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Abstract 

Wind turbines are nowadays one of the most promising energy sources. Every year, the amount of energy 

produced from the wind grows steadily. Investors demand turbine manufacturers to produce bigger, more 

efficient and robust units. These requirements resulted in fast development of condition-monitoring methods. 

However, significant sizes and varying operational conditions can make diagnostics of the wind turbines very 

challenging. 

The paper shows the case study of a wind turbine that had suffered a serious rolling element bearing (REB) fault. 

The authors compare several methods for early detection of symptoms of the failure. The paper compares 

standard methods based on spectral analysis and a number of novel methods based on narrowband envelope 

analysis, kurtosis and cyclostationarity approach.   

The very important problem of proper configuration of the methods is addressed as well. It is well known that 

every method requires setting of several parameters. In the industrial practice, configuration should be as 

standard and simple as possible. The paper discusses configuration parameters of investigated methods and their 

sensitivity to configuration uncertainties. 
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1. Introduction 

 

In recent years wind energy is the fastest-growing branch of the power generation industry. 

The distribution of costs during the lifecycle of the unit for wind energy is significantly 

different from that of traditional, fossil-fired units. First of all, initial investment costs are 

relatively higher, whereas in traditional units the cost of fuel plays an important role (usually 

it is the second largest cost). After commissioning, the largest cost for the wind turbine is 

maintenance. With proper maintenance policies, wind turbines can achieve the highest level 

of availability in the power generation sector – even up to 98%. The basis of proper 

maintenance is continuous monitoring of the transmission of the wind turbine. The most 

successful monitoring methods use vibration signals. 

During the last decades, a number of vibration signal-processing techniques have been 

established. Comprehensive surveys of such techniques are known and can be found in e.g. 

[1-3]. There are two basic groups of analysis: broadband, and based on selected spectral lines. 

Basic broadband analysis parameters are: 

 root mean square (RMS); 

 peak-to-peak (P2P); 

 crest factor; 

 kurtosis. 
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Since they are well-known, a detailed description will be omitted here. Analysis techniques 

based on selected spectral lines reflect particular frequencies generated by a certain 

component. Such frequencies are e.g.: gear mesh, low shaft harmonics, characteristic bearing 

harmonics. Due to the different nature of events and to variations in the rotational speed, four 

basic types of spectra are investigated for the existence of those frequencies: 

 frequency spectrum; 

 order spectrum; 

 envelope spectrum; 

 envelope order spectrum. 

Certainly, several more advanced analyses have been developed, but those presented above 

are implemented in commercial on-line condition monitoring and diagnostics (CM&D). This 

is caused by the fact that those analyses are easy to understand by a majority of vibration 

experts, who are rather practice- than theory-oriented. More exhaustive studies on advanced 

fault detection methods can be found in [4-5, 7], while references [8-9] concentrate directly 

on condition monitoring of wind turbines. Additional study about character of operation of 

wind turbines is included in references [10-11]. 

 

2. Vibration measurements in wind turbines 

 

Figure 1 [12] presents a typical layout of the wind turbine. The main rotor with three 

blades is supported by the main bearing and transmits the torque to the planetary gear [13]. 

The planetary gear input is the plate to which the main rotor is connected. The planetary gear 

has three planets, with their shafts attached to the plate. The planets roll over the stationary 

ring and transmit the torque to the sun. The sun shaft is the output of the planetary gear. 

Further, the sun drives the two-stage parallel gear. The parallel gear has three shafts: the slow 

shaft connected to the sun shaft, the intermediate shaft and the fast shaft, which drives the 

generator. The generator produces an AC current of slightly varying frequency. This current is 

converted first into DC power and then into AC power of frequency equal to the grid 

frequency. Electric transformations are performed by the controller at the base of the tower. 

There exist other configurations of wind turbines, where e.g. only parallel gear is used. It has 

typically three stages, to be able to change the rotational speed from ca. 25 rpm on the main 

rotor to ca. 1500 rpm at the generator. 
 

 
 

Fig. 1. Typical layout of the wind turbine. Gx and Tx present recommended locations of vibration sensors. 

 

In general, the number of sensors depends on the design of the wind turbine. There are 

several setups, but the most popular one includes 8 vibration sensors (see Fig. 1). Sensors G1 

and G2 are used to monitor structural vibrations of the nacelle and the tower. Sensors T1 … 

T6 measure vibration of the drive train. On some installations it is possible to combine G1 

with T1 and G2 with T2 and only 6 sensors are necessary for monitoring. One of these 
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sensors (typically G2/T2) must monitor the transversal direction. T1/G1 measures the axial 

vibration and all others the vertical one. 

 

 
Fig. 2. Changes of generator output power during 120 seconds. 

 

Quick changes of the operational conditions are an important feature of wind turbines [10, 

11]. An example of such changes is presented in Fig. 2. During 120 seconds the generator 

output power varies between 400 and 1400 kW [8]. Such changes have a significant influence 

on vibration and can blur the changes caused by a malfunction. This is a separate, though very 

important problem which was discussed e.g. in [14]. 
 

 
 

Fig. 3. Fourier spectrum of a typical wind turbine. 

 

The vibration signal from the wind turbine contains mostly gear mesh components with 

additional shaft components (mostly from the fastest, i.e. the generator shaft). As shown in 

Fig. 3, the spectrum contains components with relatively strong energy up to 3.5 kHz. 

However, for bearing diagnostics reasons CM&D systems measure vibrations with a 25 kHz 

sampling frequency, to be able to pick up the structural resonances induced by bearing faults. 

 

3. Case study: rolling element bearing fault 

 

This paragraph presents the case study of a bearing fault in the wind turbine. As mentioned 

earlier, wind turbines operate under varying operational conditions. Due to constantly 

changing load, wind turbines are exposed to accelerated wear [15]. Therefore, during a 

periodical maintenance, the outer race fault on one of bearings was detected using endoscopy. 

It was the inner race fault on the bearing on the slow shaft of the gearbox (the shaft 

connecting the planetary gear with the parallel gear). Because of relatively low rotational 

speed of the investigated shaft, the fault was relatively difficult to detect by typical 

vibroacoustical methods. Moreover, its signal was masked by another bearing fault, which 

was located on the generator shaft. A vibration signal generated by faults on the generator 

shaft can be often recognized even with sensors located on the gearbox due to its high energy.  
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Such faults are relatively frequent and easy to detect, even with simple envelope-based 

methods. 

Due to the endoscopy investigation, the fault on the slow shaft was too advanced to allow 

further operation of the turbine. Despite the fact that a CM&D system was installed on the 

object, it was not able to detect any indicators of the fault. The energy of the characteristic 

signal component of slowly rotating elements is usually very low and masked by other 

components and noise. The investigated bearing was mounted on the first stage of the parallel 

gear, so its ratio in relation to the generator speed was about 1:14.  

Both P2P and RMS estimates showed no sensitivity to the fault, even at the final stage of 

its development. Figs. 4 and 5 present the trend of these analyses for the last 2 years. All 

further trends in this paper will also cover the same period of time. 

 

 
 

Fig. 4. Trend of PP analysis. 

 

 

 
 

 Fig. 5. Trend of RMS analysis. 
 

Such situation is caused by high noise level, large number of other signal components and 

varying load and speed conditions. Basic time-domain analyses calculated in the wide 

frequency range are effective only in typical faults of relatively uncomplicated mechanisms 

operating under steady loads. Thus, it is important to evaluate other, more complex methods.  

 

4. Comparison of fault detection methods 

 

For more effective monitoring frequency-selective methods have to be used. For rolling 

element bearing monitoring it is common to use the envelope energy as an estimator. 

However, in the investigated case this method turned out to be inefficient. 

Figure 6 presents the energy of the inner race bearing fault frequency component. As 

presented, no increase can be seen in the trend. The following part of this section will present 

results of more advanced approaches. 
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Fig. 6. Component energy calculated from the wideband envelope spectrum. 

 

For effective tracking of bearing fault signatures, it is often fruitful to use the narrow band 

filtered signal envelope or narrowband envelope analysis (NEA). We actually observe that 

this method yields best results in many practical cases. The key problem with this approach is 

the proper selection of the demodulation band. 

 

4.1. Power spectral density difference 

 

To find the proper frequency band for the NEA it is often advisable to compare the 

spectrum of a signal with fault with that without it. It is a simple method and sometimes can 

be based only on the signal from the faulty state.  

Two signal samples were selected from the database. The first one was from 01.03.2008, 

from the early days of the CM&D system operation. The second one was recorded during the 

time period right after endoscopic investigation. Both signals were acquired on the 

measurement channel closest to the investigated bearing. For clearer results, PSD of both 

signals were used (see Fig. 7). 

 

 
 

Fig. 7. PSD of the vibration signal from the early operation period (dashed gray line) compared with PSD of a 

signal from an advanced bearing fault (solid black line). A small increase in PSD can be seen. 

 

A slight increase of the energy can be seen in the frequency band from 6 kHz to 8 kHz. 

Based on PSD results that band was selected for the demodulation. However, after the 

narrowband envelope analysis, it turned out that the detected energy growth was caused by 

development of the generator bearing fault described earlier. Fig. 8 shows the comparison of 

envelope spectra of both tested signals.  
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Fig. 8. Narrowband envelope spectra of selected signals. The arrow shows the signature of the generator bearing 

(not the sought one).  

 

A new strong component can be detected of the order 5.2X, which is the frequency of the 

generator bearing outer race fault (BPFO). Modulation caused by the strong generator bearing 

component was effectively masking the low-energy, slow shaft bearing component, which 

made optimal frequency band selection very difficult. Other methods had to be taken under 

consideration.  

 

4.2. Kurtogram 

 

First, the authors wanted to propose the Kurtogram [16] analysis as it is a useful method 

for selecting the optimal frequency band for demodulation. The Kurtogram is a method to 

present of results of the Spectral Kurtosis (SK) [17-18] analysis. The Spectral Kurtosis is 

based on the fourth-order spectral cumulant of a conditionally non-stationary process: 
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and can be interpreted as a time-averaged 2nd-order instantaneous moment ),(2 ftS nY , which 

is the measure of the energy of the complex envelope and is defined as: 
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Thus, the SK is defined as the fourth-order spectral cumulant )(4 fS Y normalised by the 
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The kurtogram was proposed in [16] as a tool for blind identification of detection filters for 

diagnostics. As a result, a 2-D map (called the kurtogram) is obtained, which presents values 

of SK calculated for various parameters of frequency and bandwidth. The original kurtogram 

was based on STFT calculation. A faster version of the kurtogram is the Fast Kurtogram, 

based on the filterbank approach [5, 16]  
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Figure 9 presents fast kurtograms of both selected signals. After applying this algorithm to 

both selected samples, no clear differences were detected. 

 

  
 

 

Fig. 9. Kurtogram of a signal with no fault (left) and with advanced bearing faults. 

 

The interpretation of achieved results was difficult, as there were no new modulations in 

the signal generated by the object operating with a damaged bearing. The envelope spectra 

were practically identical to the ones from Fig. 8. 

 

 

4.3. Spectral coherence  

 

Another approach to the problem was the application of a tool based on the analysis of the 

cyclostationarity properties of the signal. The Spectral Coherence (SCoh) is one of the 

cyclostationarity signal processing tools and it can represent the dependencies between the 

modulation () and carrier frequencies (f) as a density distribution [4]. 

The SCoh can be defined as: 
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is the spectral correlation density (SCD): 
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The results of spectral coherence analysis for both tested signals are shown in Fig. 10. The 

figure was zoomed to the most interesting part. 

 

 
 

 Fig. 10. Spectral coherence of signals: without fault (left) and with fault (right). 
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It is now clear that the SCoh of the faulty signal does show some differences.  The 

characteristic frequency 31 Hz of the sought gearbox bearing fault is now visible as a 

modulation signal on the spectral coherence diagram (note that the α frequency increases to 

the left).  There is also a number of components in both plots which shows that the original 

signal also manifested quite strong cyclostationary behavior. Fig. 10 shows that there is no 

such thing like “a single resonance”. There is rather a range which carries the useful 

information.  
 

  
 

Fig. 11. Narrowband envelope spectra of the signals from Fig. 8. The arrows mark generator bearing fault 

(5.2 order) and the sought gearbox bearing fault (1.4 order). 
 

4.4. Improved narrowband envelope analysis 

 

As shown in the previous section, SCoh was able to pick up the fault signature. However, 

this method is not suited for daily monitoring of a large number of machines. The main reason 

is the need of processing of 2D SCoh maps. So, the final step of the work was to propose a 

method which would use advantages of SCoh but return a simplified outcome. Therefore, 

authors would like to propose NEA with the demodulation band obtained from the SCoh 

diagram. Based on visual examination of the SCoh results, the optimal frequency band 

between 8900Hz and 9500Hz was chosen for the signal demodulation as it was a carrier 

frequencies band containing the majority of modulations of the bearing characteristic 

frequency sought after. After calculating the envelope spectrum of the signal in the selected 

frequency range, the energy of a narrowband gearbox bearing characteristic component was 

used as the fault development indicator. Fig. 12 shows the trend of the proposed analysis. 

 

  
 

Fig. 12. Trend of energy of the tested bearing characteristic signal. 

 

First indicators of the damage can be recognized around 04.2009, when the level exceeded 

250.  Results achieved with narrowband envelope analysis  were satisfactory but  despite  that,  
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authors have also proposed to use kurtosis as a more selective estimator. Fig. 13 shows the 

trend of kurtosis parameters of the vibration signal demodulated in the same band as for Fig. 

12. The important difference between this and the previous analysis is that the first one 

presents only the energy of the sought component and the second one – the kurtosis resulting 

from all the components in the assumed frequency band. Therefore, the increase in the 

kurtosis might be partially due to the other bearing fault and not only to the slowly rotating 

bearing. 
 

  
 

Fig. 13. Trend of kurtosis parameter of the tested bearing characteristic signal frequency range. 

 

The trend in Fig. 13 gave a clearer history of the fault development. In the first step, the 

increase in the estimator was about 50%, while for the second one it was more than 100% 

(even including two outliers from the “correct period”). Moreover, around 09.2009 the trend 

began to decrease. We believe that it was caused by the fact that the local bearing fault started 

to grow and became an extended fault. 

 

 

5. Configuration of methods   

 

The previous sections contain the discussion of several estimators which were tested for 

their applicability to detect a bearing fault on a relatively slow shaft. Apart from actual 

performance of particular methods, we would like to answer a very important question about 

the possibility of application of these methods in  industrial practice. There are several factors 

which should be taken into account in such an evaluation. For practical application the 

method should be relatively easy to configure and it should not be too sensitive to 

configuration parameters. The complexity of the method is not so important, as modern data 

processing units becomes more advanced and reliable [19], allowing signal processing tools to 

be more complex and computationally demanding [20]. Table 1 presents a comparison of the 

discussed methods. 

The first two methods, i.e. broadband parameters from raw signal and its envelope, did not 

detect the fault. On the other hand, these methods are very simple and easy to configure. They 

can be used as general parameters and might prove themselves useful in the machinery of 

comparatively uncomplicated kinematics. 

The next two methods, narrowband envelope analysis (NEA), coupled with two different 

ways to determine the demodulation band, hardly detected a fault. The fault signatures were 

visible, but they were weak compared to other components of the envelope spectrum. This 

was caused by the existence of another bearing fault on a faster shaft, which gave the other 

fault relatively high energy. In general, these methods should be useful in practical 

applications as it is a relatively rare situation for two (or more) separate faults to occur and 

develop simultaneously. In the single fault cases, it is possible to automatically estimate the 

optimal frequency band for demodulation. 
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Table 1. Comparison of bearing fault detection methods. 
 

Method Detectability 
Configuration 

parameters 

Sensitivity to 

configuration 

uncertainties 

Possibility of 

simple 

automated 

analysis 

Broadband 

parameters of raw 

signal (RMS, P2P) 
(Fig. 4 and Fig. 5) 

very low none low high 

Parameters of 

broadband envelope 

(RMS, 2P)  
(Fig. 6) 

low high pass filter relatively low high 

NEA + dB difference 
(Fig. 8) 

poor band pass filter high low 

Kurtogram (Fig. 9) poor band pass filter high low 

NEA + Spectral 

Coherence (Fig. 10) 
good band pass filter high 

very low 

(analysis of 2D 

maps) 

NEA + Spectral 

Coherence + 

frequency selective 

RMS (Fig. 12) 

good 

band pass filter, 

band for sought 

component 

high high 

NEA + Spectral 

Coherence + kurtosis 
(Fig. 13) 

very good 

band pass filter, 

band for sought 

component 

high high 

 

The method which used the Spectral Coherence for NEA parameters was eventually able 

to detect the sought fault. However, the analysis of the result was relatively complicated, as it 

requires processing of the 2-dimentional images. Possible automation of such approach would 

require an application of comparatively complicated image processing or pattern recognition 

methods. 

The applicability of the SCoh based method was much better, when there was a simple 

estimator used for the decision making. Out of two such estimators – RMS and kurtosis – the 

latter has shown higher sensitivity to the fault characteristic component. At this point, it 

should be stated that configuration of the narrowband envelope analysis methods based on 

SCoh results requires precise examination of SCoh diagrams, which can make them relatively 

sensitive to configuration uncertainties.  

 

6. Summary 

 

The paper showed the case study of a wind turbine that had suffered a serious rolling 

element bearing  fault on a relatively low speed shaft. The fault detection was difficult, as 

there was also a fault in another bearing on the generator shaft, which gave the other fault a 

stronger signature. The authors have compared several methods for early detection of 

symptoms of the failure. The paper compares standard methods based on spectral analysis and 

a number of novel methods based on narrowband envelope analysis, kurtosis and a 

cyclostationarity approach.  

The very important problem of proper configuration of the methods is addressed as well. In 

industrial practice the configuration should be as standard and simple as possible, so the 

discussed methods were compared from this perspective. The paper discusses configuration 

parameters of the investigated methods and their sensitivity to configuration uncertainties. 

One has to add that all methods based on the narrowband envelope analysis are very 

sensitive to the configuration parameters. This is an important problem, especially when one 
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needs to configure the analysis in hundreds of machines in a short time. There are, however 

two directions which should simplify this problem. The first one is that in many cases there 

are only a few machine types (it is the case with wind turbines). We believe that once a 

demodulation band is determined for a machine, it will be also valid for other machines of the 

same type. The other direction is research of methods which would return a demodulation 

band (or another way of obtaining a fault signature) for a given modulating frequency. Such  

further research could be done especially in the field of cyclostationary methods. 
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