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Abstract 

Wavelet transform becomes a more and more common method of processing 3D signals. It is widely used to 

analyze data in various branches of science and technology (medicine, seismology, engineering, etc.). In the field 

of mechanical engineering wavelet transform is usually used to investigate surface micro- and nanotopography. 

Wavelet transform is commonly regarded as a very good tool to analyze non-stationary signals. However, to 

analyze periodical signals, most researchers prefer to use well-known methods such as Fourier analysis. In this 

paper authors make an attempt to prove that wavelet transform can be a useful method to analyze 3D signals that 

are approximately periodical. As an example of such signal,  measurement data of cylindrical workpieces are 

investigated. The calculations were performed in the MATLAB environment using the Wavelet Toolbox. 
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1. Introduction 

 

The wavelet transform is one of the latest calculation techniques used for analyzing 
measurement signals. It is commonly used in various branches of science and technology, for 

example in medicine. In [1] the author applies the wavelet transform to reconstruct a 3D 
signal from a series of two-dimensional sectional images. In the work [2] multiscalar wavelets 
are used to analyze the topography of wear of orthopaedic implants. In the field of mechanical 

engineering many researchers dealing with surface texture apply this method to assess surface 
micro- and nanotopography. In the works [3, 4] authors apply wavelet analysis to assess 

nanotopography of crystal surfaces. The assessed images were obtained with the use of 
atomic force microscopes. In the work [5] authors apply lifting wavelets to surface roughness 
profiles and compare results with the ones obtained through polynomial fitting. The work [6] 

presents results of the application of wavelet transform to identify features of surfaces of 
automotive cylinders and femoral heads on a micro- and nanoscale. Some researchers focus 

on filtering properties of wavelet transform. For example, in the work [7] authors apply 
wavelet transform to filtering of freeform surfaces.  

Wavelet transform is commonly regarded as a very good tool to analyze non-stationary 
signals. In order to analyze periodical signals most researchers prefer to use well-known 
methods, like Fourier analysis [8, 9]. However, results of the research on the application of 

wavelets to analyze periodical signals, such as roundness profiles, presented in [10], show that 
this method can be very useful to detect irregularities of roundness profiles such as cracks or 

scratches of the surface. This is the reason why the authors have decided to investigate the 
application of wavelet transform to the analysis of cylindrical surfaces of machine parts. In 
author’s opinion, the results of the experiments should give an answer if wavelet transform 
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is useful to analyze deviations of cylindrical surfaces or the traditional approach (i.e. Fourier 

analysis) is sufficient.  
In the experiment the authors decided to apply a Matlab package. There are two ways to 

perform two-dimensional wavelet transform in Matlab: with the use of a graphical user 

interface called Wavelet toolbox or with the use of instructions entered manually by a user in 
the command line. Thus, an additional aim of the research work was assessing which method 

is better to analyze measurement data of cylindrical workpieces.  
 

2. Mathematical fundamentals of two-dimensional wavelet transform 

 

Wavelets Ψ(t) are, as the name suggests, small waves with a limited range and an 
oscillatory character [11, 12]. The independent variable t is sometimes called a spatial 

variable. Wavelets can form specific sets of basic functions used for the description of 
functional spaces. They are particularly suitable for describing non-continuous and irregular 

functions, which are common in the response of real physical systems. Bases of wavelet 
functions, which are generally well-localized both in the frequency and time domains, are 
formed by scaling with the parameter σ and shifting in time, as well as translating the output 

wavelet, Ψ (σt+τ), with the parameter τ, which leads to the so-called scaled hierarchical 
representation of the analyzed function [13, 14]. 

The continuous wavelet transform (CWT) of the x(t) signal for a given wavelet Ψ(t) is 

defined as [15]: 
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where: τ – the time shift, σ – the scale (frequency). 

The discrete wavelet transform (DWT) can be introduced after discretization of the x(t) 
signal, assuming that: 
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where: s – the scale coefficient, l – the shift coefficient. 
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The wavelet transform is generally used for the decomposition and approximation of 

measurement signals, then, removal of noise and, finally, the reconstruction of the output 
signal. Its applications have been described in many works (see [16‒20]). These applications 
include pyramid decomposition and decomposition based on the application of wavelet 

packets. Many researchers emphasize that it is important to select the right basic wavelet so 
that the processes of profile decomposition and approximation can be performed properly. 

The above algorithm of the wavelet transform of one-dimensional signals, commonly 
called 2D profiles, can be extended to signals defined over an n-dimensional space (n > 1). In 
the case of signals describing the surface texture, it is necessary to take into consideration a 

two-dimensional space (n = 2), with the x- and y- coordinates, over which the function 
representing irregularities of the surface, called a 3D profile, registered during measurements 

of surface topography and form errors, is defined. Such a profile can be represented in the 
form of a discrete function written on a matrix. Approximation is performed on the rows 
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and columns of this matrix, corresponding to the horizontal and vertical directions with 

respect to the orthonormal base consisting of three wavelet functions [13‒14]: 

     ( ), ( ) ( ),
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where: Ψ – the basic wavelet, φ – the scaling function, h – the index denoting the horizontal 

wavelet, v – the index denoting the vertical wavelet, d – the index denoting the diagonal 
wavelet. 

Figure 1 illustrates the principle of approximation of the output signal f
 0

 to the second 
level. The letter a denotes the approximated signal, and the letter d the detail coefficients 

calculated in the horizontal (h), vertical (v) and diagonal (d) directions. 
 

 
Fig. 1. Signal decomposition defined over a two-dimensional space. 

 

The above procedure was verified for cylindrical profiles, using the software available 
in the MATLAB Wavelet Toolbox. 

 

3. Decomposition and approximation of cylindrical profiles in the MATLAB 

environment  

 

3.1. Methodology  

 

In the MATLAB environment, a two-dimensional discrete wavelet transform can be 
performed [21]: 

− using commands provided by the user in the command line; 

− from the Wavelet Toolbox graphical user interface. 

a) Performing a two-dimensional discrete wavelet transform from the command line 

interface. 
When the commands are entered manually into the command line, it is possible to  apply 

two functions: dwt2 and wavedec2.  
The dwt2 function enables us to perform a one-level two-dimensional wavelet transform of 

a given matrix. This operation can be conducted by assuming an arbitrary type of the basic 
wavelet distinguished by the program or by defining the low-pass and high-pass 
decomposition filters. The result of the operation of the dwt2 function is four sets of data. The 

first contains approximation coefficients and in the next three consecutive sets there are detail 
coefficients of  decomposition in the horizontal, vertical and diagonal directions.  
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The matrix can be reconstructed by means of the idwt2 function, whose input parameters 

are the matrices of the approximation and detail coefficients as well as the type of the basic 
wavelet.  

Unlike the dwt2 function, the wavedec2 function makes it possible to perform 

decomposition at an arbitrary level. As in the case of the dwt2 function, this operation can be 
performed for a given matrix assuming the type of the basic wavelet or defining the low-pass 

and high-pass decomposition filters. The result of the operation of the wavedec2 function is 
two sets of data. One contains coefficients of approximation as well as horizontal, vertical and 
diagonal details at the consecutive levels of decomposition. In the other set of data, there is 

information about the sizes of the particular matrices of coefficients.  
The waverec2 function is a function inverse to the wavedec2 function. It can be used to 

reconstruct the matrix, by assuming as parameters the sets of data obtained from the operation 
of the wavedec2 function and the type of the basic wavelet or the high- and low-pass filters 
[17, 21]. 

b) Performing a two-dimensional discrete wavelet transform from the graphical user 

interface. 

The MATLAB environment is suitable for performing a two-dimensional wavelet 
transform also from the graphical user interface, which is initiated by entering the wavemenu 
command in the command line. This solution is user-friendly; it does not require knowledge 

of the particular functions and their parameters. A drawback, however, is its limited 
application. The graphical user interface can be used to perform a two-dimensional wavelet 

analysis of three types of data: image, coefficients and decomposition. 
It should be emphasized that databases of coefficients and decomposition are also created 

using a two-dimensional wavelet transform of the image. As a consequence, the graphical 

user interface cannot be used for performing a two-dimensional wavelet transform of a set of 
data displayed in a matrix form. 

 

3.2. Calculations for selected profiles  

 

In order to practically verify whether the MATLAB software can be used to perform a 
two-dimensional wavelet analysis for a cylindrical surface, it was essential to measure 

selected cylindrical elements by means of radial instruments Talyrond 365 and Talycenta. 
During the experiment two cylindrical elements were measured. The measurements were 

conducted at the Laboratory of Computer-Based Measurements of Geometrical Quantities of 
the Kielce University of Technology. The cylinders were measured using the cross-section 
strategy based on changes in the radius [22]. The momentary values of the radius measured in 

certain cross-sections were recorded in columns, creating an mxn matrix, where m denoted the 
number of measuring points per cross-section, and n ‒ the number of cross-sections.  

Figure 2 shows a 3D graph representing the deviations of the measured cylinders generated 
on the basis of the measurement data. The surface of cylinder no. 1 was turned, and the 
surface of the cylinder was turned and additionally scratched in order to simulate local surface 

defects, e.g. cracks.  
It is easy to notice that the character of cylinder surfaces shown in Fig. 2 is different. The 

deviations of the cylinder in Fig. 2a are very regularly distributed on the surface. The cross-
sections of this cylinder are triangular, which is quite common for elements whose surface 
was damaged by a self-centering three-jaws fixture system. Deviations of the cylinder shown 

in Fig 2b are mostly regular. The character of these deviations is similar to the deviations of 
cylinder no. 2. However, there are a few significant local deviations on the surface of cylinder 

no. 2. These irregular deviations correspond to the areas where the cylinder surface was 
scratched. 
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                              a) 

 
 

                               b) 

 
 

Fig. 2. Deviations of the measured cylinder represented in a 3D graph generated from the measurement data:  

a) cylinder no. 1, b) cylinder no. 2. 
 

a) A two-dimensional wavelet analysis from the command line interface. 

A two-dimensional wavelet analysis of the measured profile of cylindricality was 
conducted using the dwt2 function and the Daubechies “db5” basic wavelet [23, 24]. 

The resulting four matrices contain the coefficients of approximation, horizontal detail 
coefficients, vertical detail coefficients and diagonal detail coefficients, respectively. 

The values of these coefficients are shown in Fig. 3‒10. 
 

 

Fig. 3. Coefficients of approximation for cylinder no. 1. 
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Fig. 4. Horizontal detail coefficients of decomposition for  cylinder no. 1. 

 

 

Fig. 5. Vertical detail coefficients of decomposition for cylinder no. 1. 

 

 

Fig. 6. Diagonal detail coefficients of decomposition for cylinder no. 1. 
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Fig. 7. Coefficients of approximation for cylinder no. 2. 

 

 

Fig. 8. Horizontal detail coefficients of decomposition for cylinder no. 2. 

 

 

Fig. 9. Vertical detail coefficients of decomposition for  cylinder no. 2. 

 

 
 

 

 

 

145



 

K. Stępień, W.Makieła: A� A�ALYSIS OF DEVIATIO�S OF CYLI�DRICAL SURFACES WITH THE USE OF WAVELET TRA�SFORM 

 

 

Fig. 10. Diagonal detail coefficients of decomposition for  cylinder no. 2. 
 

b) A two-dimensional wavelet analysis from the graphical user interface. 
As was already mentioned, the output parameters to be used to perform a two-dimensional 

wavelet transform from the graphical user interface are the image or the data of coefficients 
and decomposition generated from this image. Unfortunately, the graphical user interface 

Wavelet Toolbox does not allow users to load and analyze numerical data.  
Since it was impossible to perform a wavelet analysis based on the data of the surface 

included in the matrix, first contour plots of the measured cylindrical surfaces were generated, 
then they were saved as graphical files. The plots are shown in Fig. 11. 

The images were then loaded by means of the Load image graphical user interface option 

used for a two-dimensional wavelet analysis by means of the db5 wavelet. Decomposition 
level was equal to one. Fig. 12 shows results of the two-dimensional wavelet transform of 

the images with the use of the graphical interface. 
 
                                       a) 

 
 

                                                     b) 

 
 

Fig. 11. Values of the deviations of a measured cylindrical surface in the form of a contour plot:  

a) cylinder no. 1, b) cylinder no. 2. 
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                                        a)                                                                                  

 
 

                                          b) 

 
 

Fig. 12. Results of the two-dimensional wavelet transform with the use of the graphical interface:  

a) cylinder no. 1; b) cylinder no. 2. 

 

3.3. Discussion 

 

An analysis of values of approximation and detail coefficients obtained for the cylinder no. 
1 shows that wavelet transform did not give any significant information about the surface 

investigated. It is obvious that the reason is that deviations of the cylinder no. 1 are 
approximately periodical. In such cases a much better solution is to apply Fourier analysis 
instead of wavelet transform. Comparing diagrams showing an output signal (Fig. 2a) and 

approximation coefficients (Fig. 3) it is easy to notice the effect of profile smoothing. This 
confirms very good filtration properties of the wavelet transform for primary form profiles 

and justifies the investigations on its implementation in the analysis of all types of 3D surface 
texture profiles. However, it should be noted that nowadays there are also other advanced 
filtration techniques that can be applied in such cases, e.g. those described in works [25‒27].  

Deviations of the cylinder shown in Fig 2b are also mostly regular. It is easy to notice that 
the character of these deviations is similar to the deviations of cylinder no. 2. The main 

difference is that there are a few significant local irregular deviations on the surface of  
cylinder no. 2. The character of the regular deviations can be easily identified by Fourier 

analysis. However, it is not possible to detect local irregular deviations of the surface by this 
method. Results obtained in the experiment show that these local defects can be detected and 
localized very easily with the use of wavelet transform. It is confirmed by diagrams showing 

values of approximation and detail coefficients. One can note that for the cylinder no. 2 
differences between approximation and detail coefficients are smaller than for  cylinder  no. 1. 
Moreover, on the contour map of coefficients shown in Fig. 12b it is easy to see that changes 
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of the coefficients correspond to the location of the surface defects (see Fig. 11b). Thus, 

wavelet transform can be a very useful method that supplements the Fourier transform in an 
analysis of periodical signals, such as roundness or cylindricality profiles.  

Two-dimensional wavelet transform can be also applied as a method of filtration of local 

surface defects. Results of the research work presented in [28] and [29] show that significant 
local defects can be easily filtered with the use of robust filters, too. But thanks to the 

application of wavelet transform we can find out where surface defects are located, whereas 
an application of the robust filter does not give such information.  

The study concerning the application of the MATLAB program to a two-dimensional 

wavelet transform shows that performing a wavelet analysis from the graphical user interface 
is simple and easy, even for an inexperienced user. The method, however, can only be used to 

analyze an image. Entering certain functions in the command line appears to be a better 
solution. It is possible, for instance, to conduct a two-dimensional wavelet analysis on a 
matrix containing measurement data in a numerical form. That is why this method of 

conducting two-dimensional decomposition is more suitable for analyzing data obtained with 
a measuring instrument; it is better than the graphical user interface option. 

 

4. Conclusions 
 

The paper has dealt with the principles of decomposition and approximation of 3D signals, 
which are signals described in a two-variable function over a two-dimensional space. The 

calculations were performed in the MATLAB environment and they illustrate the 
decomposition of cylindricality signals.  

It has been shown that in the case of surfaces whose deviations are regular, wavelet 

transform does not provide any significant information. In such cases the traditional approach, 
i.e. Fourier transform, is a much more useful method. However, if there are some local defects 

of the surface, Fourier analysis is not sufficient, since it cannot be used to determine the 
location of such defects. In such cases wavelet transform can be a very good supplement 

of Fourier transform. 
The issues to be focused on in further studies are: 

− assessing the variability of basic parameters characterizing a 3D profile during 
decomposition for different types of surface irregularities (form errors, waviness and 
roughness); 

− determining the influence of the form of the basic wavelet on the course and result 
of approximation; 

− establishing the admissible level of decomposition of the output profile with the aim 
of determining the limitations and criteria of the calculation procedure. 
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