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Abstract 

In the paper a method using active thermography and  a neural algorithm for material defect characterization is 

presented. Experimental investigations are conducted with the stepped heating method, so-called time-resolved 

infrared radiometry, for the test specimen made of a material with low thermal diffusivity. The results of the 

experimental investigations were used in simulations of artificial neural networks. Simulations are performed for 

three datasets representing three stages of the heating process occurring in the investigated sample. In this work, 

the simulation research aimed to determine the accuracy of defect depth estimation with the use of the mentioned 

algorithm is descibed. 
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1. Introduction 

 

1.1. Defect characterization using active thermography 

 

Non-destructive testing is applied for the detection of material discontinuity, without 

changing the properties of the investigated objects. This makes it possible to control the 

quality of products [1]. In non-destructive testing, different methods are applied: ultrasound, 

radiological, eddy currents and passive [2-5] and active infrared thermography procedures [6-

8].  

A defect localized in the subsurface material layer can be detected using thermal wave 

theory [9, 10]. The method based directly on this theory is called lock-in thermography, 

modulated thermography or phase sensitive modulated thermography. It is based on applying 

a periodical thermal input to the tested sample and recording, using an infrared camera, the 

temporal sequence of thermograms representing the instant surface temperature field of the 

sample. In practice, generation of the modulated thermal input is technically difficult and can 

be economically ineffective. In such cases, the often-used solutions are:  pulsed thermography 

or its modifications, like pulsed-phase thermography and the stepped heating method [10-13].  

Let us assume that the sample geometry consists of two material layers with different 

thermal properties. In such a situation the second sample layer may represent a subsurface 

material defect. For such a geometry, temperature evolution on the heated surface, caused by 

the thermal step excitation is given by the following relationship [6-8]: 
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where:  

Cc – constant related to energy absorption, G – mismatch factor, dependent on the effusivities 

of the material layers e0 and e1 - )/()( 0101 eeee +-=G , L – thickness of the surface layer 

(defect depth) (m), a0 – thermal diffusivity of the surface layer, (m
2
 s

-1
). 

Besides, in many applications it is necessary to determine the defect parameters, such as 

depth, size and heat resistance. The process of quantitative determination of these parameters 

is called defect characterization [11-14]. The defect characterization using active 

thermography is a complex inverse heat transfer problem [15, 16]. Algorithms of the defect 

characterization can be divided into several groups: 

˗ based on analytic approach, 

˗ based on numerical modeling of defects (finite difference method, finite element method 

and other), 

˗ based on statistical analysis of time sequences of thermal images, 

˗ black-box methods, including methods based on neural networks and fuzzy logic, 

-    others. 

Equation (1) is only a one-dimensional approximation of the thermal step response. 

Because of the lack of an accurate model, in the paper an algorithm based on the artificial 

neural network was proposed. For characterization of defects in a material surface layer one 

can apply a multi-layer feed-forward artificial neural network trained with the 

backpropagation algorithm. In order to use the neural network, a calibration process is 

necessary. 

 

1.2. Neural algorithm for defect depth estimation 

 

Defect depth estimation can be considered as a classification [12, 17] or regression [18] 

problem. In this work, the regressive neural network was applied. In such case, the neural 

network acts as an approximator of the solution of the inverse heat transfer problem [15]. The 

general scheme of the regressive algorithm uses the neural network is shown in Fig. 1. 

 

 

Fig. 1. Scheme for the estimation of defect depth using the multi-layer perceptron network  

as a regressive algorithm. 

 

The first stage of the characterization is recording of the temporal sequence of the 

thermograms of the investigated surface. Next, the training vector is formed. It consists of the 

n temperature values assigned to a particular pixel for every time instant. The size of the input 

vector (the number of inputs of the neural network) is determined (but has not to be equal) by 

the number of the time instants (depending on the sample period). In this work the principal 

component analysis was employed. Therefore the number of inputs of the neural network is 

equal to the number of chosen components. The data preprocessing is fully described in a 
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later part of this paper. The number of the training vectors (samples) equals the number of 

pixels in the considered field of view of the investigated material surface or the number of 

pixels in the defective areas only. In the simulations presented in this work the second case 

was assumed. In a regressive network, the output layer has a single neuron. During the 

training, the known depth value, assigned to the given pixel, is applied to the network output. 

In the aforementioned characterization algorithm, the multi-layer feed-forward neural 

network, trained with the backpropagation routine can be used [2, 12, 19, 20]. 
 

2. Experimental investigations 

 

2.1. Measuring stand 

 

Experiments were performed using the measuring stand shown in Fig. 2. The measurement 

stand consists of the long-wave infrared camera FLIR ThermaCAM PM595 (1), digital 

module of communication interface (2) and a PC computer (3) capable of real-time 

acquisition of temporal sequences of thermograms [7, 8]. Two modeling lamps (4) of 250 W 

each were used as the source of thermal excitation. The examined object was a test specimen 

(5), made of Plexiglas. In order to isolate from  adverse ambient radiation, the equipment was 

placed in the closed investigation chamber (6) 2,5 m x 3 m x 1,5 m (height x width x depth). 

The inner walls of the chamber were painted with black matt lacquer with a high value of the 

emissivity coefficient. The surface of the examined specimen was covered with  black matt 

lacquer, featuring a high emissivity coefficient (e » 0,98) as well. On the bottom side of the 

sample six non-passing holes were drilled. The six defects located at z1 =  0,8 mm, z2 = 1,0 

mm, z3 = 1,1 mm and z4 = 1,3 mm z5 = 1,7 mm, z6 = 2,0 with respect to the upper side of the 

sample were simulated. The sample dimensions, the location and dimensions of the holes are 

depicted in Fig. 3. 

 

 
 

Fig. 2. Measuring stand for defect characterization using the stepped heating method. 

 

 
 

Fig. 3. Dimensions and localization of the simulated defects in the investigated specimen.
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2.1. Results of the experimental investigations 

 

In the experimental investigations the stepped heating method was used. During the 

experiments, the specimen surface was heated with a 500 W thermal pulse, duration time 120 

s. Two lamps were used, the 250 W each. The thermogram sequence was recorded during the 

120 s of the heating stage, and subsequently during 300 s of the cooling stage. The sampling 

frequency was set to 1 Hz, and the total number of recorded thermograms was 420. The 

exemplary thermograms are presented in Figs 4-7. In Figs 4, 5, thermograms for t = 5 s (early 

heating stage) and t = 120 s (the end of the heating stage) are depicted. Thermograms for t = 

270 s (half of the observation time of the cooling stage) and for t = 420 s (the end of the 

cooling stage) are presented in Figs 6, 7 respectively. 

 

3. Simulation research 

 
3.1. Methodology of research 

 

In this work, in order to estimate the defect depths, a neural algorithm based on the 

regressive neural network was used. The simulations were performed in the following stages: 

1.  Selection of the training data. 

2.  Principal component analysis (PCA). 

3.  Selection of the neural network architecture. 

4.  Training the neural network with the backpropagation training algorithm. 

5.  Testing of trained network using the cross-validation procedure. 

6.  Analysis of the simulation results. 

 

  
Fig. 4. Thermogram of investigated sample for t = 5 s. Fig. 5. Thermogram of investigated sample                 

for t = 120. s. 

 

  
Fig. 6. Thermogram of investigated sample                

for t = 270 s. 

Fig. 7. Thermogram of investigated sample                  

for t = 420 s. 

 



 

Metrol. Meas. Syst., Vol. XX (2013), No. 3, pp. 491–500. 

 

The simulation research was performed on data obtained from the temporal thermogram 

sequences, recorded in experiments described in Section 2. As the basis of the analysis, the 

three sequences of thermograms, recorded for heating phase going to120 s, cooling phase 

going to 300 s and both phases lasting totally for 420 s were used. For each sequence the 

following number of features was established: 120 for the heating phase, 300 the for cooling 

phase and 420 for both phases. In order to limit the inputs of the neural network, in 

simulations the principal component analysis (PCA) was utilized. The PCA is a statistical 

procedure enabling the transformation of object features [21]. As the result of this 

transformation, the description of the object features in a new space is obtained. Each new 

component is a linear combination of the original features, computed so that the variance 

would be maximized. Subsequent components are determined taking into account the 

orthogonality criterion [22]. As a result of transformation, a new set of features is obtained. 

These are sorted in the variance descending order. In order to fix the number of principal 

components, the criterion based on the percentage of variance explained was used. If the sum 

of the variance of the given number of components is the significant part of the variance of all 

components, it means that these components explain the original data variance well enough. 

In this paper, the optimal number of components for which the cumulated sum of the variance 

explained equals 98% was chosen. On the basis of the principal components analysis, three 

data sets were created. The description of the data sets used in simulations performed  here is 

presented in Table 1. 
 

Table 1. Description of datasets and architectures of neural networks used in simulations. 

 

NAME PROCESS PHASE (TIME) 
NUMBER OF  

PRINCIPAL COMPONENTS 

ARCHITECTURE 

OF NEURAL NETWORK 

D-1 Heating (120 s) 4 4 – 16 – 1  

D-2 Cooling (300 s) 3 3 – 21 – 1 

D-3 Heating + Cooling (420 s) 4 4 – 16 – 1 

 

The sample area visualized on a single thermogram measured 166´91 pixels. In paper [18] 

all pixels in the field of view of the thermogram were used in the network training.  In this 

work only the pixels belonging to the defect areas were used. Such an approach enabled a 

more reliable assessment of the depth estimation error without the error component dependent 

on the detection efficiency. In the training of the considered neural network it was necessary 

to prepare a map of defect depths for the investigated sample. This map was made according 

to the scheme from Fig. 3. The map is presented in Fig. 8.  
 

 
Fig. 8. The map of defect depths used for training of neural networks under investigation. 

 

An important stage of the model creation is a selection of its structure and number of its 

parameters. In case of an artificial neural network, the model is constructed with the 

determination of neural network architecture. In this work, the feed-forward neural network 

with one hidden layer, so-called multi-layer perceptron, was examined [11, 18]. One of the 
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stages of network design is the selection of number of neurons in the hidden layer. In 

simulations it was assumed that the number of neurons in the hidden layer depends on the 

number of training samples. Moreover, it was stated that for proper generalization, the 

number of weights would be ten times lower than the number of the training samples. On the 

basis of the aforementioned rule, taking into account the number of inputs, the number of 

neurons in hidden layers was fixed. In simulations many neural networks with different 

architectures were examined. The numbers of hidden neurons presented in Table 1 were fixed 

in the 10-fold cross-validation procedure described below. These numbers correspond to the 

networks for which the smallest errors defined by formula (5) were obtained. The number of 

neurons in the input layer resulted from the size of the input data vector. It was fixed 

depending on the dataset (see: Table 1). Finally, the output layer of the considered network 

had a single neuron. The neural network architectures assumed for every dataset are presented 

in Table 1 (shown in the last column). Individual numbers denote respectively: the number of 

inputs, the number of neurons in the hidden layer and the number of neurons in the output 

layer. 

The main purpose for the supervised neural network training is the minimization of 

difference between the known output and the output of the considered network. The most 

frequently used error criterion is the mean squared error. However, a very important feature of 

the neural network is its generalization ability. Thanks to it, the network trained with the 

training data is able to generate correct results for the testng data, which did not take part in 

the training process.  

In order to derive the generalization error in this work, the 10-fold cross-validation 

procedure of the given neural networks was applied. The set of all available samples (pixels 

belonging to the defect areas) Sall were randomly divided into the 10 equinumerous subsets 

Stest(i), i = 1, …, 10. At the i-th iteration, training of the network with the (Sall-Stest(i)) set was 

performed. Then the network was tested using the set Stest(i) and the error for testing data was 

calculated. Finally, the network output, as the map of defects’ depths for the considered field 

of view was formed. 

The last stage of the simulation research was the analysis of the results and evaluation of 

the defect depth estimation accuracy. In this work, the following criteria for accuracy 

evaluation were assumed: 

˗ The mean error of depth estimation in the defect area, for training data: 

 å
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where: Ndef – number of pixels in the defect area, zLEARN(i) – depth of defect assumed 

for i-th pixel in the field of view, calculated by the neural network for training data, zR 

– correct (real) value of defect depth, applied in the training to the output of network. 

˗ The relative mean error of depth estimation in the defected area, for training data: 
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˗ The mean error of depth estimation in the defect area, for testing data: 
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where: zTEST(i) – depth of defect assumed for i-th pixel in the field of view, calculated 

by the neural network for testing data. 

˗ The relative mean error of depth estimation in the defected area, for testing data: 
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Besides determination of the errors expressed with formulas (2-5), in this paper a 

regression analysis was performed. During the analysis, the linear correlation coefficients 

between the correct depth values and the values obtained using the neural network, for 

training and testing data, were calculated. Furthermore, the coefficients of the linear 

regression were derived. These coefficients and the linear equations are shown in Figs 11, 14, 

17. 

 

3.2. Simulation results 

 

Simulations of the aforementioned neural algorithm for defect characterization were 

performed in accordance with the methodology described in the preceding section. The results 

for dataset D-1, obtained with the cross-validation routine were shown in Figs 9-11. In Fig. 9 

the results of neural network simulation for testing data were presented. The relative mean 

errors, for the particular defect depths z, defined by equation (5), were depicted in Fig. 10. 

The results of the regression analysis obtained with the considered dataset for testing data, are 

presented in Fig. 11. 

  
Fig. 9. The map of defects’ depth obtained  

for testing data (D-1). 

Fig. 10. The relative mean errors defined with (5), 

obtained for testing data (D-1). 

 

 
Fig. 11. Results of the regression analysis, obtained for testing data (D-1). 

 
 

In Figs 12-14, the simulation results for dataset D-2 were presented. The results of the 

neural network simulations for testing data were depicted in Fig. 12. The relative mean errors 

defined by formula (5) were shown in Fig. 13. In Fig. 14 the results of the regression analysis 

were presented. 
 

  
Fig. 12. The map of defects’ depth obtained  

for testing data (D-2). 

Fig. 13. The relative mean errors defined by (5), 

obtained for testing data (D-2). 
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Fig. 14. Results of the regression analysis, obtained for testing data (D-2). 

 

The results for dataset D-3, obtained with the cross-validation routine are  shown in  

Figs 15-17. In Fig. 15 the results of neural network simulation for testing data are presented. 

The relative mean errors, for the particular defect depths z, defined by equation (5), are 

depicted in Fig. 16. The results of the regression analysis obtained with the considered dataset 

for testing data, are presented in Fig. 17. 

 

 
 

Fig. 15. The map of defects’ depth obtained for testing 

data (D-3). 

Fig. 16. The relative mean errors defined with (5), 

obtained for testing data (D-3). 

 

 
Fig. 17. Results of the regression analysis, obtained for testing data (D-2). 

 

4. Conclusions 

 

In this paper, the results of the experimental and simulation investigations of a neural 

algorithm for defect characterization were presented. Analyzing the results of experimental 

tests, the following conclusions may be drawn: 

˗ In the experimental investigations conducted in this work, the maximum thermal 

contrast for the particular defects was observed at the end of the heating phase  
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(t = 120 s) – cf. Fig. 5. It follows that the visibility of a defect is strictly depending on 

the time instant of observation and defect depth – cf. Fig. 5, 6. 

˗ Taking into account the abovementioned issue, it is difficult to establish the time 

instant for the maximum thermal contrast, only on the basis of the thermal parameters 

of investigated material and the heat input properties, using equation (1). 

Analyzing the results of simulation tests, the following conclusions have been formulated: 

˗ The application of the principal components analysis (PCA) allowed a significant 

limitation of the size of input data vectors used for training of the investigated neural 

networks. Decreasing the size of input data vectors allowed decreasing the total 

number of weights. It enabled significantly a decrease of the accuracy of defect depth 

estimation, especially for testing data. 

˗ Comparing the maps of defects’ depth, formed using the neural network response, for 

testing data, it can be stated that these are similar to the map of defects’ depths used 

for training of neural networks, for every dataset D-1, D-2, D-3 – cf. Figs 8, 9, 12, 15. 

˗ The above remark was confirmed by a quantity analysis performed with the use of 

relative mean errors in the defect areas, defined with the use of formula (5) – cf. Figs 

10, 13, 16. 

˗ The biggest values of the relative error of depth estimation were noticed for dataset D-

1 (i.e. for thermograms’ sequence recorded for the heating stage). The smallest values 

of error described by equation (5) occurred for dataset D-3 (i.e. for thermograms’ 

sequence recorded for both stages of the considered heat transfer process). 

˗ Comparing the values of errors for datasets D-2 and D-3, it can be stated that they are 

not significantly different – cf. Figs 13, 16. Taking into account the abovementioned 

conclusion, it can be formulated that limiting the recording time of the thermogram 

sequence in the experimental investigations does not significantly reduce the 

characterization accuracy with the method described here, especially when the cooling 

stage instead of the heating and cooling stages will be recorded. It is necessary to 

emphasize that this conclusion is strictly related to experiments prepared in the present 

work with the use of the stepped heating method and a sample made of a material with 

a low thermal diffusivity value. 

˗ Good statistical agreement between the network output and the real depth values, for 

the testing data, is confirmed by the results of the regression analysis – cf. Figs 11, 14, 

17. For all three examined datasets, it was noticed that a high value of the correlation 

coefficient R occurred between the neural network output depth values and the values 

of depth applied in the training process – cf. Figs 11, 14, 17. 

˗ The method presented in this paper can be applied after prior detection of a defect. 

The main purpose of this work was to present the results of research on the data 

processing algorithm, not a method ready to be deployed. However, the accuracy of 

the mentioned algorithm appears to be satisfactory. The method is designed so that the 

neural networks should be trained in the laboratory and the depth estimation should be 

conducted at the production line. However, there are many problems related to 

practical use of this method (e.g. eliminating the uneven heating). 

˗ It should be emphasized that the results obtained in this work are valid for the defect’s 

depth ranging from 0,8 to 2 mm, the aerial defects and the materials with low thermal 

diffusivity close to thermal diffusivity of Plexiglas (i.e. 0,12 x 10
-6

 m
2
 s

-1
) which has 

been used in the tests. 
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