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Abstract 

Runoff forecasting in mountainous regions with processed based models is often difficult and inaccurate 
due to the complexity of the rainfall-runoff relationships and difficulties involved in obtaining the required data. 
Machine learning models offer an alternative for runoff forecasting in these regions. This paper explores and 
compares two machine learning methods, support vector regression (SVR) and wavelet networks (WN) for daily 
runoff forecasting in the mountainous Sianji watershed located in the Himalayan region of India. The models 
were based on runoff, antecedent precipitation index, rainfall, and day of the year data collected over the three 
year period from July 1, 2001 and June 30, 2004. It was found that both the methods provided accurate results, 
with the best WN model slightly outperforming the best SVR model in accuracy. Both the WN and SVR  
methods should be tested in other mountainous watershed with limited data to further assess their suitability in 
forecasting. 
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INTRODUCTION  

Accurate runoff forecasting allows for effective 
planning and use of water resources. However, in 
mountainous regions the complexity of rainfall-runoff 
relationships and difficulty in obtaining accurate data 
for many of the required parameters of process or 
physically based runoff forecasting models limits the 
use and applicability of such models. Data driven hy-
drological models may be an alternative to process 
based models for runoff in such regions due to their 
minimal information requirements and relatively fast 
development and processing times. Previously, data 
driven models have been statistically based with auto-
regressive moving average (ARMA) and multiple 
linear regression (MLR) models being two of the 

most popular techniques. More recently, machine 
learning type models such as artificial neural net-
works (ANN) and support vector regression (SVR) 
have been applied to hydrological forecasting.  

Comparisons of ANN models with conceptual 
models have been undertaken for runoff forecasting 
by a number of researchers, with promising results. 
KANG et al. [1993] used both ANN and ARMA mod-
els to predict flows on a daily and hourly basis, re-
porting that ANNs could be successfully applied for 
flow forecasting. ZEALAND et al. [1998] compared 
ANNs with conventional methods for a portion of the 
Winnipeg River system, finding the ANN model out-
performed the conventional models. More recently, 
CASTELLANO-MENDEZ et al. [2004] compared ANN 
and Box-Jenkins models for flow forecasting in 
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Spain, and found that the ANN models produced su-
perior results. NILSSON et al. [2005] compared ANN 
with conceptual runoff modeling, reporting superior 
results for the ANN models. Superior forecasting by 
ANN models over conceptual models was also re-
ported by PANDA et al. [2009] in a comparison be-
tween ANN and MIKE 11 models for simulation of 
river levels. Supporting these results, SHAMSELDIN 
[2010] developed ANN models based on different 
input parameters and concluded that ANN models 
show good potential and promise to be used for flow 
forecasting in developing countries. Also apparent 
from the review of this literature is that the multi-
layer perceptron model optimized with back propaga-
tion has become the most popular ANN model used in 
flow forecasting. 

Coupled wavelet networks (WN) are a hybrid 
version of the ANN model in which the input data is 
decomposed via wavelet analysis with the outputs of 
the analysis forming the inputs to the ANN model. 
WN for runoff forecasting has been explored in sev-
eral studies. CANNAS et al. [2006] investigated WN 
models with continuous and discrete wavelet trans-
forms for a Mediterranean watershed with a large da-
ta-set, reporting good predictive results from the WN 
models over those without wavelet pre-processing. 
PARTAL and KISI [2008] and KISI [2009] explored 
WN for flow forecasting in Turkey, finding the wave-
let transform model performing significantly better 
than other models. WU et al. [2009] developed WN 
models for predicting flow one, two and three days 
ahead, finding the WN performance superior to the 
ANN models. SANG et al. [2009] compared ANNs 
with WN models for hydrological forecasting and 
found that WN models performed better for complex 
hydrologic series and long forecast periods. ADA-
MOWSKI and SUN [2010] developed WN models for 
short-term flow forecasting in Cyprus, finding im-
proved forecasting abilities of the WN models over 
ANN models. And finally, KRISHNA et al. [2011] ap-
plied WN models to the Malaprabha River basin in 
India, and found that they provided better forecasting 
for daily river flow series, and in particular for peak 
flows in comparison to the ANN models.  

Support vector regression (SVR) is an alternate 
machine learning method to ANNs that have recently 
been applied to flow forecasting situations. ASEFA et 
al. [2005] investigated the application of SVR models 
for stream flow at the seasonal and hourly timescales, 
reporting good results for these applications. BEHZAD 
et al. [2008] investigated the application of SVR 
models in predicting stream flow one day ahead and 
compared the results to ANN and ANN-GA (ANN 
genetic algorithm) models. They reported that the 
SVR models produced results at least as good as those 
predicted by the ANN and ANN-GA models. WANG 
et al. [2009] compared the ability of SVR models in 
predicting long term monthly river flow discharges 

with three other AI models, reporting strong predic-
tive results from the SVR models. 

The purpose of this study is to investigate the 
relative forecasting abilities of SVR and WN methods 
in total runoff forecasting in a mountainous watershed 
with limited data. To the best knowledge of the au-
thors, a comparison of the SVR and WN methods for 
runoff forecasting in mountainous watersheds with 
limited data has not been reported in the literature. 
SVR and WN models were applied for daily total 
runoff forecasting in the Sainji watershed in the Hi-
malayan region of India, based on daily rainfall and 
runoff data collected by one of the authors from the 
watershed over the three year period from July 1, 
2001 and June 30, 2004. The data for the three water-
sheds was randomized for training and testing. 

METHODS 

SVR 

The SVR model used in this analysis was built 
on the basis of Vapnik’s statistical learning theory. 
A brief synopsis of the SVR theory used in develop-
ing the SVR model is presented here, however, for 
a more complete derivation of the SVR model the 
reader is referred to VAPNIK [1995], BURGES [1998], 
and CRISTIANINI and SHAWE-TAYLOR [2000]. 

SVR is based upon non-linear mapping of the 
original values to a linear function in a higher-dimen-
sional feature space, and optimizing the model 
through minimization of an error function. The linear 
function has the form of: 

 bxfy +>•=<= xw)(  (1) 

where: w and b are regression parameters, and 
>•< xw  represents the dot product of w and x. If 

xm and ym are the mth input vector and target output, m 
= 1, …, M, the error function is given by: 
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The optimal regression function can thus be ob-
tained by minimizing this error function [SMOLA, 
SCHOLKOPF 1998]. The second part of this error func-
tion is known as the ε – insensitive loss function. The 
ε-insensitive loss function was proposed by VAPNIK 
[1995] as a robust loss function to reduce sensitivity 
to the outliers by focusing on optimizing a bound 
around the regression function. A SVR regression 
model based on this function calculates the difference 
between the predicted and the actual values, and if the 
differences are less than ε the regression function is 
considered to be acceptable [SMOLA, SCHOLKOPF 
1998]. 
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Using Lagrangian multipliers, the solution to the 
optimization problem of equation (2) can be trans-
formed into the so-called dual problem [GUNN 1998; 
VAPNIK 1995]:  
Maximize  

 

( )( ) ),(
2
1

)()(

*

1,

*

1

*

jijj

M

ji
ii

ii

M

i
ii

K

yy

xxαααα

εαεα

−−−

−+−−

∑

∑

=

=  (3) 

Subject to:  

 Cand ii

M

i
ii ≤≤=−∑

=

*

1

* ,00)( αααα  

where αi and αi
* are the Lagrange multipliers, and K 

a kernel. The introduction of the kernel allows the 
processing of non-linear functions. The commonly-
used kernels are the radial basis function (RBF) ker-
nels, sigmoid kernels, and polynomial kernels 
[CHANG, LIN 2001; GUNN 1998]. The RBF kernel, 
most commonly used in SVR approaches, is defined 
as follows:  

 
2)(),( yxeyxK −−= γ

  (4) 

where γ is a kernel parameter. The solution of this 
problem will yield αi and αi

* for all i = 1, 2, …, M. For 
all the training points within the ε – sensitive zone 
will yield αi and αi

* equal to zero.  
To build the SVR model, it is first trained using 

a portion of the data set (e.g. 80%). During training 
the model is run with different sets of γ, ε, and C val-
ues set by the user, with the optimum values deter-
mined by optimizing the error during five-fold cross 
validation. Once the model has been trained the re-
mainder of the data is used to test the predictive per-
formance of the model. 

COUPLED WAVELET NETWORKS (WN) 

Coupled wavelet network models utilize wavelet 
analysis to decompose the input data with the wavelet 
outputs used as inputs into an ANN model. The dis-
cussion is therefore split into these components. The 
WN models used in this study were developed follow-
ing the procedures outlined by CANNAS et al. [2006], 
PARTAL [2009], and ADAMOWSKI and CHAN [2011].  

Wavelet analysis 

Wavelets provide time-scale representation to 
analyze time series datasets that contain non-statio-
narities. Wavelets decompose an original time series 
into sub-series of different resolution levels [TIWARI, 

CHATTERJEE 2010]. This decomposition can highlight 
the different effects of variables contained within the 
original data that may not be otherwise apparent. Var-
ious wavelet outputs may then be chosen to be com-
bined and used as the ANN input to generate a more 
accurate process than what may be generated using 
only raw input data.  

The mother wavelet of a signal x(t) is the trans-
forming function in the wavelet process and may be 
defined as: 

 ∫
+∞

∞−

= 0)( dttψ  (5) 

Wavelet components can be generated by break-
ing down the original data set using either the Con-
tinuous Wavelet Transform (CWT) or Discrete Wave-
let Transform (DWT). The CWT of a signal x(t) is 
defined as follows: 
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where s is the scale parameter, τ is the translation pa-
rameter and ‘*’ denotes the complex conjugate [CAN-
NAS et al. 2006]. However, CWT calculations require 
a large amount of computation time and resources and 
as such DWT calculations which require a smaller 
amount of computational time and resources are the 
preferred method. DWTs are achieved by modifying 
the wavelet representation to: 
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where j and k are integers and s0 > 1 is a fixed dilation 
step [CANNAS et al. 2006]. The effect of discretizing 
the wavelet is that the time-space scale is sampled at 
discrete intervals rather than in a continuous function. 
The DWT scales and positions are usually based on 
powers of two (dyadic scales and positions), as these 
combinations are usually the simplest and most effi-
cient cases.  

In undertaking the DWT, the original time series 
is passed through high-pass and low-pass filters. This 
process separates the data into low frequency compo-
nents showing trends and high frequency components 
showing detail. Due to this separation, wavelets allow 
for the analysis of characteristics that may not other-
wise be detected.  

Neural networks 

Neural networks are a machine learning method 
capable of solving complex relationships between 
input and outputs. They differ from process based 
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models as they develop relationships by performing 
input-output mapping without the necessity of under-
standing the nature of the phenomena being modeled. 
To do this, neural networks are composed of simple 
processing elements (nodes) linked by weighted syn-
aptic connections [MULLER, REINHARDT 1991]. They 
can construct complex relationships through combin-
ing multiple simple relationships between many 
nodes, thus mapping out an overall more complex 
scenario.  

Multi-layer perceptrons (MLP) are the most 
widely used type of neural network model and the 

model chosen for this research. These models consist 
of neurons and nodes. The neurons are organized in 
layers, with each neuron only connected with neurons 
in the adjacent layers. Each node j receives a weighted 
input being the output from every node i in the previ-
ous layer. The effective incoming signal propagates 
forward through a nonlinear activation function, to-
wards the nodes in the next layer, thus building a non-
linear relationship connecting the inputs and outputs. 
Figure 1 provides a visual representation of this proc-
ess.  

 
Fig. 1. ANN architecture with one hidden layer [PRAMANIK, PANDA 2009] 

The mathematical form of a three-layer feed 
forward ANN is given as:  
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where Ii is the input value to node i of the input layer 
and Ok is the output at node k of the output layer [TI-
WARI, CHATTERJEE 2010]. The strength of the connec-
tion between the input node i and the hidden node j is 
controlled by wji, and wkj controls the strength of the 
connection between the hidden node j and the output 
node k. g1 and g2 are activation functions for the hid-
den layer and the output layer, respectively.  

The Levenberg-Marquart (LM) algorithm was 
utilized to train the ANN models (in MATLAB) since 
it has been shown to be fast, accurate, and reliable 
[ADAMOWSKI, KARAPATAKI 2010; PRAMANIK, PAN-
DA 2009].  

MODEL PERFORMANCE COMPARISON  

The performance of the models were evaluated 
by analyzing the simulated results against the ob-
served data and using three commonly used statistical 

tools, the coefficient of determination (R2), the root 
mean squared error (RMSE), and modeling efficiency 
(EF). R2 indicates the degree of correlation between 
the simulated and observed values, and comparisons 
of R2 values may indicate the relative ability of differ-
ent models to accurately simulate observed data. R2 
values range from zero to one, with one indicating 
a perfect fit and zero indicating no correlation. 

The root mean squared error represents the mean 
error between the simulated values and the observed 
values. A small RMSE indicates less mean error be-
tween the simulated and observed results than a large 
RSME. However, RMSE can be very sensitive to ex-
treme values with a single large error result capable of 
resulting in a high RMSE. If the data is strongly bi-
ased, the modeling efficiency (EF) gives a more ac-
ceptable analysis than R2. A negative value for EF 
indicates very poor model performance.  

STUDY AREAS AND DATA  

The study watershed is located between 
78o0’24”E and 78o1’21”E longitudes and 30o28’58”N 
to 30o30’42”N latitudes in the Uttaranchal State, India 
[SHARDA et al. 2006]. This watershed is known as the 
Sainji watershed due to the situation of the village of 
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Sainji within it. The main watershed (WS1) includes 
two sub-watersheds (WS2 and WS3) having third 
order and second order streams, respectively, and ar-
eas of 255, 52 and 163 ha respectively (Fig. 2). All 
three watersheds have slopes of between 62 and 66%. 
WS1 is predominantly a mixed forest and scrub wa-
tershed, WS2 predominantly agriculture and scrub 
forest, and WS3 predominantly dense and mixed for-
est (Fig. 2).  

Runoff, antecedent precipitation index, rainfall 
and day of the year data were obtained on a daily ba-
sis for a three year period between July 1, 2001 and 
June 30, 2004. The data from the watershed was ob-
tained specifically for this study by one of the authors 
while working for the Central Soil and Water Conser-
vation Research and Training Institute in Dehradun, 
Uttaranchal. 

 
Fig. 2. Land use map of Sainji watershed and location of gauging stations in three sub-watersheds [SHARDA et al. 2006]

MODEL DEVELOPMENT 

SVR MODELS  

The data set used for training the SVR models 
consisted of many input variables and one output. The 
input variables consisted of: day of the year, rainfall, 
Antecedent Precipitation Index (API5), and runoff. 
The output (dependent) variable was total runoff.  
Input variables from the current day to five days be-
fore were explored for use in the models.  

A five-fold cross validation procedure was ap-
plied to check the generalization ability of the model. 
In this procedure, the data collected over the three 

watersheds was randomized and divided into five 
equal parts, generating five datasets that did not repre-
sent a single watershed but rather the characteristics 
of all three. The models were trained using four parts 
of the data (80%), and tested with the remaining “un-
seen” fifth part (20%) to evaluate model performance. 
The procedure was repeated for all five possible com-
binations. This procedure facilitated the development 
of generalizing models, that if proven accurate could 
be used in predicting flow for ungauged watersheds of 
similar geographical and climatic characteristics 
where past rainfall/runoff are not available. This gen-
eralizing ability was based upon the work by SHARDA 
et al. [2006] in determining the most important water-
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shed features that affect the rainfall-runoff relation-
ships (curve number, rainfall, antecedent moisture 
condition and day of the year). 

COUPLED WAVELET NETWORK MODELS 

The original data (day of the year, rainfall, Ante-
cedent Precipitation Index, and runoff) was decom-
posed using a modified version of the 'a trous' wavelet 
algorithm (to ensure that future data is not used). The 
original time series for each variable was first decom-
posed into an approximation and accompanying detail 
signal. The decomposition process was then iterated 
with successive approximation signals being decom-
posed in turn, and in this way the original time series 
was broken down into lower resolution components. 
For this study four wavelet levels were selected for 
each variable. A new series was obtained for each 
variable by adding the details and approximate series 
for a specific variable, and these series were then used 
as inputs to the ANN models. Input variables from the 
current day to five days before were explored for use 
in the models. 

The ANN networks that were developed con-
sisted of an input layer, a hidden layer and one output 
layer. Each model was tested to determine the opti-
mum number of neurons in the hidden layer following 
a trial and error procedure. Following the wavelet 
decomposition and development of the ANN model, 
the WN models were trained and tested using a 5 fold 
cross-validation consistent with the method used in 
developing the SVR models. In this process the same 
data in each fold that was used for the SVR model 
was again used to train and test the WN model, with 
the same 80/20 split for training and testing data.  

RESULTS AND DISCUSSION 

SVR MODELS 

From Table 1, it can be seen that the best SVR 
model’s coefficient of determination (R2) for testing 

datasets was 0.88, with a RMSE value returned of 
0.89 and EF value of 0.88 (fold 1).  

Table 1. SVR model results over all 5 folds 

Fold 1 2 3 4 5 
    Training 

R2 0.86 0.86 0.93 0.86 0.84 
RSME 0.69 0.78 0.54 0.63 0.84 

EF 0.84 0.85 0.93 0.86 0.83 
     Testing 

R2 0.88 0.70 0.68 0.85 0.77 
RSME 0.89 0.74 0.86 1.24 0.87 

EF 0.88 0.69 0.59 0.78 0.55 

 
 
These results indicate that the model was able to 

learn the relationship between the inputs and the total 
runoff, and also able to apply it successfully to unseen 
datasets. The large RSME value may be explained by 
the significant underestimation of a number of the 
large flow events in the data – significantly increasing 
the RSME value. Figures 3 and 4 show the measured 
and predicted values, with the significant overestima-
tion of a 9 m3·s–1 flow event apparent. 

 

 
Fig. 3. Scatterplots comparing observed and forecasted flows using 

the best SVR model (testing) 

 
Fig. 4. Best SVR model: Comparison of observed and forecasted flow for each event (testing) 
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WN MODELS 

The best WN model is a function of rainfall from 
the current day, and the two days preceding the cur-
rent day, the runoff number from the previous day, 
and the antecedent precipitation from the previous day 
(Rt, Rt−1, Rt-2, Runt-1, At-1). This WN model had six 
neurons in the hidden layer. This WN model had 
a testing coefficient of determination (R2) of 0.93 
(Tab. 2), a RMSE value for the testing period of 0.69 
and an EF of 0.93 (fold 3). 

Table 2. WN model results over all 5 folds 

Fold 1 2 3 4 5 
    Training 

R2 0.81 0.88 0.85 0.82 0.81 
RSME 0.76 0.72 0.79 0.73 0.90 

EF 0.81 0.87 0.85 0.82 0.81 
     Testing 

R2 0.91 0.70 0.81 0.93 0.83 
RSME 0.75 0.73 0.58 0.69 0.53 

EF 0.91 0.69 0.81 0.93 0.83 

 
 
 

Graphical representations of the measured and 
predicted values are shown in Figures 5 and 6. These 
results indicate that while the model was able to learn 
and predict most of the situations accurately, it was 
not able to accurately predict a number of the large 
flow events. This can be seen in Figure 6, which 
shows the simulated and observed total runoff in the 
Sainji watershed. A number of underestimations by 
the model can be seen for the large flow events.  

 
Fig. 5. Scatterplots comparing observed and forecasted flows using 

the best WN model (testing) 

 
Fig. 6. Best WN model: Comparison of observed and forecasted flow for each event (testing) 

SVR VERSUS WN MODELS 

The best WN model had a testing R2 of 0.93 
compared to the best SVR model that had a testing R2 
of 0.88 (Tab. 3). It can be seen that both models re-
turned promising R2 values, with the WN model out-
performing the SVR model.  

Table 3. Comparison of the best SVR and best WN testing results 

Model Best SVR statistical 
results (fold 1) 

Best WN statistical re-
sults (fold 4) 

R2 0.88 0.93 
RMSE (mm) 0.89 0.69 
EF 0.88 0.93 

 

For RSME results, the best WN model had a test-
ing RSME of 0.69, compared to the best SVR model 
which had a testing RMSE of 0.89. A lower RMSE 
value indicates the best WN model had smaller differ-
ences between total runoff forecasted and the total 
runoff actually observed from the Sainji watershed, 
particularly when forecasting large flow events. Simi-
larly, the best WN model outperformed the best SVR 
model in the EF index, recording a value of 0.93 ver-
sus 0.88. 

Interestingly, the best models did not correspond 
to being produced over the same data. The best per-
forming WN model was developed with the fold 
4 data, while the best performing SVR model was 
with the fold 1 data. However the WN model pro-

Unauthenticated | 89.67.242.59
Download Date | 6/2/13 7:19 PM



96  J. ADAMOWSKI, S.O. PRASHER  

© PAN in Warsaw, 2012; © ITP in Falenty, 2012; J. Water Land Dev. No. 17 (VII–XII) 

duced with fold 1 data still outperformed the fold 1 
SVR model in terms of R2, RMSE and EF (Tab. 4).  

Table 4. Comparison of the fold 1 (best) SVR and fold 1 WN test-
ing results 

Model Best SVR statistical 
results (fold 1) 

Corresponding WN 
statistical results 

R2 0.88 0.91 
RMSE (mm) 0.89 0.75 
EF 0.88 0.91 

CONCLUSIONS 

WN and SVR are both promising new methods 
for runoff forecasting in mountainous regions where 
limited data is available. In this research the two 
methods were compared against each other to assess 
the relative predictive capabilities of each model for 
prediction of daily total runoff in a Himalayan water-
shed. The results of the testing indicated that both 
models can accurately predict daily total runoff in 
a mountainous watershed. The comparison of the sta-
tistical performance results determined that the best 
WN model outperformed the best SVR model, re-
cording superior statistical results over the R2, RMSE 
and EF results indices. In addition, as the WN model 
developed with the dataset corresponding to the best 
SVR model (fold 1) also outperformed the SVR mod-
el, it can be established that the WN model was the 
superior model. 

The work undertaken in this research study was 
based upon a specific watershed and so future re-
search needs to be undertaken in comparing these two 
machine learning methods for watersheds with differ-
ent topography and characteristics in other mountain-
ous regions of the world with limited data. Other rec-
ommendations for future work include: exploring 
multistep ahead prediction; exploring different input 
variables; exploring the use of the SVRs with local-
ized multiple kernel learning; and exploring the use of 
the bootstrap method coupled with SVR and WN 
models.   
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NOTATION 
The following symbols are used in this paper: 
CWT – continuous wavelet transform 
N  – number of data points used  
s  – scale parameter  
x(t) – signal 
y i  – mean value taken over N  
yi  – observed peak weekly water demand 

iy
∧

 – forecasted peak weekly water demand 
τ  – translation parameter 

*  – complex conjugate   
ψ(t)  – mother wavelet  
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Porównanie metod uczenia maszynowego do prognozowania spływu w zlewniach górskich na podstawie 
ograniczonych danych 

STRESZCZENIE 

Słowa kluczowe: Himalaje, prognozowanie spływu, regresja wektora wsparcia, sieci falkowe, uczenie maszy-
nowe 

Prognozowanie spływu z obszarów górskich z użyciem programowanych modeli jest często trud-
ne i niedokładne z powodu złożonych zależności między opadem a spływem i problemów związanych 
z pozyskaniem niezbędnych danych. Modele uczenia maszynowego stwarzają alternatywę dla progno-
zowania spływu z takich regionów. W pracy analizowano i porównano dwie metody uczenia maszy-
nowego – metodę regresji wektorów nośnych (SVR) i sieci falkowych (WN) do dobowego prognozo-
wania spływu w górskiej zlewni Sianji, usytuowanej w indyjskiej części Himalajów. Modele opraco-
wano na podstawie danych o spływie, wskaźniku poprzednich opadów, opadzie i kolejnym dniu roku 
za trzyletni okres od 1 lipca 2001 r. do 30 czerwca 2004 r. Stwierdzono, że obie metody zapewniają 
dokładne wyniki, przy czym najlepszy model WN nieco przewyższa najlepszy model SVR pod 
względem dokładności. Obie metody powinny być testowane w innych zlewniach górskich o ograni-
czonej liczbie danych, aby lepiej ocenić ich przydatność do prognozowania.  
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