a factor two as a consequence of correlation effects between frequency 

products. Our analytic results are corroborated by computer simulations. 
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1. Introduction 

 

Noise entering non-linear systems gives rise to higher-order product terms, and the 

smallest non-linear order is the second order. Such second-order components can be the 

product of two independent noises in the system, or they can be the square of a single noise. 

These non-linear noise components often carry important information about the system. For 

example, fluctuation-enhanced sensing (FES) [1-8] utilizes the information provided by the 

sensor noise, and this information can be significantly richer [1-3] than the sensory 

information of the deterministic signal component used for classical sensing.  

In FES, the most frequently used method for extracting sensory information employs the 

analysis and pattern recognition of the power spectral density (PSD or “noise spectrum”), but 

higher-order techniques and other special methods  such as zero-crossing analysis and 

correlation studies  have also been successfully tested [2, 6-7]. 

FES has a demonstrated the capability to detect and identify harmful gases [4] and odors of 

dangerous bacteria [5] even in low concentrations. This fact, and the high information content 

in the FES technique, makes it possible to distinguish between many different chemical 

compositions, which is highly relevant for environmental and indoor air quality monitoring 

since there is a huge variety of potentially harmful gases and vapors [8-9]. 

Knowledge and analysis of the specific noise spectra that can occur in a FES device are 

important for its optimal design and function, and the present paper deduces noise spectra for 

a common and practical case: that of the product of two independent Gaussian band-limited 

white noises with the same bandwidth W. Analogous information is obtained also for the 
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square of a single Gaussian noise of the same character and the results are in agreement with 

known results about this particular situation. We use Rice’s rigorous method [10] based on 

random phase oscillators and modulation components, which is valid for Gaussian noises. The 

triangular spectral shapes found by us are in accordance with Bennett’s heuristic non-exact 

method for cross-modulation products of different speech channels [11]. 

  

2. Rice’s random-phase oscillator model 

 

Consider two Gaussian noises of zero mean with amplitudes     



U1(t )  and     



U2(t )  and power 

spectral densities     



S1( f ) and     



S2( f ), respectively. Rice’s random-phase oscillator 

representation of these noises can be used to synthesize the amplitude of Gaussian noise with 

power spectral density     



S0( f ) as the sums of oscillators. The frequency scale is divided into 

infinitesimally small intervals with bandwidth  



f0 , and the noise in each interval is represented 

by an oscillator with:  

  oscillation frequency   



kf0 ;  

  amplitude     



a( f )  a(kf0 )  2 f0S0( f )  2kf0S0(kf0)  , and  

  random phase   



k  uniformly distributed over the 
  



0,2  interval. 

Thus the two noises can be synthesized as 
 

                 

    



U1(t )  lim
N 

a j

j1

N

 sin 2jf0t  j   and 

    



U2(t )  lim
N 

bk

k1

N

 sin 2kf0t k ,        (1) 

 

 

where 
    



a j  2 f0S1( jf0 )  and     



bk  2 f0S2(kf0 ) . 
 

 

Then the amplitude of the product     



U (t ) of the two noises is given as: 
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where   



 1/ Volt  is the transfer coefficient of a hypothetical multiplier device providing a 

Volt unit also for the product. The first sum represents the combination-frequencies obtained 

as the sum of frequencies (“additive” frequency products) while the second sum represents the 

difference-frequencies (“subtractive” frequency products).  

Three facts must be kept in mind when determining the PSD: 

i.  the power of components with different frequencies is additive; 

ii. the power of components with the same frequency but random phase is also additive after 

    the ensemble averaging of an infinite number of other components in the immediate   

    vicinity of that frequency, and 

iii. the power of frequency components with the same frequency and same phase adds up in a  

     synergetic way because of their total correlation; the amplitudes are additive and the power  

     scales with the square of the amplitudes. 
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3. Spectrum for independent noises 

 

In the case of independent     



U1(t )  and     



U2(t ) , both (i) and (ii) are satisfied, and thus the 

result of (1) is free of correlation effects. Fig. 1 shows the shape of the ensuing noise 

spectrum: the spectral bands belonging to a given j parameter (cf. the horizontal rectangles) 

are summed to determine the shape of the related noise spectrum. The left-upper part of Fig. 1 

shows the “additive” frequency products where j is increasing from bottom to top while k runs 

horizontally, and the left-lower part shows the “subtractive” frequency products where j is 

increasing from top to bottom. The right-upper part of Fig. 1 shows the resulting spectra, 

which are proportional to the frequency-dependent vertical thickness of the “additive” and 

“subtractive” spectral patterns in the left-hand part of the figure. It is seen that this procedure 

yields triangular spectra with center frequencies at W and 0, respectively. The right-lower part 

of Fig. 1 shows the final result, which is the sum of the two triangular spectra (negative 

frequencies are flipped to positive) which gives rise to a linearly decreasing spectrum going 

from S(0) at zero frequency to zero at 2W frequency, i.e.: 
 

 

                               0)( elsewhere  ;0for     1)0()( 







 fSWf

W

f
SfS   .                    (3) 

 

The magnitude of     



S(0)  will be determined in the next section. 

 

W0

(+)frequency products

(–)frequency products

W 2W-W

W 2W-W

resultS(0)

 
 

Fig. 1. Determination of the shape of the noise spectrum by summing spectral bands (see the text for 

explanation). 
 

4. Spectrum and variance for independent noises 

 

The variance of the product of two independent random variables with random mean 

value is the product of the original variances so that:  
 

                                          
    



U 2(t )  2 U1
2(t ) U2

2(t ) .                                                   (4) 
 

The variance is the area below the noise spectrum, and thus: 
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

U1
2(t ) WS1( f ), 

    



U2
2(t ) WS2( f ), and 

    



U 2(t ) WS(0) .                      (5) 

 (3) to (5) yield the spectrum of the product of two independent noises according to: 
 

                 0)( elsewhere  ;0for     1)( 21

2 







 fSWf

W

f
SWSfS  .                        (6) 

 

5. Spectrum and variance for the square of a noise 

 

A special and well-studied situation occurs when a noise is multiplied by itself. For the 

square of a noise     



U1(t ) , conditions (i) and (ii) are not always satisfied because for each non-

zero frequency combination in (2) there will be a sum of two identical products instead of 

their random phase sum. This correlation leads to a doubling of the spectrum obtained in 

Eq. (6). Furthermore the spectrum is infinite at zero frequency as a consequence of the non-

zero DC component emerging from the relevant correlations. Thus one obtains for non-zero-

frequencies that: 

              

    



S( f )  2 2WS1S2 1
f

W









  for   0  f W ;   S( f )  0  for  f  0 and  f W .  (7) 

It then follows that the variance of the noise component (the AC component) of the square 

of the noise     



U1(t )  is twice the result given in (4), i.e., 
 

                             

    



U AC
2 (t )   2 U1

2(t )  U1
2(t ) 

2

 2 2 U1
2(t )

2

.                             (8) 

 

Our results agree with those in a related study [10]. 

 

6. Computer simulations 

 

Computer simulations were carried out to illustrate the results reported above.  

 

 
 

Fig. 2. Computer simulation of power spectral density (PSD). The overlapping input noises (A and B) are band-

limited white noises, while the resulting spectrum is the expected linearly decreasing function reaching zero at 

twice the original bandwidth. 

 

Two independent Gaussian noises were generated with the same spectra and bandwidth, 

and the PSD and variance of the product of these noises were determined. Fig. 2 shows that 

the shape of the resulting noise spectrum is in agreement with the shape predicted by (6). 
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Analogously, the variances of the product of the noises and the AC component of the square 

of a noise satisfy (4) and (8), respectively. 

Fig. 3 shows the results of a computer simulation of the resulting amplitude distribution 

function without filtering (sharp peak) and after cutting off the bandwidth at the original 

bandwidth (Gaussian-like distribution). This simulation was carried out in order to illustrate 

how the practical situation, with the same bandwidth of the output as that of the input noises, 

strongly diminishes the non-Gaussian effects. The original, heavily non-Gaussian distribution 

(Normal Product Distribution [12]) clearly changed significantly toward a much more 

Gaussian-looking bell-shaped curve. 

 

 
 

Fig. 3. Amplitude distribution of the original noises (A and B), of the product noise with 2W bandwidth (A*B), 

and of the product noise after filtering to have the same bandwidth W as the original noises (Filt A*B). 

 

7. Conclusions 

 

This paper deduced simple results for noise spectra relevant to a practical case: the noise 

spectrum of the product of two independent Gaussian band-limited white noises with the same 

bandwidth. We used Rice’s method [10] based on random phase oscillators and modulation 

components, which is valid for Gaussian noises. The triangular spectral shapes found by us 

are in accordance with Bennett’s heuristic non-exact method for cross-modulation products of 

different speech channels [11]. Analogous results were obtained for the square of single 

Gaussian noise of the same character as above. The latter result was known from prior work 

[10] and largely served as a confirmation of our analysis.  

Our results have potential applications in the analysis and design of practical devices for 

correlators, secure classical communicators, fluctuation-enhanced sensing of indoor air and 

environmental quality, etc. [13]. 
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