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Abstract 

The paper is concerned with issues of the estimation of random variable distribution parameters by the Monte 

Carlo method. Such quantities can correspond to statistical parameters computed based on the data obtained in 

typical measurement situations. The subject of the research is the mean, the mean square and the variance of 

random variables with uniform, Gaussian, Student, Simpson, trapezoidal, exponential, gamma and arcsine 

distributions.  
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1. Introduction  

 

Measurement accuracy is a basic characteristic of both measurement tools and results. 

Accuracy is characterized indirectly by giving an opposite quantity in the form of uncertainty 

(inaccuracy) or measurement error. In the metrological regulations, the description of 

measurement uncertainty is based on the Guide [1], as well as on the Supplements [2] and [3] 

to the Guide. From the moment that the Joint Committee for Guides in Metrology announced 

the commencement of its work on designing the Supplements, and also after their publication, 

a steady growth has been observed in interest in the Monte Carlo method and its application 

to the analysis of measurement uncertainty [4-10]. It takes place when particular measurement 

situations are defined by complicated measurement models. Then the use of the Monte Carlo 

method makes it possible to avoid complex mathematical apparatus and to take into account 

the influence of all the parameters characterizing a specific measurement situation.  

The growth in interest in the Monte Carlo method voiced in prestigious scientific journals 

has induced the author to study the application of such a method to the estimation of random 

variable distribution parameters, which are determined based on the probability density 

function. Such quantities can correspond to statistical parameters computed based on data 

obtained in typical measurement situations [11, 12]. In the literature there are many references 

to the issues discussed in the paper [13-25]. Against this background, the author's original 

achievement consists in the formalization of the selection principles for the method's input 

parameter values for a fixed probability distribution. The author has focused on the 

distributions mentioned in the Supplements [2, 3] and commonly employed in the 

measurement uncertainty analysis. In the author's view, the obtained results can be used to 

automate the estimation of density distribution parameters by the Monte Carlo method. The 

obtained results can also be employed to compare the evaluation of distribution parameters 

with the estimators computed based on measurement results possessing a known probability 

density. It is particularly important when the number of measurements is not large, there is no 

possibility of carrying out measurements in reproducible measurement conditions, the sets of 
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measurement results are incomplete, or measurement results are not sufficiently accurate. In 

practice, the obtained results can be applied in virtual measuring devices as an implemented 

module for distribution parameter estimation. The author made available a computer program 

and web page illustrating the functioning of such a module [26].  

The subject of the research is the mean, the mean square and the variance of a random 

variable with uniform, Gaussian, Student, Simpson, trapezoidal, exponential, gamma and 

arcsine distributions. 

 

2. Random variable distribution parameters 

 

In the analysis of the results of measurements by probabilistic methods, it is assumed that 

they can be modeled with a random variable. The probability density function is the best 

description of a random variable. Let X be a random variable with density fX(x), xÎR. The 

parameters of the random variable X include the mean, the mean square, the variance, the 

standard deviation, the median, and the modal value [27]. The subject of the research is the 

mean:  

 [ ] ( )d ,XX E X x f x x

+¥

-¥

= = ò  (1) 

the mean square:  

 [ ] ( )2 2 2 d ,XX E X x f x x

+¥

-¥

= = ò  (2) 

and the variance: 
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= - = -ò  (3) 

Quantities (1) and (2) are ordinary first- and second-order moments, respectively, quantity 

(3) is the second central moment [27]: 

We will assume that parameters (1)-(3) are computed over the interval [a, b], -¥<a£b<¥, 

a, bÎR, and that fX(x) has a non-zero value for any xÎR. Then the error reduction:  
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leads to an increase in the accuracy of the computation of parameters (1)-(3).  

 

3. Estimation of random variable distribution parameters by the Monte Carlo method 

 

Let there be given a continuous function g(x), xÎR, integrated over the interval [a, b]. Let 

us assume that the integral of the function g(x) has the form of the formula:  
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 ( )θ d .

b

a

g x x= ò  (7) 

One of the most popular methods of estimation of the integral q is the hit-or-miss Monte 

Carlo method [13-15, 17-19, 24]. The popularity of this method is owed to the fact that it has  

a geometric character and is usually described with uncomplicated mathematical apparatus. 

Additionally, in comparison with other Monte Carlo methods, the presented method ensures 

greater uniqueness of the generated data on which the performed computations are based. It is 

particularly important because of the finite lengths of the cycles of pseudo-random number 

generators used for data generation. In practice, the accuracy of the method is dependent on 

the number of data and the quality of the pseudo-random number generator [28]-[30]. The 

article presents results obtained with the use of LabVIEW. LabVIEW uses a triple-seeded 

very-long-cycle linear congruential generation (LCG) algorithm to generate the uniform 

pseudorandom numbers [31]. 

The hit-or-miss Monte Carlo method makes it possible to numerically integrate the 

function g(x). Let us assume that the values of the function g(x) are positive and negative, and 

are situated within the area:  

 ( ){ }, R : , ,x y a x b c y dW = Î £ £ £ £  (8) 

where -¥<c£0, 0£d<¥, c, dÎR.  

 

The estimation of the integral q is carried out based on N points pi=(xi, yi), i=0,1,…,N-1, 

with the coordinates xi and yi drawn from uniform distribution over the intervals [a, b] and  

[c, d], respectively (Fig. 1). The result of the integral estimation is the quantity: 

 ( )( )θ ,Nk
b a d c

N
= - -(θ ,(Nθ ,θ ,

k
θ ,θ ,Nθ ,θ ,θ ,b aθ ,θ ,

N
θ ,θ ,θ ,θ ,θ ,(θ ,θ ,θ ,  (9) 

where kN is the power of the set {iÎN: 0<yi£g(xi)} reduced by the power of the set {iÎN: 

g(xi)£yi<0}. If yi=0, then kN does not change its value.  
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( )g x

x

c

d
( ),i i ip x y=

0

W

 
 

Fig. 1. Illustration of numerical integration by the hit-or-miss Monte Carlo method. 

In the case when the values of the function g(x) are only nonnegative or nonpositive, and 

there exist c>0 and c£g(x) or d<0 and d³g(x), then: 
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From (10) it follows that in the result θθ  of the estimated integral q, the area of a rectangle 

with the sides b-a and c, or b-a and d is taken into account. Simultaneously, for the same 

number N of points pi, the way of estimating the integral q described by formula (10) makes it 

possible to increase the accuracy of the estimation of this quantity.  

The estimation error of the integral q can be described with the formula:  

 
θ

θ θ
δ 100%.

θ

-
=

θ
δ 1δ 1δ 1

θ
δ 1δ 1

θ θ
δ 100%.δ 1

θ θθ θθ θ
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Because in (1)-(3) an integration operation appears, then for fixed values of a and b, as 

well as for:  

 ( ) ( ) ( ) ( ) ( ) [ ]( ) ( )
2

2
1 2 3 ,     ,     ,X X Xg x x f x g x x f x g x x E X f x= = = -  (12) 

the hit-or-miss Monte Carlo method can be adapted for the estimation of parameters (1)-(3). 

The result of the estimation of parameters (1)-(3) are the quantities: 1θX = θX = 11θ , 2
2θX = 2θ , 

[ ]
3θVar X = 3θ[ ] θVar X[ = θ . In practice, the values of these quantities are often determined based on 

measurement results.  

A basic problem during the estimation of parameters (1)-(3) is to establish the values of the 

ends of the interval [c, d]. According to the Weierstrass theorem, a function continuous on the 

interval [a, b] attains its lower and upper bounds, which can correspond to the ends of the 

interval [c, d] [32]. The bounds of the function g(x) can be determined based on the values of 

the function g(x) at the ends of the interval [a, b] and on the extremes of the function g(x). 

The extremes of the function g(x) are determined based on the roots of the equation g¢(x)=0, 

where g¢(x)=0 is a derivative of the function g(x). The extremes of the functions g1(x), g2(x) 

and g3(x) can be determined based on the formula: 

 ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 3 3

d d d
' ,   ' ,   ' ,

d d d
g x g x g x g x g x g x

x x x
= = =  (13) 

and the roots of the equations: g¢1(x)=0, g¢2(x)=0, g¢3(x)=0.  

According to (11), the errors of the estimation of parameters (1)-(3) have the form: 
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From (11) it follows that the accuracy of the estimation of parameters (1)-(3) will increase 

along with the number N of points pi. 
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3.1. Estimation of uniform distribution parameters 

 

Let X be a random variable with uniform distribution in the interval [-Au+A0, Au+A0], 

AuÎR+, A0ÎR. The variable X has the density [27]: 
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Based on (1)-(3), and (17), we obtain: 
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Parameters (1)-(3) are estimated based on (9). The ends of the interval [a, b] are selected 

based on the formula: 

 0 0,     .u ua A A b A A= - + = +  (19) 

Making use of (13) and (17), we determine the roots of the equations g1¢(x)=0, g2¢(x)=0 and 

g3¢(x)=0, as well as the values of the functions g1(x), g2(x) and g3(x) at the ends of the interval 

[a, b]. Such quantities are used to determine the ends of the interval [c, d]. Estimating (1), we 

assume: 
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while (2): 
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and (3): 
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In the case of uniform distribution, the values of the functions g1(x) and g2(x) can only be 

nonnegative or nonpositive. If there exists c>0 or d<0, then parameters (1) and (2) can be 

estimated based on (10). Then estimating (1), we assume:  

 ( ) ( ),     ,X Xc a f a d b f b= =  (23) 

while (2): 
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In the case of the function g3(x) the coefficients c=0 and d³0. This means that the 

parameter (3) can be estimated based on (9) or (10) and both formulas give the same results. 

Example values of 100 averaged results of errors (14)-(16) determined based on (9) and 

(18), for Au=1, A0=10, N=10
6
, are: δ

XX
=0.028%, 

2
δ

X
=0.041%, [ ]δ

Var X[ ]Var X[ =0.11%. In the 
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considered example, c>0 exists and for mean c=9 and mean square c=81. Then estimating 

errors from (10) and (18), we obtain δ
XX

=0.0087%, 
2

δ
X

=0.016%. The obtained results show 

that (10) makes it possible to increase the accuracy of the estimation of parameters (1) and 

(2).  

 

3.2. Estimation of Gaussian distribution parameters 

 

Let X be a continuous Gaussian random variable with parameters sXÎR+ and mXÎR. The 

variable X has the density [27]: 
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Based on (1)-(3), and (25), we obtain: 

 [ ]2 2 2 2μ ,    σ μ ,     σ .X X X XX X Var X= = + =  (26) 

Parameters (1)-(3) are estimated based on (9). The ends of the interval [a, b] assume the 

values: 

 ,     .a b= -¥ = +¥  (27) 

In practice, a and b have finite values. They can be selected either arbitrarily or from the 

formula: 

 6σ μ ,     6σ μ .X X X Xa b= - + = +  (28) 

The shape of formula (28) follows from the "6-sigma" rule [33]. Using (4)-(6), it can be 

verified that for 0.01£sX£100 and 0<mX£100, quantities (1)-(3) are computed in the interval 

[a, b] with errors not greater than 1.0×10
-5

%.  

Making use of (12), (13) and (25), we determine the ends of the interval [c, d]. Estimating 

(1), we assume: 
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while (2): 
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and (3): 
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where: 
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Example values of 100 averaged results of errors (14)-(16) determined based on (9) and 

(26), for sX=1, mX=2 and N=10
6 
are: δ

XX
=0.17%, 

2
δ

X
=0.17%, [ ]δ

Var X[ ]Var X[
=0.13%.  

 

3.3. Estimation of Student distribution parameters 

 

Let a random variable X have Student distribution with parameter nÎN. The variable X has 

the density [27]: 
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 (33) 

where n is the number of degrees of freedom, G(×) is a gamma function [32].  

Based on (1)-(3), and (33), we obtain that for n>2: 

 [ ]20,     ,     .
2 2
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X X Var X

n n
= = =

- -
 (34) 

Parameters (1)-(3) are estimated based on (9). The ends of the interval [a, b] assume the 

form: 

 ,     .a b= -¥ = +¥  (35) 

In practice, a and b have finite values. They can be selected either arbitrarily or from the 

formula: 

 6 ,    6 . 
2 2

n n
a b

n n
= - =

- -
 (36) 

The shape of formula (36) has been established based on the "6-sigma" rule, approximating 

Student distribution by Gaussian distribution with parameters sY= ( )/ 2n n - and mY=0  

[33]. Making use of (4)-(6), it can be verified that for 3£n£100, quantity (1) is, in the interval 

[a, b], computed with the error 
[ ] [ ]

,
,

Δ 0
a b

a bX
X X= - = , whereas quantities (2) and (3) are 

computed with errors from the interval [9.4×10
-5

%, 21%]. The large spread of errors is due to 

inaccurate approximation of the Student distribution by Gaussian distribution. For example, if 

n=3 then quantities (2) and (3) are computed with an error of 21%. If n=5, 10, 100 then the 

error is equal respectively to 3.6%, 0.25% and 9.4×10
-5

%.  

Making use of (12), (13), and (33), we determine the ends of the interval [c, d]. Estimating 

(1), we assume: 

 ( )1 ,     ,Xc f d c= - ± = -  (37) 

while (2) and (3): 

 
2 2
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Example values of 100 averaged results of the error Δ
X

X X= -
X

X X= -= -X XX XX XX XX XX X and errors (15) and (16) 

determined based on (9) and (34), for n=10, N=10
6
, are: Δ

XX
=0.0017, 

2
δ

X
=0.27%, 

[ ]δ
Var X[ ]Var X[ =0.26%.  
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3.4. Estimation of Simpson distribution parameters 

 

Let a random variable X have Simpson (triangular) distribution in the interval  

[-At+A0, At+A0], AtÎR+, A0ÎR. The variable X has the density [27]:  

 ( ) 0 02
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          0,                 .
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Based on (1)-(3) and (39), we obtain:  
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Parameters (1)-(3) are estimated based on (9). The ends of the interval [a, b] are selected 

based on the formula: 

 0 0,     .t ta A A b A A= - + = +  (41) 

Making use of (12), (13), (39), and (41), we determine the ends of the interval [c, d]. 

Estimating (1), we assume: 
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while (2):  
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and (3): 
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Example values of 100 averaged results of errors (14)-(16) determined based on (9) and 

(40), for At=1, A0=2, N=10
6
, are: δ

XX
=0.077%, 

2
δ

X
=0.084%, [ ]δ

Var X[ ]Var X[ =0.076%. 

 

3.5. Estimation of trapezoidal distribution parameters 

 

Let a random variable X have trapezoidal distribution in the interval [-Atz+A0, Atz+A0], 

AtzÎR+, A0ÎR. The random variable X has the density [2]: 
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where: 

 
2

,
2 tz

u
A w v

=
+ -

 (46) 

with -Atz+A0£v£w£Atz+A0, v, wÎR. 

In the case when -Atz+A0=v and Atz+A0=w, trapezoidal distribution transforms to uniform 

distribution in the interval [-Atz+A0, Atz+A0]. If v=w=A0, then trapezoidal distribution assumes 

the form of Simpson distribution in the interval [-Atz+A0, Atz+A0].  

Based on (1)-(3) and (45), we obtain [34]: 
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where s=v+Atz-A0, t=Atz+A0-w. 

Parameters (1)-(3) are estimated based on (9). The ends of the interval [a, b] are selected 

based on the formula: 

 0 0,     .tz tza A A b A A= - + = +  (48) 

Making use of (12), (13), (45), and (48), we determine the ends of the interval [c, d]. 

Estimating (1), we assume: 
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while (2): 
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and (3): 
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Example values of 100 averaged results of the errors (14)-(16) determined based on (9) and 

(47), for Atz=1, A0=2, v=1.5, w=2, N=10
6
, are: δ

XX
=0.069%, 

2
δ

X
=0.067%, [ ]δ

Var X[ ]Var X[
=0.077%.  

 

3.6. Estimation of exponential distribution parameters  

 

Let a random variable X have exponential distribution with parameters lÎR+ and DÎR. 

The random variable X has the density [27]: 

 ( )
( )λλ ,    ,

     0,          .

x

X

e x
f x

x

- -D ³ Dì
= í

< Dî
  (52) 

Based on (1)-(3), and (52), we obtain: 

 [ ]2 2

2 2

1 2 2 1
,     ,     .

λ λ λ λ
X X Var X

D
= + D = D + + =  (53) 

Parameters (1)-(3) are estimated based on (9). The ends of the interval [a, b] assume the 

values: 

 ,     .a b= D = +¥  (54) 

In practice, b has a finite value. The value of b can be selected either arbitrarily or from the 

formula:  

 
( )6ln α

Δ,
λ

b = - +  (55) 

where aÎR+ is the significance level [1]. 

The shape of formula (55) follows from a mathematical relation describing exponential 

distribution quantiles [27]. Making use of (4)-(6), it can be verified that for D=0, 0.01£a£0.1, 

0.01£l£100, quantities (1)-(3) are computed in the interval [a, b] with errors from the interval 

[2.8×10
-8

%, 0.020%]. 

Making use of (12), (13), and (52), we determine the ends of the interval [c, d]. Estimating 

(1), we assume: 

 
( )

( )

1 1 1
,    Δ ,

Δ Δ ,  Δ 0, λ λ λ
     

     0,        Δ 0, 1
 Δ Δ ,     Δ ,

λ

X
X

X

f
f

c d

f

ì æ ö <ç ÷ï<ìï ï è ø= =í í
³ïî ï ³ïî

 (56) 

while (2): 

 

( )

( ) ( )

2

2 2

2 2

2

4 2 4 2
,    ,

λ λ λ λ
0,      

4 2
 ,     ,

λ λ

X X X

X X X

f f f

c d

f f f

ì æ ö æ öD D <ç ÷ ç ÷ï
ï è ø è ø

= = í
æ öï D D D D ³ ç ÷ï è øî

 (57) 

and (3): 

1
0,     .

λ
c d= = (58)
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Example values of 100 averaged results of the errors (14)-(16) determined based on (9) and 

(53), for l=1, D=0, a=0.0027, N=10
6
, are: δ

XX
=0.27%, 

2
δ

X
=0.25%, [ ]δ

Var X[ ]Var X[
=0.43%.  

 

3.7. Estimation of gamma distribution parameters  

 

Let a random variable X have gamma distribution with parameters r, kÎR+. The random 

variable X has the density [27]: 

 ( ) ( )
1

1
,    0,

          0,               0.

x

k r
k

X

x e x
f x r k

x

--ì
³ï

= Gí
ï <î

 (59) 

If k=1 and r=1/l, then gamma distribution turns into exponential distribution.  

Based on (1)-(3), and (59), we obtain: 

 ( ) [ ]2 2 2,     1 ,     .X kr X k k r Var X kr= = + =  (60) 

Parameters (1)-(3) are estimated based on (9). The ends of the interval [a, b] assume the 

values:  

 0,     .a b= = +¥  (61) 

In practice, b has a finite value. The values of a and b can be selected either arbitrarily or 

from the formula:  

 

6 ,    1,
6 ,  6 0,

    1 1
6 ,   1.         0,           6 0,

kr k r k
kr k r kr k r

a b
r r kkr k r

k k

ì + ³ì- + - + ³ï ï
= =í í

+ <- + <ï ïî
î

 (62) 

The shape of formula (62) is established based on the "6-sigma" rule, approximating 

gamma distribution by Gaussian distribution with parameters sY= k r and mY=kr [33]. 

Making use of (4)-(6), it can be verified that for 0.01£k£50 and 0.01£r£50, the quantities  

(1)-(3) are computed in the interval [a, b] with errors from the interval [3.4×10
-9

%, 4.6%].  

Using (12), (13), (59), and (62), we determine the ends of the interval [c, d]. Estimating 

(1), we assume:  

 ( )0,      ,Xc d kr f kr= =  (63) 

while (2): 

 ( ) ( )( )2 20,      1 1 ,Xc d k r f k r= = + +  (64) 

and (3), for a sufficiently small e>0:

( )( ) ( )( ){
( ) ( ) ( ) ( )

2 2

, 1
ε,  1

2 22 2

0,   max 0,   ,   ,

   1 1 8 1 1 8 ,  1 1 8 1 1 8 .
4 2 4 2

x a kX X
x k

X X

c d f x x kr f b b kr

r r r r
k f k kr k f k kr

= ³
= <

= = - -

üæ ö æ ö- + - + + + + + + + ýç ÷ ç ÷
è ø è øþ

(65) 

Example values of 100 averaged results of errors (14)-(16) determined based on (9) and 

(60), for k=0.5, r=10, N=10
6
, e=10

-3
, are: δ

XX
=0.16%, 

2
δ

X
=0.15%, [ ]δ

Var X[ ]Var X[ =1.5%.  
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3.8. Estimation of arcsine distribution parameters  

 

Let a random variable X have arcsine distribution in the interval (-Asin+A0, Asin+A0), 

AsinÎR+, A0ÎR. The random variable X has the density [27]: 

 ( ) ( )
0 sin

22
sin 0

0 sin

1
, ,

π

              0,                  .

X

x A A
A x Af x

x A A

ì - <ï
- -= í

ï
- ³î

 (66) 

Based on (1)-(3), and (66), we obtain: 

 [ ]
2 2
sin sin2 2

0 0,     ,     .
2 2

A A
X A X A Var X= = + =  (67) 

Parameters (1)-(3) are estimated based on (9). Due to the fact that the function fX(x) is not 

defined at the points (-Asin+A0, 0) and (Asin+A0, 0), we assume that for a sufficiently small e>0, 

the ends of the interval [a, b] can be selected based on the formula:  

 
sin 0 sin 0ε,     ε.a A A b A A= - + + = + -  (68) 

Making use of (12), (13), (66), and (68), we determine the ends of the interval [c, d]. 

Estimating (1), we assume: 

 
( ) ( )

( )
( ) ( )

( )
,    0, ,   0,

       
     0,          0,     0,         0,

X X X X

X X

a f a a f a b f b b f b
c d

a f a b f b

< ³ì ìï ï
= =í í

³ <ï ïî î
 (69) 

while (2): 

 
( ) ( ) ( )
( ) ( ) ( )

2 2 2

2 2 2

,    ,
0,     

,    ,

X X X

X X X

b f b b f b a f a
c d

a f a b f b a f a

³ìï
= = í

<ïî
 (70) 

and (3): 

 ( ) ( )21
0,     

4
Xc d a b f a= = -  or ( ) ( )21

.
4

Xd a b f b= -  (71) 

In the case of arcsine distribution, values of the functions g1(x) and g2(x) can only be 

nonnegative or nonpositive. If there exists c>0 or d<0, then parameters (1) and (2) can be 

estimated based on (10). Then estimating (1), we assume: 

 

( )( ) ( )( )
( )

( ) ( )
( )( ) ( )( )

( )

( ) ( )

2 ε ε 2 ε ε
,   0,

                     ,                          0,

2 ε ε 2 ε ε
,   0,

                     ,                           0,

X

X X

X

X X

a b a b
f a f a

c a b a b

a f a a f a

a b a b
f b f b

d a b a b

b f b b f b

ì - + æ - + ö
³ï ç ÷

= + +è øí
ï <î

- + æ - + ö
<ç ÷

= + +è ø
³  

ì
ï
í
ï
î

 (72) 

while (2): 

 
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

2 2 2 2 2 2
min min

2 2 2 2 2 2
max max

 ,  , ,   ,
      

 ,  , ,   ,

X X X X X X

X X X X X X

x f x b f b a f a b f b b f b a f a
c d

x f x b f b a f a a f a b f b a f a

³ì ³ìï ï
= =í í
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 (73) 
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where: 

( )
( )

( )
( )2 2 2 2

max min

3 3
2 ε ,  2 ε .

4 16 2 4 16 2

a b b a a b b a
x a b x a b

+ - + -æ ö æ ö= + + + + = + - + +ç ÷ ç ÷
è ø è ø

 (74) 

In the case of the function g3(x) the coefficients c=0 and d³0. This means that the 

parameter (3) can be estimated based on (9) or (10) and both formulas give the same results. 

Example values of 100 averaged results of the errors (14)-(16) determined based on (9) and 

(67), for Asin=1, A0=10, e=10
-5

, N=10
5
, are: δ

XX
=1.9%, 

2
δ

X
=2.1%, [ ]δ

Var X[ ]Var X[ =2.7%. In the 

considered example, c>0 exists and for mean c=6.34 and mean square c=62.4. Then 

determining errors from (10) and (67), we obtain: δ
XX

=1.2%, 
2

δ
X

=1.5%. The obtained results 

show that (10) makes it possible to increase the accuracy of the estimation of parameters (1) 

and (2). 

 

4. Conclusion 

 

In the paper, properties of the random variable distribution have been examined. An 

approach consisting in the use of the Monte Carlo method to estimate distribution parameters 

has been proposed. An important advantage of the proposed approach is that regardless of the 

type of distribution, calculations are performed on the basis of data drawn from uniform 

distribution. In the research, distributions commonly used in measurement uncertainty 

analysis have been applied. Mathematical formulae facilitating practical application of the 

presented method have been derived. A simple modification of the method making it possible 

to increase measurement accuracy has been put forward. The obtained results have shown 

that, although the Monte Carlo method does not produce high accuracy results, it makes it 

possible to obtain reliable evaluations of distribution parameters.  
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