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Abstract 

While the Slope Fault Model method can solve the soft-fault diagnosis problem in linear analog circuit 

effectively, the challenging tolerance problem is still unsolved. In this paper, a proposed Normal Quotient 

Distribution approach was combined with the Slope Fault Model to handle the tolerances problem in soft-fault 

diagnosis for analog circuit. Firstly, the principle of the Slope Fault Model is presented, and the huge 

computation of traditional Slope Fault Characteristic set was reduced greatly by the elimination of superfluous 

features. Several typical tolerance handling methods on the ground of the Slope Fault Model were compared. 

Then, the approximating distribution function of the Slope Fault Characteristic was deduced and sufficient 

conditions were given to improve the approximation accuracy. The monotonous and continuous mapping 

between Normal Quotient Distribution and standard normal distribution was proved. Thus the estimation 

formulas about the ranges of the Slope Fault Characteristic were deduced. After that, a new test-nodes selection 

algorithm based on the reduced Slope Fault Characteristic ranges set was designed. Finally, two numerical 

experiments were done to illustrate the proposed approach and demonstrate its effectiveness. 
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1. Introduction 
 

Fault detection, fault location and fault identification are three major tasks of analog circuit 

fault diagnosis [1]. According to collected statistics, although most parts of an electronic 

system are digital, more than 80% of the faults occur in the analog segment. The analog  

circuits fault diagnosis can  be  an extremely  difficult  problem due to 1) the  lack  of  good  

fault  models  for  analog components  similar to  the  stuck-at-one  and  stuck-at-zero fault  

models,  which  are  widely used by the digital  circuit test; 2) the  nonlinear nature of the 

problem; 3) component tolerances. For these reasons, the test and diagnosis of analog circuits 

are still developing very slowly. 

On the basis of simulations of the Circuit Under Test (CUT) occurring in a test, fault 

diagnosis techniques are classified as the Simulation Before Test approach (SBT) and the 

Simulation After Test approach (SAT). In the SAT approach, fault diagnosis is achieved by 

calculating the circuit parameters directly from the measured responses of CUT. It needs more 

computation in test than the SBT approach. The fault dictionary method is a typical case of 

SBT, in which the simulations need to be implemented before the test to generate an off-line 

fault dictionary for the predefined fault states. Given the strong requirements of shortest test 

times and the best test coverage in today’s semiconductors test [2], the fault dictionary is 

becoming one of the most promising fault diagnosis methods.  

The fault dictionary technique can only be used to diagnose the hard-fault (also being 

called catastrophic-fault, including open fault and short fault) in the early time [1, 3]. 

Recently, it has been improved to diagnose both the hard-fault and soft-fault (also being 
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called parameter-fault, when the faulty element deviates from its nominal value beyond its 

tolerance limit). In [4-6], node-voltage sensitivity analysis methods were used to diagnose a 

soft-fault. A novel fault dictionary based on the conservation of node voltage sensitivity 

weight sequence was constructed in [6]. The linear relationships between variations in node 

voltages were discovered by Wang and Yang in [7]. The Slope Fault Model (SFM) was 

proposed by Wang and Yang in reference [8]. Whether a fault is hard or soft, only one Slope 

Fault Characteristic (SFC) is needed. However, the diagnosis accuracy under tolerances was 

low for adopting the Minimal Distance Approach (MDA). In [9], Yang and Tian improved the 

method in [8] to handle tolerances by the Fixed Width Approach (FWA). Acting as a feature 

selector and classifier, the Self-organizing Map was used to diagnose a soft-fault under 

tolerances in analog electronic circuits [10]. The fuzzy math concept was introduced to handle 

tolerances by [11-13]. In [13], the direction vector fault signature was combined with fuzzy 

analysis method to deal with tolerances in CUT. In recent years, the Support Vector Machine 

was introduced as pattern classifier for diagnosing analog circuit [14]. Tadeusiewicz and 

Hałagas had developed interesting algorithms based on the linear programming method, 

which can diagnose multiple soft-faults without performing any optimization process [15-16]. 

Most of the aforementioned fault diagnosis approaches based on a fault dictionary can partly 

solve the tolerances problem in fault diagnosis of an analog circuit, but the diagnosis coverage 

is low.  

In this paper, a novel approach based on Normal Quotient Distribution (NQD) was 

proposed to deal with the tolerance problem in analog circuit fault diagnosis. The distribution 

function of the SFC was established. An approximating calculation method of the above 

distribution function was developed. The estimating equations of the SFC with high accuracy 

were given. An effective test-node selection algorithm was designed. This paper is organized 

as follows below. 

Section 2 illustrates the principle of the SFM and proves an effective SFC selection 

method. Section 3 compares several typical approaches of handling tolerances based on SFM 

in fault diagnosis, and explains the NQD approach. Section 4 shows the fault diagnosis 

process based on a new test-node selection algorithm. Section 5 presents two experiments to 

demonstrate the effectiveness of the proposed method. Section 6 draws the conclusions.   

 

2. The principle of the SFM  
 

Figure 1a shows a linear CUT network stimulated by an independent voltage source su

with n components. Let us suppose that the test-nodes set and the faults set of CUT are 

1 2{ , ,..., }pT T T T  and 0 1 2{ , , ,..., }(1 )mF F F F F m n   , where 0F  means the fault-free state 

and ( 1,2,..., )jF j m  means 
jX  is the possible faulty component. N is the number of non-

faulty parts of the CUT with component parameters being their nominal values.  
 

                                                           a)                                                 b) 

 
 

Fig. 1. a) CUT network; b) equivalent network. 
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Subject to the substitution theorem [17], Fig. 1a can be equivalently transformed into Fig. 

1b if the voltage decrease of 
jX  is 

ju . In Fig. 1b, CUT is stimulated by both su and 
ju .  

Based on the superposition theorem of a linear circuit [17], the test-node voltage is the 

algebraic sum of two parts: the first is usV caused by su while 
ju  is short-circuited, the other is 

ujV caused by 
ju while su is short-circuited.  

The test-nodes voltages caused only by su  are: 
 

1 1

us

s sV a u ,  
2 2

us

s sV a u ,                                                     (1) 
 

where 1sa and 2sa  are transmission coefficients between su  and 1 2,T T . The test-nodes voltages 

caused only by 
ju  are: 

1 1

uj

j jV a u ,  2 2

uj

j jV a u ,                                                     (2) 
 

where 
1 ja and 

2 ja  are transmission coefficients between 
ju  and 1 2,T T . The total voltages are: 

 

1 1 1

j

s s j jV a u a u  ,  2 2 2

j

s s j jV a u a u  ,                                           (3) 
 

Eliminate 
ju  in (3): 

1 1

1 2 1 2 12 2

2 2

j jj j j j

s s s s c

j j

a a
V V a u a u S V u

a a
     ,                                         (4) 

where 
1 ja ,

2 ja , 1sa , 2sa  are parameters only affected by the locations of the test-nodes, the 

location of 
jX , components parameters and topology in N. If su  is constant, whatever 

jX  is 

(open, short, soft-fault), 12 1 2/j

j jS a a and 
1 1 2 2/c s s j s s ju a u a a u a   are constant. It is 

reasonable to choose 
12

jS  to be the SFC of  
jF . 

When the parameter of 
jX  is at the nominal value, the voltages at 1T  and 2T  should meet  

(4), which can be shown in (5): 
 

0 0

1 12 2

j

cV S V u  .                                                          (5) 
 

Subtracting (5) from (4), (6) can be acquired. 
 

0 0 1
1 1 12 2 2 12

2

( ) ( )
j

j j j j

j

V
V V S V V S

V


    


.                                      (6) 

12

jS can be computed numerically from (6).  

Take the CUT shown in Fig. 2 for example. When 1R  is the faulty component (open fault 

(10
6Ω), short fault (0.001 Ω) and soft-fault (8 kΩ)), the voltage variations at 1T  and 2T  are 

(8.01 V,7.98 V,2.67 V) and (4.03 V,4.02 V,1.34 V) respectively. 1

12S  are calculated to 

be (0.5029,0.5030,0.5028).  Whatever 1R  is, open, short or soft-fault, 1

12S  keep to be the 

same. 
 

 
Fig. 2. Voltage divider circuit. 

R6

12k

0

V1

16v

R1

4k

R2

3k

R3

3k

R4

3k

R5

3k

R7

6k

R8

6k

R9

6k

R10

6k

1 3 542



 

 Y. Ao, Y. Shi, W.Zhang, X. Li: A NOVEL METHOD OF HANDLING TOLERANCES FOR ANALOG CIRCUIT … 

 

To diagnose a CUT with m  possible fault states and p  test-nodes, there totally are 

( 1)mp p  SFC needed to be computed before test [9]. The huge computation is unacceptable 

in practice. For most of the SFC carrying redundant information, there is an effective method 

to reduce the computation. 

Theorem 1 

For a CUT with p  test-nodes, there are only ( 1)p   effective SFC while CUT is at any 

fault state. 

Prove: Suppose that kT  is the basic test-node, which can be determined in Section 4.1, we 

can construct ( 1)p   SFC ( 1,2,..., , )ikS i p i k  . As it is shown in (7), all the other  2( 1)p   

SFC ( , )ijS i j j k   can be got directly using ikS . 
 

                             

( ) / ( )
jik i i

ij

jk k k j

VS V V
S

S V V V

 
  

  
 , ( , 1,2,..., , )i j p i j k   .                (7) 

 

Clearly, 
ijS  should be eliminated from the effective SFC set for the linear correlation to 

/ik jkS S . Consequently, the previously described computation becomes ( 1)m p .  

 

3. Methods of handling tolerances based on SFM 

 

Tolerance problem is one of the most challenging problems in analog circuit fault 

diagnosis. Let k

ijS  denotes the nominal SFC between iT  and 
jT  under kF  while all the 

parameters of the non-faulty components are right at their nominal values. Clearly, k

ijS  are 

constant. If tolerances are taken into account, which are inevitable in analog circuits, k

ijS  are 

Random Variables (RVs) with their parameters changing around k

ijS . 

 

3.1. Comparison of typical tolerance handling approaches 
 

There are two sorts of approaches to handle tolerances in fault diagnosis for analog 

circuits. One sort is the non-probabilistic method, including the MDA [8] and FWA [9, 13]. 

The other sort is the probabilistic method, including the 3  approach. The fuzzy analysis 

methods will not be discussed in this paper. 

Because only nominal SFC need to be calculated, MDA is an algorithm with least 

computation. At the same time, it is a rough algorithm for fault diagnosis under tolerances. 

For example, let 
1 1S   and 

2 0S   be the nominal SFC for two fault states 1F  and 2F , and 

the ranges of the corresponding SFC  are (0.1,1.9) and (0.1,0.1) respectively. If the measured 

SFC is 0.2S  , the diagnosis result will be 2F  by MDA. In fact, 1F  is the right fault state. 

The FWA is more accurate than MDA by taking the SFC range caused by tolerances into 

account. By this way, the SFC range is expressed as ( (1 ), (1 ))FWA nom nomS S S    , where 

nomS  is the nominal SFC and   is a specified width factor. While the simulation computation 

of FWA is small, it is not logical to impose a strong correlation between nomS  and FWAS . For 

example, if 0nomS  , then 0FWAS  , which means there are no tolerances in CUT at all. 

Given normal distribution is the most common probability distribution in the real world, 

the SFC are considered directly to be RVs with normal distribution in the 3  approach 

(actually it is NQD). On this hypothesis, the SFC range is 3 ( 3 , 3 )nom nomS S S     . 



 
Metrol. Meas. Syst., Vol. XIX (2012), No. 4, pp. 817-830. 

 

Though 3S   is wide enough to cover nearly all the SFC under tolerances, it is not helpful to 

the optimum test-node selection. 

According to all the disadvantages mentioned above, a novel method of handling 

tolerances based on NQD is put forward.  

 

3.2. NQD approach  
 

Suppose all the parameters of the non-faulty components in CUT are independent normal 

RVs with mean values at their nominal values. Subject to the Law of Central limit theorem 

[i8], the voltages variation at the test-nodes are also normal RVs. In view of the SFC 

definition in (6), the distribution of SFC between two test-nodes is NQD.  

For the convenience of computing, X  and Y , with means as x  and 
y , variances as 2

x  

and 2

y , and correlation coefficient  , are used to represent the voltage variation on two test-

nodes in CUT. W  denotes the corresponding SFC.  

Hypothesis 1: 0x  , 0y  , 0x  , 0y  . 

Under the above assumptions, the relation between the three random variables is shown in 

(8): 

X
W

Y
 .                                                                    (8) 

 

If the joint density function of  ( , )X Y  is ( , )g x y  and the density function of W is ( )f w , 

then: 

( ) ( , )f w y g wy y dy



  .                                                     (9) 

 

The distribution function ( )F w  of W is found by direct calculation to be [19-20]: 
 

, , , ,
( ) ( ) ( )

}
(

( { }
)

) {
y yx x xy y x y y

yx y x y x y y x y

w w w w

a w a w a w
F w L L

a w

         

         

   
  ,               (10) 

 

where , ,{ } { , }L h k r P h k    ,   and   are RVs of standard normal distribution with 

covariance r . 

 Equation (10) is easy to be simplified to (11) and (12): 
 

1( ) ( )
( )

x

y

y

x

w
F w

a w

 

 


  , 

y

y




 ,                                          (11) 

 

2 ( )
(

( )
)

x

x y

y

w
F

w

a
w

 

 


  , 

y

y




  ,                                       (12) 

 

where 
12

2
2 2

2 1
( ) ( )

x x y y

w w
a w



   
   , ( )   is the distribution function of standard normal 

distribution. On account of the 3  ( 1  , 2  is variance of standard normal distribution) 

law of standard normal distribution, the two approximations are accurate enough if 

/ 3 3y y    . According to the high similarity of (11) and (12), only (11) is used to 

calculate the range of  W. Let: 

, , , ,( ; )
( )

y x

x y x y

x y

w
z h w

a w

 
   

 



  .                                      (13) 
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Clearly, Z  is a RV of standard normal distribution. It is easy to prove that the numerator 

and the denominator of equation (13) are continuous functions and the denominator is 

positive. Consequently, ( )h   is a continuous mapping. 

Theorem 2 

Within a certain range, there is monotonous and continuous mapping between z  and w .  

Prove: Analysis shows that there is quadratic function mapping between z  and w  in the 

whole domain of w . Let us consider firstly the extreme points of z which can be calculated 

by (14): 

                                         

2

00
( )

y x x x y

y y x x y

dz

dz
w

dw

    

    



   

 
.                                 (14) 

 

Clearly, there is only one extreme point 0( )dzw   for specified , ,( , ),x y x y    . 
dz

dw
 keeps 

to be positive or negative on each side of 0dzw  . That is to say, z changes monotonously and 

continuously with w  on each side of 0dzw  . But the monotonous mapping is not satisfied in 

the neighbourhood of 0dzw  . Substituting (14) back into (13), the extreme value of z  can be 

computed from (15): 

(15) 
 

On the condition that /y y   , 0dzz   must be a large number away from its mean 

0z  . Due to the nature of standard normal distribution, the probability of z belonging to the 

neighbourhood of 0dzz   is very small. Accordingly, the probability of w  belonging to the 

neighbourhood of 0dzw  is also very small. 

Then, let us consider the zero points of z which can be calculated by (16) 
 

                                                          
00 x

y

z w



   .                                                     (16) 

 

0z   is the mean value of Z . According to probability theory, the corresponding 0w  is the 

mean value of W . There is only one zero point ( 0w ) for specified , ,( , ),x y x y    .   

Above all,  W changes on one side of 0dzw  , which includes 0w  (Only this range is needed 

to be considered in this paper), and is seldom equal to 0dzw  . There is monotonous and 

continuous mapping between z  and w  in this range. The variation range of W  can be 

estimated below.  

Suppose %  of 1 1 1( , ), 0z z z z   , then 1z  can be got from (17):  
 

1 1 1 1( ) ( ) ( ) %P z Z z z z        .                                      (17) 
 

 

2 2 2 2 2

2 2

0 2

(1 )( 2 )
( )

( )

(1 )

y x x y x y x y

y x x y

y y x x y

dz

x

z

        
   

    

 


  







2 2 2 2

2 2

2

1 (1 ) y y

y x x y x y x y y x x y y x x y y x

xx y xyx

                 

       





 
   



 



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If 90  , then 1 1.645z  . Putting 1z  and 1z  back into (13), the corresponding range 

1 2( , )w w  can be calculated easily from (18): 
 

2 2 2 2 2 2 2 2 2

1 1 1 1

1,2 2 2 2

1

2 2 ( 2 2 ) 4( )( )

2( )

x y x y x y x y x x y y

y y

z z z z
w

z

           

 

      



.         (18) 

 

Let us take the two groups of computer-generated data 2(1,0.5 )X N  and 2(3,0.8 )Y N  

for example. The ranges calculated by FWA, 3  approach and (18)  are 

   0.3,0.3667 ( 0.1)FWAS   ,  3   0.263,0.9297S    and    0.0565,0.6884NQDS   respectively. 

3S   contains nearly 100% SFC under tolerances, but the range is too big. FWAS  is apparently 

the best, but it only contains less than 30% SFC. For better balance between small range and 

high coverage of SFC, 
NQDS (contains more than 95% SFC) is chosen to be the reasonable 

estimation of SFC range under tolerances. 

 

4. Diagnosis methodology and process 

 

Based on the SFM and NQD approach, we can handle open fault, short fault and soft-fault 

of CUT under tolerances. The general diagnosis steps are as follows 

Step 1. Run nominal simulations (CUT is in 
jF  states while all the non-faulty components 

are at their nominal values) to get ( 1,2,..., ; 1,2,..., )j

iV i p j m  , then calculate j

iV ; 

Step 2. Run Monte Carlo (MC) simulations (CUT is in 
jF  states while all the non-faulty 

components change around the nominal values within their tolerance limits) to get j

iqV ( q  is 

MC simulations number for each fault states); 

Step 3. Calculate j

iqV  and ( ), ,j j

i ki

j

i  ,where j

i  and j

i  denote the means and variances 

of j

iqV , j

ik denotes the correlation coefficient between j

iqV  and j

kqV , then determine the 

basic test-node kT ; 

Step 4. Calculate the ranges of the SFC 1 2( , )j j

ik ikS S  by (18); 

Step 5. Select the  optimum test-nodes and construct a fault dictionary; 

Step 6. Fault diagnosis. 

MC simulations are the key operations for acquiring the statistics of the SFC under 

tolerances. On account of 1) rapid development of computer technique, 2) MC simulations are 

needed only once before test, 3) the more accurate the SFC ranges are estimated, the less 

computations are needed in fault diagnosis, it is necessary to run it to improve the estimation 

of SFC ranges. 

 

4.1. Basic test-node selection 

 

For better approximation of (10) by (11) and (12), the basic test-node kT  must be 

determined. There are two conditions needed to be satisfied. Firstly, kT  should meet 

inequality (19): 

min / 3j j

k k
j
   , ( 1,2,.., ; {1,2,..., })j m k p  .                           (19) 

This condition makes the approximation feasible. Generally, more than one test-node 

satisfied the above inequality. Let K  denotes the basic test-nodes set generated in this step. 

Secondly, kT  should satisfy (20): 
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argmax / ,( 1,2,.., )j j

k k
k K j

k sum j m 


  .                                      (20) 

 

This condition makes the approximation more accurate and results in the only kT .  

 

4.2. Optimum test-node selection 

 

The effective SFC can be constructed as ( {1,2,..., }; )ikS i p i k   on the ground of the 

selected kT . For each fault state 
jF , the corresponding SFC ranges can be computed by (18). 

The SFC ranges table is constructed as Table 1. 

 
Table 1. SFC ranges table. 

 1kS  2kS  ... ( 1)p kS 
 

1F  
11 12

1 1( , )k kS S  
11 12

2 2( , )k kS S  ... 
11 12

( 1) ( 1)( , )p k p kS S   

2F  
21 22

1 1( , )k kS S  
21 22

2 2( , )k kS S  ... 
21 22

( 1) ( 1)( , )p k p kS S   

... ... ... ... ... 

mF  
1 2

1 1( , )m m

k kS S  
1 2

2 2( , )m m

k kS S  ... 
1 2

( 1) ( 1)( , )m m

p k p kS S   

 
1 2( , )j j

ik ikS S  means a SFC range between iT  and kT  under fault 
jF .  

Based on Table 1, ( 1)p   Fault-pair Isolation Matrixes (FIM) can be generated as 

1 2 ( 1)( , ,..., )k k p kFIM FIM FIM 
. ikFIM  corresponding to ikS  is shown in Table 2.  

 

Table 2. 
ik

FIM  (for 
ik

S ). 

 1F  2F  ... mF  

1F  0 0 ... 0 

2F  
21

ikFIM  0 ... 0 

... ... ... ... ... 

mF  
1m

ikFIM  
2m

ikFIM  ... 0 

 

FIM can be acquired by (21): 
 

 

1 2 1 21 ( , ) ( , )

0

j j l l

jl ik ik ik ik

ik

S S S S
FIM

others

 
 


( {1,2,..., }; ; , 1,2,..., ; )i p i k j l m j l    , (21) 

 

where   means an empty set. Clearly, the estimated ranges 1 2( , )j j

ik ikS S  and 1 2( , )l l

ik ikS S  are 

bigger, the probability of  1jl

ikFIM   is smaller,  which  means 
jF  and lF  can  be  isolated  by  

ikS . This is why the 3  approach is not helpful to the optimum test-nodes selection. For a 

CUT with m fault states, there are totally ( 1) / 2m m  fault-pairs (A group with two different 

fault states of CUT. For example, 1 2( , )F F  is a fault-pair) to be isolated. For the purpose of 

isolating more fault-pairs with less test-nodes, an efficient test-node selection algorithm is 

designed below: 

Step 1. Construct FIM by (21). 

Step 2. The optimum test-nodes index set optT is initialized as { }k . 
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Step 3. Find out ikFIM ( opti T , opt optT T T ) with maximum number of 1, which 

means that the maximum fault-pairs are isolated, and add i  into optT . Then save 
ikFIM  as a 

temporary matrix TEMM . 

Step 4. If all the fault-pairs are isolated, exit. Else, go to step 5. 

Step 5. Calculate and find out ( )TEM

ik

optM FIM i T  with maximum number of 1, and 

add i  into optT . Let TEM TEM

ikM M FIM . 

Step 6. If all the fault-pairs are isolated, exit.  Else, if no more fault-pairs are isolated, find 

out the undistinguishable fault-pairs, exit. Else, go to step 5. 
optT  is the optimum test-node set on the basis of the estimated SFC ranges in Table 1. 

 

5. Experiment results and discussion 

 

In this section, two experiments are designed to demonstrate the effectiveness of the 

proposed diagnosis method. The simulations and the data analysis were implemented with 

PSPICE and MATLAB respectively on a PC platform with AMD Athlon X2@2.8GHz and 

2.0G RAM. 

 

5.1. The voltage divider circuit  

 

Let us consider a linear dc circuit (Fig. 2) first. There are totally 5 test-nodes 1 2 5{ , ,..., }T T T  

and 10 possible fault states 1 2 10{ , ,..., }F F F , where 
jF  means 

jR  is the possible faulty 

component. The parameters of the faulty components increase 100% of their nominal value. 

Tolerances of all the components are 10%. 

From the MC simulations for the predefined faults on CUT under tolerances, ( ), ,j j

i ki

j

i   

can be acquired by statistical calculations. Then, the basic test-node is determined to be 5T . 

After that,  the nominal simulations need to be done and the nominal SFC (Table 3) can be 

calculated by (6). On the ground of the calculated ( ), ,j j

i ki

j

i  , the SFC ranges 1 2( , )j j

ik ikS S  

(Table 3) can be computed from (18). 
 

Table 3. SFC ranges for voltage divider circuit. 

 
nominal SFC ranges of SFC 

15
S  25

S  35
S  45

S  S15 S25 S35 S45 

F1 10.69 5.37 2.75 1.5 9.79~11.78 4.91~5.99 2.59~2.94 1.39~1.57 

F2 -5.31 5.38 2.76 1.5 -7.09~-3.91 4.74~6.16 2.49~3.08 1.41~1.6 

F3 -1.31 -2.63 2.75 1.5 -2.32~-0.43 -3.67~-1.79 2.55~2.99 1.42~1.59 

F4 -0.31 -0.63 -1.25 1.5 -1.35~0.58 -1.37~-0.01 -1.83~-0.79 1.4~1.62 

F5 -0.06 -0.13 -0.25 -0.5 -1.36~1.17 -1.21~0.77 -0.85~0.21 -1~-0.15 

F6 10.69 5.39 2.74 1.49 6.64~21.15 3.47~9.99 1.94~4.33 1.14~2.03 

F7 2.69 5.38 2.75 1.5 1.55~3.99 4.3~7.09 2.33~3.36 1.33~1.74 

F8 0.69 1.37 2.75 1.5 -0.38~1.66 0.64~1.99 2.41~3.18 1.35~1.66 

F9 0.18 0.38 0.75 1.5 -0.97~1.21 -0.31~0.95 0.38~1.05 1.38~1.64 

F10 0.06 0.13 0.25 0.5 -0.69~0.68 -0.37~0.51 -0.09~0.49 0.32~0.62 
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There are no correlations between the nominal SFC and their corresponding ranges (Table 

3). For example, the range of 15S  is 19% of its nominal value under fault 1F , but about 627% 

of the nominal value under fault 4F . This is why FWA is not logical. 

Test-node selection: On the basis of Table 3, the FIM are obtained from (21). The 

proposed test-node selection algorithm is used to search the optimum test-nodes set optT . 

There are totally ( 1) / 2 45m m   fault-pairs. 3T  was selected out firstly to be the most 

informative test-node, because 35 fault-pairs can be isolated by 35S . Being the second 

informative test-node, 1T  was selected out to isolate other 5 fault-pairs. Then 4T  was selected 

out to isolate another 4 fault-pairs. There is only 1 6( , )F F  that cannot be isolated.  In fact, the 

nominal SFC vectors under fault 1F  and 6F   (Table 3) are too close to be distinguished.  The 

final optimum test-nodes set 
1 3 4 5{ , , , }optT T T T T . The corresponding fault dictionary based on 

optT  can be constructed as Table 4. 

 
Table 4. Fault dictionary for voltage divider circuit. 

 S15 S35 S45 

F1 9.79~11.78 2.59~2.94 1.39~1.57 

F2 -7.09~-3.91 2.49~3.08 1.41~1.6 

F3 -2.32~-0.43 2.55~2.99 1.42~1.59 

F4 -1.35~0.58 -1.83~-0.79 1.4~1.62 

F5 -1.36~1.17 -0.85~0.21 -1~-0.15 

F6 6.64~21.15 1.94~4.33 1.14~2.03 

F7 1.55~3.99 2.33~3.36 1.33~1.74 

F8 -0.38~1.66 2.41~3.18 1.35~1.66 

F9 -0.97~1.21 0.38~1.05 1.38~1.64 

F10 -0.69~0.68 -0.09~0.49 0.32~0.62 

 

Four out of five nodes are needed to be accessible for CUT. This is often unrealistic. 

Fortunately, the selected test-nodes in optT  are very different. 5T  is the indispensable basic-

node. 5 3( , )T T  form the most informative SFC, which can isolate 35 fault-pairs. About 80% 

fault-pairs are isolated by 35S . Then 5 1( , )T T  form the second informative SFC (isolate another 

more 5 fault-pairs). Nearly 90% of the fault-pairs can be isolated by the three test-nodes. 4T  

could be eliminated from optT  for the limitation of the accessible nodes. As a result, the 

diagnosis accuracy is sacrificed. 

There is another way to reduce the number of the accessible test-nodes. In the proposed 

approach, compromise must be reached between the diagnosis coverage and the number of 

accessible nodes. In (17), if    is big (means high diagnosis coverage), then 1z  is big.  

Equation (18) shows that big  1z  leads to big 1 2( , )w w  (the ranges of the SFC), which 

makes the fault-pairs of CUT hard to be isolated. Table 5 illustrates the relations between   

and the accessible nodes. The data in Table 5 are the number of the separable fault-pairs. 

0.9   is adopted in this paper. If we make 0.7  , only 5 3( , )T T  is needed to be accessible 

nodes, which can isolated nearly 90% of the fault-pairs. Consequently, the diagnosis coverage 

will drop. 
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Table 5. The relations between  and the accessible nodes. 

 5 3
( , )T T  

5 1
( , )T T  

5 4
( , )T T  total 

0.9   35 5 4 44 

0.8   37 5 2 44 

0.7   40 4 0 44 

 

Fault diagnosis: Suppose 2R  is the faulty component, which means CUT is under 2F  fault 

state. There are 6 fault types (4 soft faults, 1 open fault and 1 short fault) with the parameters 

being 6

2 2 2 2{1.3 ,1.5 ,2 ,5 ,10 ,0.001}R R R R  respectively. The parameters of the non-faulty 

components change around their nominal values independently within the tolerance limits 

(10%). The output voltages of ( 1,2,...,5)iT i   and the SFC calculated by (6) under 2F  are 

both listed in Table 6. 

While the parameters of the faulty components are 6

2 2 2 2{1.3 ,1.5 ,2 ,5 ,10 ,0.001}R R R R   

respectively, the corresponding SFC under tolerances (Table 6) are all in the SFC ranges of 

2F  fault state (Table 4). Clearly, the diagnosis results are all 2F  fault state. When the 

parameter of the faulty component changes slightly ( 21.3R  ), one of the corresponding SFC 

(S35) is not in the  SFC ranges of 2F  fault state. The faulty component cannot be located 

correctly. For the hard-fault and the soft-fault with deviations greater than or equal to 50% 

from nominal values, the proposed method can locate the fault component accurately. 
 

Table 6. Diagnosis results for voltage divider circuit. 

fault 

types 
V1(v) V2(v) V3(v) V4(v) V5(v) S15 S35 S45 

diagnos

e result 

1.3R2 8.38 3.65 1.84 1.02 0.68 -5.28 3.27 1.54 × 

1.5R2 8.57 3.39 1.72 0.93 0.62 -4.08 2.55 1.45 √ 

2R2 8.95 2.98 1.53 0.83 0.56 -4.82 2.73 1.52 √ 

5R2 10.15 1.69 0.86 0.46 0.3 -4.78 2.69 1.49 √ 

open 11.85 3.5mv 1.8mv 1mv 0.7mv -5.12 2.75 1.5 √ 

short 6.03 6.03 2.97 1.66 1.1 -5.63 2.58 1.51 √ 

 

5.2. The leapfrog filter circuit 

 

To demonstrate the universality of the proposed method in this paper, another more 

complicated benchmark circuit (a linear AC circuit) shown in Fig. 3 is considered. It is a 

leapfrog filter circuit [21] with a cut-off frequency of 1.4 kHz.  

 

 
Fig. 3. Leapfrog filter circuit. 

 

Suppose there are 6 test-nodes 1 2 6{ , ,..., }T T T and 10 possible fault states 1 2 10{ , ,..., }F F F  with 

3 4 6 8 9 10 11 12 2 3( , , , , , , , , , )R R R R R R R R C C  being the faulty components respectively. The 
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parameters of the faulty components increase by 50% of their nominal values. The tolerances 

of all the non-faulty components are 5%. A sine wave signal with a frequency of 1 kHz, 

which is in the transition band of the filter circuit, was chosen to be the excitation signal for 

the CUT. 

Both amplitude signal and phase signal are processed by the proposed method. From the 

MC simulations for the predefined faults under tolerances, ( ), ,j j

i ki

j

i   are computed firstly 

by statistical methods. Then, the basic test-node is determined to be 6T . After that, the 

nominal SFC and the SFC ranges of the amplitude signal and phase signal can be calculated 

and listed in Table 7, Table 8 and Table 9. There are totally ( 1) / 2 45m m   fault-pairs. 1T  

was selected to be the most informative test-node. There are 39 fault-pairs which can be 

isolated by 16S . Then, 5T  was selected to isolate another 5 fault-pairs. Only 3 9( , )F F  cannot be 

isolated. In fact, the nominal SFC vectors under fault 3F  and 9F   (Table 7) are too close to be 

distinguished. The final optimum test-nodes set 
1 5 6{ , , }optT T T T .  

 

Table 7. Nominal SFC for leapfrog filter circuit. 

 
amplitude signal phase signal 

16
S  26

S  
36

S  
46

S  
56

S  
16

S  26
S  

36
S  

46
S  

56
S  

F1 0.87 -1.7 -1.29 -1.18 -1.18 24.29 -1.01 -1.04 -1.01 -1.01 

F2 1.05 1.62 1.26 1.16 1.16 22.99 -1 -0.98 -0.99 -0.99 

F3 1.96 1.78 -1.29 -1.19 -1.19 8.15 -0.99 -0.99 -1 -1 

F4 0.99 0.66 0.56 -1.17 -1.17 0.4 -1.01 -1.02 -0.99 -0.99 

F5 -0.47 1.55 1.19 0.97 -1.16 1.4 0.49 0.45 -1 -1 

F6 1.26 -0.88 -0.62 -1.49 1.22 -0.36 -1.23 -1.24 1 1 

F7 -0.61 2 1.53 1.26 1.26 1.39 0.5 0.46 -1 -1 

F8 -0.51 1.51 1.16 0.95 0.95 1.23 0.39 0.44 -1.01 -1.01 

F9 1.97 1.78 -1.23 -1.15 -1.15 8.52 -1.01 -1.02 -1 -1 

F10 1.56 2.02 1.56 -1.15 -1.15 0.38 -0.48 -0.5 -1 -1 

 

Table 8. SFC ranges for leapfrog filter circuit (amplitude signal). 

 S16 S26 S36 S46 S56 

F1 0.73~1.02 -2~-1.44 -1.51~-1.09 -1.37~-1.01 -1.39~-0.99 

F2 0.24~2.13 0.66~2.96 0.77~1.96 0.79~1.62 0.86~1.53 

F3 1.64~2.35 1.5~2.08 -1.72~-0.96 -1.61~-0.86 -1.58~-0.89 

F4 0.71~1.38 0.28~1.02 0.23~0.84 -1.81~-0.76 -1.79~-0.78 

F5 -0.64~-0.32 1~2.24 0.88~1.59 0.86~1.13 -1.71~-0.79 

F6 0.91~1.71 -1.88~-0.2 -1.14~-0.29 -2.26~-1 1.04~1.46 

F7 -1.41~-0.16 1.3~3.68 1.07~2.66 0.9~1.87 1.01~1.55 

F8 -0.87~-0.18 0.95~2.16 0.73~1.65 0.8~1.12 0.87~1.03 

F9 1.49~2.54 1.31~2.32 -1.79~-0.85 -1.83~-0.69 -1.67~-0.8 

F10 1.01~2.56 1.54~2.85 1.24~2.15 -1.91~-0.75 -2.23~-0.57 

 

Fault diagnosis: Suppose 3 8 9 11 12 3( , , , , , )R R R R R C  are the faulty components respectively 

with the parameters increased by 50% of their nominal values. The parameters of the non-

faulty components change around their nominal values independently within the tolerance 

limits (5%). There are 30 simulations for each fault states. The diagnosis approach proposed 

in this paper and the FWA in reference [9] are both used to diagnose the faulty CUT. The 

optimum test-nodes set for FWA is 
1 2 6{ , , }optT T T T  and the corresponding SFC are {S16, 

S26}. The width factor of FWA is 0.1. The fault-pair of 3 9( , )F F  still cannot be isolated by 

FWA. The diagnosis results by the two diagnosis methods are listed in Table 10.  
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Table 9. SFC ranges for leapfrog filter circuit (phase signal). 

 S16 S26 S36 S46 S56 

F1 17.9~37.86 -2.09~-0.49 -2.14~-0.5 -2.12~-0.48 -2.12~-0.48 

F2 16.53~37.38 -2.21~-0.44 -2.16~-0.43 -2.19~-0.46 -2.19~-0.46 

F3 7.21~9.37 -1.27~-0.78 -1.27~-0.78 -1.28~-0.79 -1.28~-0.78 

F4 0.3~0.55 -1.91~-0.55 -1.91~-0.56 -1.97~-0.5 -1.97~-0.5 

F5 0.97~2.05 0.41~0.55 0.36~0.51 -1.59~-0.63 -1.59~-0.63 

F6 -0.59~-0.2 -2.07~-0.81 -2.07~-0.82 0.85~1.17 0.85~1.17 

F7 0.84~2.67 0.22~0.64 0.14~0.61 -2.44~-0.4 -2.44~-0.4 

F8 0.69~2.68 0.07~0.53 0.14~0.57 -2.77~-0.37 -2.77~-0.37 

F9 7.26~10.33 -1.39~-0.73 -1.41~-0.75 -1.43~-0.69 -1.43~-0.69 

F10 -6.46~6.31 -0.63~-0.35 -0.65~-0.37 -1.18~-0.84 -1.18~-0.84 

 

Table 10. Diagnosis results for leapfrog filter circuit. 

fault states 
FWA method NQD method 

correct number correct rate correct number correct rate 

1.5R3 30 9 30% 23 77% 

1.5R8 30 8 27% 25 83% 

1.5R9 30 11 37% 26 87% 

1.5R11 30 6 20% 24 80% 

1.5R3 30 11 37% 24 80% 

1.5R3 30 12 40% 28 93% 

 

Clearly, the general diagnosis correct rate of FWA is lower than the proposed approach in 

this paper. The diagnosis coverage of the FWA is less than 40%. Based on the better 

estimation of the SFC ranges for each fault state, the proposed method can diagnose the faulty 

CUT more accurately. Furthermore, the correct rate of the proposed method can be further 

improved by making   (in (17)) bigger, but this maybe lead to a disadvantage of optimum 

test-nodes selection. 

 

6. Conclusions 

 

While the SFM method can solve the soft-fault diagnosis problem in analog circuits 

effectively, the challenging tolerance problem remains unsolved.  In this paper, the 

redundancy of the traditional SFC set was proved. By eliminating the redundant information, 

the computation of SFC was reduced greatly. Based on the proposed approximation condition, 

the approximating distribution function of NQD was set up. The monotonous and continuous 

mapping between NQD and standard normal distribution was proved. On the ground of the 

useful mapping, the estimating formulas about the SFC range were deduced. The NQD 

approach was combined with SFM to improve the diagnosis coverage of soft-fault under 

tolerances. Experiments demonstrated that the proposed method is effective and can locate the 

faulty components accurately.  

Though the NQD approach was used to diagnose analog circuits in this paper, it can be 

used in other applications. For example, in linear regression of two least squares estimates, the 

slope of the regression line is NQD. 

The main disadvantage of the diagnosis methods based on SFM is the high demand of 

accessible nodes. To construct a SFC, at least two accessible nodes are required. For high 

diagnosis coverage, more accessible nodes are needed. In the future work, our attention will 

be focused on another research based on subband decomposition, in which only one node of 

the CUT is needed to be accessible. 
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