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Abstract 

The wavelet transform has been successfully used in the area of power quality analysis. There are many 

published papers with methods for power quality disturbance classification or harmonics measurement, which 

use wavelet transform. However, the properties of the wavelet transform can drastically vary from the choice of 

the wavelet. In this paper we analyze the influence of the choice of the wavelet to the accuracy of the power 

quality classification method and to high frequency harmonics measurements. Additionally to the well known 

wavelet filters we introduce near perfect reconstruction filter banks. The simulation results indicate that these 

filter banks are a good choice for classification of power quality disturbances, especially in the presence of noise 

and for high frequency harmonics measurements. 
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1. Introduction 

 

The use of modern electronic equipment leads to disturbances in the power network 

quality. In [1], the authors have analyzed that the poor power quality accounts for losses 

adding up to € 150 billion, annually, only in the European Union. The main cause of the 

losses is said to be power interruptions such as dips, surges, transients and short interrupts. 

The effects on the equipment from the power quality (PQ) disturbances can be found in the 

IEEE Std. 1159-2009, [2], e.g. transient overvoltages can result in immediate dielectric failure 

in all classes of equipment. 

Solving power quality problems first of all means detecting the disturbance sources and 

then eliminating them. It is very important that the detection can be performed automatically. 

So, the classification of the disturbances in the power system signals is a very important issue. 

Several systems for automatic detection and classification of PQ disturbances have been 

proposed. Rule-based expert systems, fuzzy classification systems, artificial neural networks 

(ANN) and support vector machines (SVM) are the most common classifiers based on 

artificial intelligence [3]. To classify the power quality events, feature vectors obtained from 

the waveforms are used. Different signal processing techniques are used for feature extraction 

in PQ events [4], speaking of which, the discrete wavelet transform (DWT) notes extensive 

use in the past years [5]. Main advantage of using DWT in power quality analysis is its ability 

to analyze the signal simultaneously in the time and frequency domains. This makes the 

transform highly suitable for analysis of non-stationary signals. Since the energy of the 

wavelet coefficients is varying over different scales depending on the input signal, the energy 

of the subbands could be used for construction of a feature vector for training and testing.  

Additionally, many wavelet-based algorithms for the harmonic analysis in power systems 

are proposed [6]-[8]. The presented results are competitive with the results obtained using 
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discrete Fourier transform (DFT), as proposed in the IEC standard 61000-4-7 [9]. 

The DWT and inverse DWT can be implemented using a multistage two-channel filter 

bank with the scaling and wavelet function associated with its low-pass filter and its high-pass 

filter, respectively. It is well known that improperly designed analysis/synthesis filter banks 

can cause aliasing, amplitude distortion and phase distortion. The design of a two-channel 

filter bank with perfect reconstruction (PR) property is a well-known issue [10]. Large 

numbers of filter banks (wavelet families) that satisfy the PR property are proposed in the 

literature, Daubechies, Coiflets and Symlets among them. Also, all these wavelet families are 

mainly used in power quality applications, and Vaidyanathan with 24 coefficients (v24), 

Daubechies with 20 coefficients (db20) and Coiflet 5 with 30 coefficients (coif5) are 

proposed in the literature as the most adequate for harmonic analysis, and the fourth-order 

Daubechies filter (db4) is proposed as most appropriate for power quality disturbance 

classification. 

However, for PQ-related applications (harmonics measurement, detection and 

classification of power quality disturbances), wavelets are used for analyzing the 

voltage/current waveform only. There is no need of signal synthesis. It is doubtful whether 

keeping the PR property still makes sense in this case. Relaxing this condition will allow 

more freedom for the optimization, and a well-designed near-perfect reconstruction (NPR) 

filter bank could outperform a PR filter bank because of better performance in, for example, 

stopband attenuation or computational complexity.  

In [11], the authors proposed the use of NPR quadrature mirror filter (QMF) banks as 

possible solution for harmonics measurement. Compared to well-known wavelet families, the 

introduced Johnston filters [12] have better selectivity properties which make them suitable 

for harmonic analysis. The presented results show that Johnston filters outperform the 

commonly-used wavelet filters for harmonic analysis, especially in case of non-stationary 

signals. 

This paper is an extended version of the paper [13] where the influence of NPR QMF to 

the overall accuracy of the wavelet-based classification method is analyzed. Additionally, the 

properties of NPR QMF filter banks are examined in case of higher frequency harmonics 

measurement. 
 

2. Wavelet transform 

 

2.1. Discrete wavelet transform   

 

The discrete wavelet transform (DWT) is given with: 

 0 0

00

1
[ , ] [ ] *

m

mm
k

k nc
DWT m n f k

t
y

tt

¥

=-¥

é ù-
= ê ú

ë û
å , (1) 

where function y is the base function or the mother wavelet, and c and t, are the dilation and 

translation parameters, respectively. With the choice c0 =
 
2 and t0 =

 
1, a dyadic orthonormal 

wavelet transform is obtained [14]. In this case DWT can be easily and quickly implemented 

by filter bank techniques. The filter bank is used to decompose the signal into various levels 

using a low-pass filter with a transfer function H0(z) and a high-pass filter with a transfer 

function H1(z), as shown in Fig. 1(b). The obtained low-pass coefficients represent a coarse 

approximation of the input signal and high-pass coefficients represent the “added detail” 

signal. The low frequency part (approximation signal) is split again into two parts of high and 

low frequencies. Depending on the application at hand and on the size of the input signal, the  

process could be repeated several times. As a result, logarithmic decomposition of the 
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frequency spectra of the input signal is obtained. With the inverse DWT coefficients, the 

original signal can be reconstructed from the approximation signal and details. 
 

 

 
 

 

Fig. 1.  (a) Two-band filter bank, (b) Wavelet decomposition over 3 levels. 

 

2.2. Wavelet packet transform   

 

The wavelet packet transform (WPT) is a generalization of DWT. The difference is that in 

the WPT signal decomposition, both the approximation and detail coefficients are further 

decomposed at each level and as the result a uniform frequency decomposition of the input 

signal is obtained. The number of output bands for L-level decomposition is 2
L
. With the 

selection of an adequate sampling frequency and the level of the decomposition these uniform 

frequency bands can be used for harmonics measurement of the input signal [6]. 
  

3. Quadrature mirror filter banks  

 

The basic structure of a two-band filter bank is shown in Fig. 1(a). H0(z) and H1(z) 

designate the low-pass and high-pass analysis filters, respectively, and F0(z) and F1(z) 

designate the low-pass and high-pass synthesis filters, respectively. With â2 and á2 the 

downsampling and the upsampling operator are denoted. The downsampler reduces the size 

of the input signal by omitting every other sample and the upsampler increases the size of the 

input signal by inserting a zero between the values of the input signal. The input-output 

relation of a two-band filter bank is given by: 

 [ ]0 0 1 1

1
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The first term describes the transmission of the signal through the system, while the second 

term represents an aliasing error due to the change of the sampling rate in the filter bank. The 

simplest way to cancel the aliasing is by selecting the filters in the analysis stage as                 

H1(z) = H0(-z) and by selecting the synthesis filter as F0(z) = H0(z), F1(z)
 
= -H1(z). Since the 

mirror-image symmetry about the frequency (w 
= p/2) exists between H1(z) = H0(-z), these 

filters are known as quadrature mirror filters (QMF) [10]. With filters chosen as above, the 

last equation becomes: 

 2 2 2 2
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2 2
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In this way, the whole filter bank is completely defined by a single low-pass filter H0(z). 

Additionally, if H0(z) is FIR and has a linear phase, then the overall transfer function H(z) will 

have a linear phase, so phase distortion is eliminated. This means that h0[n] is symmetric. 

That is, h0[n] = h0[N – n] for a filter of order N. Then, 

 / 2

0( ) ( )j j NH e e Rw w w-= , (4) 

where R(w) is real for all w. From this and the observation that |H0(e
jw

)| is even [10], 
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In order to avoid severe distortion around w = p, N must be even. Therefore,  

 

  
 

Fig. 2.  Frequency responses of different filters: Johnston filters with 32 coefficients and different transition 

bands (32C and 32E), Daubechies with 4 coefficients (db4) and Daubechies with 20 coefficients (db20). 

 

 ( )
/ 2

2 2
( )

0 0( ) ( ) ( )
2

j N
j j je

H e H e H e
w

w w p w
-

-= + . (6) 

Since this transfer function determines the amplitude distortion present in the signal, it would 

be desirable to find filter coefficients such that 

 
2 2

0 1( ) ( ) 1j jH e H ew w+ » . (7) 

From the above, it is clear that the design of a quadrature mirror filter is essentially a problem 

of finding a low-pass filter H0(z) with good stopband attenuation at the same time maintaining 

| H (e
 jw 

) | » 1 for all w, where  H (e
 jw 

)  is the frequency response of the overall system.   

Johnston [12] has devised a technique to minimize amplitude distortion based on well-

known multivariable optimization routines. Essentially, the filter coefficients are iteratively 

adjusted in order to minimize the value of an objective function that represents a linear 

combination of the overall passband error Er and the stopband energy of the low-pass analysis 

filter of the filter bank Es: 

 r sE E Ea= +  (8) 
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The parameter a in (8) is a positive weight that can be used to control stopband attenuation 

for filter H0, and ws is the frequency of the stopband edge.  
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Fig. 2 shows the frequency response of four different filters used in the filter banks. 

Frequency responses of Johnston J32C and J32E filters show a reduction of overlapping in the 

transition band compared to Daubechies filters with length 4 and 20.  

One important property of the QMF banks is their efficient implementation due to the 

modulated structure, where the high-pass and low-pass filters are related as H1(z) = H0(-z). 

Their polyphase components are given with [10]: 

 

 
 

Fig. 3.  (a) Polyphase implementation of QMF bank, (b) Efficient implementation using noble identities. 
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With the last two equations, the analysis filter bank can be represented as in Fig. 3 (a), and 

by using the noble identities [10] as in Fig. 3 (b). With these modifications same structures are 

used for implementation of both filters and the sampling rate is reduced by two. As a result, 

the number of operations is reduced four times in comparison with a standard filter bank 

implementation. 

 

4. Classification  

 

The support vector is chosen as a machine learning method. We provide a brief description 

of the SVM method and descriptions for the feature extraction process.      

 
Fig. 4. Classification of two classes. 

 

4.1 Support Vector Machine  

 

Support Vector Machines (SVM) is one of the most popular machine learning algorithms. 

Many experts believe it is the best learning algorithm, because of the vast number of 

successful applications and the solid theoretical foundation. Another reason for using SVM is 

the ease of use and the intuitive interpretation of the algorithm. Fig. 4. illustrates a binary 

classification problem. The samples from the first class are depicted as circles and the 
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samples from the second class are depicted as triangles. The classification problem is solved 

by finding the hyper-plane p0 defined as: 

 0 : 0p w x b× - = . (12) 

The hyper-plane is obtained as a maximum margin hyper-plane, by using a set of training 

examples with known class labels. However, by finding this hyper-plane a prediction can be 

made for the class label of a new example which was not included in the training set. Let the 

training examples be denoted with xi and the class labels are -1 and 1, i.e. ci = 1 if the training 

example belongs to the first class and ci = -1 if the training example belongs to the second 

class. The classification problem can be restated as finding two hyper-planes which separate 

the data from the two classes and are as far as possible from each other. The two hyperplanes 

can be defined as: 
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The margin, i.e. the distance between the two hyper-planes is 
2

.
w

The classification 

problem can be solved by maximizing the margin. However, it is easier to solve the following 

problem, which also leads to the same solution, yet the optimization function is quadratic: 

Minimize 
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Introducing Lagrange multipliers, ia  the optimization problem is transformed into: 
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Most of the Lagrange multipliers, ia , will be set to zero, as a solution of the optimization 

problem, because the corresponding term [ ( ) 1]i ic w x b× - -  will be positive. The ia  which are 

not set to zero correspond to ix , called support vectors.  

In [15] and [16] a soft margin SVM was introduced, in order to allow mislabeled 

examples. Also if the classes are not linearly separable a kernel trick is used, i.e. the dot 

product is replaced by a nonlinear kernel function. 

For the needs of classification, in this work we have utilized a linear multiclass SVM with 

the use of the implementation of libSVM [17]. 

 

4.2 Feature extraction 

 

For the feature extraction process we utilize the DWT. The signal, which is tested for PQ 

disturbances, is first decomposed in l-levels using DWT. The energy of the detail and 

approximation coefficients at each level of decomposition is used as a feature vector, and is 

calculated according to the following equations: 
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where dm,n, 1, ,m l= ,m l, is the wavelet detail coefficient in the wavelet decomposition from level 

1 to level l and al,n is the wavelet approximation coefficient in the wavelet decomposition at 

level l. N is the total number of wavelet coefficients at each level of decomposition, EDm is 

the energy of detail coefficients at the decomposition level m and EAl is the energy of the 

approximate wavelet coefficients at decomposition level l. In this way, the size of the 

analyzed data is significantly reduced and the original waveform is represented with only l
 
+1 

coefficients. We have chosen l
 
=

 
7 as the optimal number of levels of decomposition. Further 

increment of the level does no longer increase the accuracy of the algorithm and a too large 

number of levels of decomposition can even decrease the accuracy of the algorithm.   

 

5. Harmonics measurement 

 

As mentioned above the WPT decomposes the signal into uniform frequency bands. By 

adequately selecting the sampling frequency and the decomposition tree, the obtained 

frequency bands can be used for measurement of the different harmonic components of the 

input signal. For instance, with the sampling frequency set to 1600Hz and with three levels of 

decomposition, eight frequency bands with 100 Hz interval are obtained and can be used for 

measurement of odd harmonics up to the 15-th harmonic. The rms of the signal can be 

computed directly from the wavelet coefficients in the last bands [7].  

The introduction of equipment with electronic components will involve high-frequency 

distortions with frequencies of several kHz [18]. In order to analyze these high frequency 

disturbances with wavelet transform, a higher sampling frequency is required. The increase of 

the sampling frequency implies the use of a deeper wavelet decomposition tree in order to 

obtain the same width of the output frequency bands. All this will have an influence on the 

frequency characteristics of the output bands at the last level of decomposition, and 

consequently on the obtained results. This influence is illustrated in Fig. 5, where the 

frequency responses of each output band obtained after three levels of decomposition using a 

Johnston 64E filter and Vaidyanathan v24 are given. The frequency response of each output 

band is different and depends on the type and the sequence of filters (LP or HP) through 

which the input signal proceeds to the final band. The spectral leakage which is especially 

evident in the central frequency bands can be observed. Obviously, the use of filters with 

better selectivity properties will lead to more accurate harmonics measurement. 

 

 
Fig. 5. Frequency characteristics of Johnston 64E filter and v24 after three level of decomposition. 
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Table 1. Comparison between rms values using different filters  

in case of existence of higher-order harmonics  
 

Harmonic 

order 

Magnitude 

in % 

db20 db40 v24 J32D J64E 

1st 100 99,95 100.4 100.0 100.0 100.0 

3rd 3.45 4.620 3.306 3.323 3.255 3.481 

5th 1.71 1.479 1.977 1.949 1.738 1.713 

7th 1.155 1.300 1.230 0.956 1.225 1.136 

9th 0.6 0.095 0.348 0.893 0.555 0.603 

11th 0.495 0.464 0.488 0.511 0.490 0.496 

13th 0.315 0.397 0.361 0.291 0.315 0.315 

15th 0.225 0.273 0.171 0.296 0.149 0.212 

17th 0.198 0.127 0.248 0.087 0.254 0.220 

19th 0.177 0.086 0.170 0.144 0.177 0.178 

21st 0.16 0.117 0.143 0.174 0.164 0.160 

23rd 0.147 0.160 0.184 0.167 0.160 0.146 

25th 0.135 0.083 0.094 0.115 0.121 0.136 

27th 0.125 0.073 0.153 0.145 0.119 0.126 

29th 0.116 0.063 0.126 0.137 0.128 0.116 

31st 0.109 0.024 0.132 0.148 0.401 0.121 

33rd 0.102 0.146 0.017 0.025 0.104 0.103 

35th 0.096 0.157 0.058 0.050 0.097 0.096 

37th 0.091 0.109 0.066 0.064 0.092 0.091 

39th 0.086 0.103 0.068 0.076 0.085 0.086 

 

6. Experimental results 
 

6.1. Choice of the filters 

 

As already mentioned, the properties of the DWT and WPT significantly depend on the 

choice of the wavelet filters. Different wavelets decompose the analyzed signal in a different 

way, thus affecting the overall accuracy of the classification method or the process of 

harmonics measurement. The Johnston filters [12] with 24, 32 and 64 coefficients (J24B,             

J24C, J24D, J32C, J32D, J32E, J64E) are used in this work, besides well-known wavelet 

families. Letter C is a notation for all Johnston filters that have a normalized transition band 

of 0.0625, D refers to a normalized transition band of 0.043 and E refers to 0.023. 

 

6.2. Harmonics measurement 

 

In order to investigate the influence of different wavelet filters on the high frequency 

harmonic analysis of power system waveforms, we have implemented the wavelet packet 

transform-based algorithm given in [7]. In this work we used 50Hz input waveforms sampled 

at 6400Hz. After applying five level WPT decomposition, the obtained 32 frequency bands 

are in the range of 100 Hz and can be used for measurement of odd harmonics up to the 64th 

harmonic.   

The test signals that are used to examine the filters’ influence are generated according to 

the limitations for harmonics maximum magnitude (class B), given in IEC 61000-3-2 

Standard [19]. Table 1 shows the results of the rms values using different filters in case of 

existence of higher order harmonics. All of the rms values are calculated after performing five 

levels of decomposition. It can be noticed that commonly used wavelet filters with number of 

coefficients between 20 and 32 cannot offer satisfactory reliability. Some authors propose the 

use of higher-order filters to avoid leakage and divergence from the true values. In [20], 

Daubechies filter db40 is proposed for harmonic analysis. We have included it in our 

experiments, but there was no significant improvement in the computed rms values. The lack 

of good performance of these filters is a result of the increased number of decompositions, 
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thus the frequency characteristics of the output bands are subject to larger modification. It can 

be concluded that not only the number of coefficients matters, the selectivity property is also 

important. 

In [11], the Johnston filter with 32 coefficients was introduced and offered good results 

when used for harmonic measurement up to the 15th harmonic. For higher frequency 

harmonic analysis a significant improvement can be obtained if another filter from Johnston’s 

family with 64 coefficients (J64E) is used. Due to the efficient polyphase implementation of 

the Johnston filters, an increase of the filter length does not have a significant influence on the 

computational cost compared with the v24 filters. 

The performance of the filters can also be analyzed when a 1-p.u. single tone at the odd 

harmonic frequencies (1st to 63rd) is set to be the input signal. In Tables 2 and 3, rms values 

calculated for each frequency band obtained using different filters after five levels of 

decomposition with an input signal of a 1-p.u. single tone at the odd harmonic frequencies 

(25th to 39th harmonic) are given. Pointing to the middle-range frequencies (1550Hz to 

1750Hz) in Table 2 one can notice that overlapping in these bands is significant and also the 

spectral leakage, so the error increases to 25%. In Table 3, a Johnston filter with 64 

coefficients is added to the analysis in order to compare its performance. It is noticeable that 

the errors in previously mentioned bands are significantly reduced. 
 
Table 2. RMS values of the 13th to 20th output band of the decomposition in 5 levels using db20 and v24, when 

1-p.u. single tone at the odd harmonic frequencies is set to be the input signal. 
Output bands 

Input 

signal 

filter 1.2-1.3kHz 

(d13) 

1.3-1.4kHz 

(d14) 

1.4-1.5kHz 

(d15) 

1.5-1.6kHz 

(d16) 

1.6-1.7kHz 

(d17) 

1.7-1.8kHz 

(d18) 

1.8-1.9kHz 

(d19) 

1.9-

2kHz 

(d20) 

1250

Hz 

db20 0,870 0,009 0,000 0,0000 0,000 0,000 0,002 0,2249 

v24 0,938 0,000 0,000 0,000 0,000 0,000 0,000 0,108 

1350

Hz 

db20 0,0098 0,9083 0,1839 0,0020 0,0008 0,0736 0,3633 0,0039 

v24 0,000 0,967 0,068 0,000 0,000 0,017 0,244 0,000 

1450

Hz 

db20 0,0018 0,1710 0,8446 0,0091 0,0054 0,4972 0,1007 0,0011 

v24 0,000 0,064 0,904 0,000 0,000 0,421 0,030 0,000 

1550

Hz 

db20 0,0000 0,0000 0,0083 0,7654 0,6435 0,0070 0,0000 0,0000 

v24 0,000 0,000 0,000 0,787 0,617 0,000 0,000 0,000 

1650

Hz 

db20 0,0000 0,0000 0,0070 0,6435 0,7654 0,0083 0,0000 0,0000 

v24 0,000 0,000 0,000 0,617 0,787 0,000 0,000 0,000 

1750

Hz 

db20 0,0011 0,1007 0,4972 0,0054 0,0091 0,8446 0,1710 0,0018 

v24 0,000 0,030 0,421 0,000 0,000 0,904 0,064 0,000 

1850

Hz 

db20 0,0039 0,3633 0,0736 0,0008 0,0020 0,1839 0,9083 0,0098 

v24 0,000 0,244 0,017 0,000 0,000 0,068 0,967 0,000 

1950

Hz 

db20 0,2249 0,0024 0,0000 0,0000 0,0000 0,0000 0,0094 0,8702 

v24 0,108 0,000 0,000 0,000 0,000 0,000 0,000 0,938 
  

Table 3. RMS values of the 13th to 20th output band of the decomposition in 5 levels using Johnston filters 

(J32D and J64E), when 1-p.u. single tone at the odd harmonic frequencies is set to be the input signal. 
Output bands 

Input 

signal 

filter 1.2-1.3kHz 

(d13) 

1.3-1.4kHz 

(d14) 

1.4-1.5kHz 

(d15) 

1.5-1.6kHz 

(d16) 

1.6-1.7kHz 

(d17) 

1.7-1.8kHz 

(d18) 

1.8-1.9kHz 

(d19) 

1.9-

2kHz 

(d20) 

1250

Hz 

J32D 0,9912 0,0018 0,0000 0,0005 0,0000 0,0000 0,0000 0,0140 

J64E 0,9972 0,0004 0,0000 0,0002 0,0000 0,0000 0,0000 0,0048 

1350

Hz 

J32D 0,0018 0,9990 0,0106 0,0000 0,0000 0,0005 0,0510 0,0001 

J64E 0,0004 1,0004 0,0016 0,0000 0,0000 0,0000 0,0063 0,0000 

1450

Hz 

J32D 0,0000 0,0102 0,9636 0,0018 0,0005 0,2602 0,0028 0,0000 

J64E 0,0000 0,0016 0,9993 0,0004 0,0000 0,0070 0,0000 0,0000 

1550

Hz 

J32D 0,0004 0,0000 0,0015 0,8261 0,5629 0,0010 0,0000 0,0003 

J64E 0,0002 0,0000 0,0003 0,9122 0,4103 0,0001 0,0000 0,0001 

1650

Hz 

J32D 0,0003 0,0000 0,0010 0,5629 0,8261 0,0015 0,0000 0,0004 

J64E 0,0001 0,0000 0,0001 0,4103 0,9122 0,0003 0,0000 0,0002 

1750

Hz 

J32D 0,0000 0,0028 0,2602 0,0005 0,0018 0,9636 0,0102 0,0000 

J64E 0,0000 0,0000 0,0070 0,0000 0,0004 0,9993 0,0016 0,0000 

1850

Hz 

J32D 0,0001 0,0510 0,0005 0,0000 0,0000 0,0106 0,9990 0,0018 

J64E 0,0000 0,0063 0,0000 0,0000 0,0000 0,0016 1,0004 0,0004 

1950

Hz 

J32D 0,0140 0,0000 0,0000 0,0000 0,0005 0,0000 0,0018 0,9912 

J64E 0,0048 0,0000 0,0000 0,0000 0,0002 0,0000 0,0004 0,9972 
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Frequency characteristics of the output bands obtained after three levels of decomposition 

with two of the compared filters (J64E and v24) are given at Fig. 5. It can be noticed that the 

J64E filter has a better selectivity characteristics and lowered spectral leakage than the v24 

filter. It is especially evident in the middle-frequency ranges. Frequency characteristics of the 

output bands obtained after five levels of decomposition results with significant difference. 

 

6.3. Classification of the PQ disturbances 

 

Seven different classes are considered, including the case with no power disturbances: 

normal, swell, sag, harmonic, outage, sag with harmonic and swell with harmonic denoted 

with C1, C2, C3, C4, C5, C6, C7 (Table 4). The sampling frequency is 256 samples/cycle and 

the duration of the signal is ten periods. The normal frequency is assumed to be 50Hz. 200 

signals were generated from every class with random parameters for the signal models. A test 

set was also generated in the same way. As described, choice of the wavelet affects the way 

the signal is decomposed, which for some wavelets leads to drastic changes of the accuracy of 

the classification algorithms. We use wavelets with different support sizes and from the 

usually used families: Daubechies, Coiflets, etc. Additionally, we use the Johnston filters 

designed for a NPR filter bank structure. 

Classification results are given in Table 5. The presented results show that all tested filters 

provide approximately the same results.  Additionally, the presented results show that for the 

implemented classification method the use of the Johnston filters leads to increased accuracy 

compared with the commonly used db4 wavelet. 

 
Table 4. Power quality disturbance models. 

 

disturbance class Model Parameters 

normal C1 ( ) sin( )x t tw=  / 

swell C2 
1 2( ) (1 ( ( ) ( )))sin( )x t A u t t u t t ta w= + - - -  0.1 0.8a£ £ , 2 1 9T t t T£ - £ ,  

sag C3 
1 2( ) (1 ( ( ) ( )))sin( )x t A u t t u t t ta w= - - - -  0.1 0.9,a£ £ 2 1 9T t t T£ - £  

harmonic C4 1 3 5 7( ) ( sin( ) sin(3 ) sin(5 ) sin(7 ))x t A t t t ta w a w a w a w= + + +  
3 5 7

2

0.05 0.15,0.05 0.15,0.05 0.15,

1i

a a a

a

£ £ £ £ £ £

=å
 

outage C5 1 2( ) (1 ( ( ) ( )))sin( )x t A u t t u t t ta w= - - - -  0.9 1a£ £ , 2 1 9T t t T£ - £  

sag with 

harmonic 
C6 

1 2( ) (1 ( ( ) ( )))x t A u t t u t ta= - - - -  

1 3 5( sin( ) sin(3 ) sin(5 ))t t ta w a w a w+ +  

0.1 0.9a£ £ , 2 1 9T t t T£ - £  

2

3 50.05 0.15,0.05 0.15, 1ia a a£ £ £ £ =å  

swell with 

harmonic 
C7 

1 2( ) (1 ( ( ) ( )))x t A u t t u t ta= + - - -  

1 3 5( sin( ) sin(3 ) sin(5 ))t t ta w a w a w+ +  

0.1 0.9a£ £ , 2 1 9T t t T£ - £  

2

3 50.05 0.15,0.05 0.15, 1ia a a£ £ £ £ =å  

 
Table 5. Results from the classification with the use of different wavelets. 
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C1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

C2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99,5 

C3 90 89 78,5 91 82 82,5 80,5 75,5 81,5 81,5 79 80,5 79,5 78,5 78 

C4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

C5 91,5 91,5 80,5 93 78,5 79 88 83 84,5 86 83 85,5 84 84 78,5 

C6 98 98 100 98,5 78 99 100 98 100 100 100 100 100 100 99 

C7 100 100 100 100 93 100 100 100 100 100 100 100 100 100 100 

overall 97,07 96,93 94,14 97,50 90,21 94,36 95,50 93,79 95,14 95,36 94,57 95,14 94,79 94,64 93,57 
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Furthermore, we test the accuracy of the algorithm in the presence of noise with the use of 

different wavelets. We add white Gaussian noise to the signals from the test set. Different 

levels of noise with the signal-to-noise ratio (SNR) values ranging from 20 to 50 dB are 

added. Classification results obtained with the implemented classification method in presence 

of noise are given in Table 6. It can be seen from the presented results that the use of Johnston 

filters with 32 coefficients adds robustness to the classification methods in the presence of 

noise. The power quality disturbances can be classified with high precision even if 20dB 

noise is added to the disturbance signals. This is not the case with the other wavelet families, 

where accuracy of the classification is significantly reduced as the SNR becomes smaller. 

The same experiments using the multiclass logistic regression classification method were 

performed in [13]. The obtained results are very similar to the results presented in this paper. 
 

Table 6. Overall accuracy of the SVM classification method with added noise to tested signals 
 

                      SNR 

  Wavelet 
20dB 25dB 30dB 35dB 40dB 45dB 50dB 

Beylkin18 81,79 87,86 94,93 96,14 95,93 96,21 96,07 

Coiflet06 64,71 83,36 94,36 96,43 96,86 97,00 97,07 

Coiflet30 57,50 80,43 93,93 95,71 95,79 96,07 96,00 

Daub04 84,79 85,50 86,14 94,00 93,93 94,21 94,21 

Daub06 70,14 88,64 95,64 97,00 97,29 97,5 97,50 

Daub10 49,29 63,36 79,36 86,64 89,07 89,64 90,00 

Daub20 74,86 91,07 93,57 93,57 93,71 93,86 93,79 

J24 B 86,00 94,36 94,86 95,5 95,14 95,14 95,14 

J24 C 85,14 93,57 95,00 95,07 95,29 95,21 95,36 

J32 C 94,36 94,43 94,5 94,57 94,64 94,57 94,57 

J24 D 82,43 93,21 95,14 95,21 95,00 95,14 95,14 

J32 D 94,07 94,71 94,79 94,79 94,71 94,79 94,79 

J32 E 93,29 94,64 94,79 94,71 94,71 94,57 94,64 

V24 64,14 82,29 92,21 93,07 93,21 93,43 93,5 

 

 

7. Conclusions 

 

In this paper we have analyzed the influence of the NPR QMF filter banks for PQ analysis: 

harmonics measurement and detection PQ disturbances. Frequency characteristics of the low- 

pass and high-pass filter pairs used in the implementation of the wavelet transform have a 

strong influence on the accuracy of harmonics measurement. This influence is especially 

evident when high frequency harmonics have to be analyzed, which require a larger level of 

WPT decomposition to be performed. Filters with good frequency selectivity present a lower 

level of spectral leakage and are suitable for measurement of high order harmonics. In that 

sense Johnston filters with 64 coefficients are one possible solution.  

The obtained results from the simulations made, also indicated that Johnston filters are a 

good choice for application in the power quality classification methods, especially in the noise 

scenario. With the use of Johnston filters with 32 coefficients the accuracy of the 

classification method is not significantly reduced even if 20 dB noise is added to the 

disturbance signals. 

Additionally, due to efficient polyphase implementation of the Johnston filters, an increase 

of the filter length does not have significant influence on the computational cost compared 

with the commonly used wavelets. 
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