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Abstract 

This paper deals with multiple soft fault diagnosis of nonlinear analog circuits comprising bipolar transistors 

characterized by the Ebers-Moll model. Resistances of the circuit and beta forward factor of a transistor are 

considered as potentially faulty parameters. The proposed diagnostic method exploits a strongly nonlinear set of 

algebraic type equations, which may possess multiple solutions, and is capable of finding different sets of the 

parameters values which meet the diagnostic test. The equations are written on the basis of node analysis and 

include DC voltages measured at accessible nodes, as well as some measured currents. The unknown variables 

are node voltages and the parameters which are considered as potentially faulty. The number of these parameters 

is larger than the number of the accessible nodes. To solve the set of equations the block relaxation method is 

used with different assignments of the variables to the blocks. Next, the solutions are corrected using the 

Newton-Raphson algorithm. As a result, one or more sets of the parameters values which satisfy the diagnostic 

test are obtained. The proposed approach is illustrated with a numerical example. 
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1. Introduction 

 

The fault diagnosis of analog circuits is an important and open problem for design 

validation [1]. A fault is named soft (parametric) if a parameter drifts from its tolerance range, 

but does not lead to any topological changes. Otherwise a fault is named catastrophic. The 

entire fault diagnosis includes detection of a fault, location faulty elements, and determination 

of their parameters. If most of circuit simulations take place before any testing, the diagnostic 

method is called the simulation–before–test (SBT) approach, otherwise it is called the 

simulation–after–test (SAT) approach. Unlike the catastrophic fault diagnosis, where the 

faulty parameters tend to infinity or zero, the soft fault diagnosis deals with the parameters 

that may take arbitrary values within some ranges. Therefore, the SBT approach, which 

requires building a fault dictionary, is difficult to arrange and the SAT approach is preferred. 

Most of the previous research work in the area of a soft fault diagnosis addresses only the 

case where just one element is faulty, e.g. [2−9]. Less work deals with a multiple fault 

diagnosis, e.g. [10−16]. The SAT methods employ test equations which involve measured 

voltages and/or currents and unknown parameters to be determined. Frequently, these 

equations have an algebraic form and are nonlinear. If the parameters slightly drift  from their 

nominal values, the equations can be linearized which simplifies the diagnosis. Unfortunately, 

such an approach is not allowed if the parameters deviate considerably from their nominal 

values and the equations are strongly nonlinear. In such a case several sets of the parameters 

values can satisfy the test, because the set of nonlinear equations can actually have multiple 

solutions. Most algorithms allow finding only one solution (one set of the parameters values), 

even if the set of nonlinear equations has several solutions. However, finding just one specific 

solution which is not necessarily the actual one is rarely of interest and not sufficient for a 

reliable diagnosis of the circuit. The Newton-Raphson algorithm which is the best known and 
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the most frequently used for solving nonlinear equations is useless as a general purpose tool 

in this area. In many cases this algorithm applied to the system of nonlinear equations fails, 

even if the system of equations has a unique solution. To find different sets of the parameters 

which meet the diagnostic test, the parametric homotopy method and the homotopy–simplical 

algorithm have been recently proposed [15−16]. They are rather complex, but capable of 

solving the test equations which are not given in an explicit analytical form. 

This paper is devoted to the multiple soft fault diagnosis of nonlinear circuits, containing 

bipolar transistors characterized by the Ebers-Moll model [17] and offers a method for 

localizing faulty elements and evaluating their parameters, without any linearization of the 

test equations. Resistances of the circuits and the beta forward factor of a transistor are 

considered as potentially faulty parameters. The proposed method is based on measurement of 

voltages at accessible nodes and some currents, the node approach, and the block relaxation 

concept. It allows finding different sets of values of all the elements considered as potentially 

faulty which meet the diagnostic test. 

Localization of faulty parameters and determination their values are useful at the 

preproduction stage, where corrections of the technological process are possible. In such a 

case the time consumed by the diagnostic procedure is off–line and not crucial. 

 

2. Fault diagnosis of BJT circuits 

 

Let us consider a circuit consisting of 
t
n  bipolar transistors, 

d
n  diodes, r  resistors 

considered as potentially faulty, h  resistors considered as fault–free, and k  DC voltage 

sources. Moreover, the beta forward factor ( )
F
β  of one transistor is considered as potentially 

faulty. We assume that one terminal of each voltage source is grounded. The transistors are 

characterized by the Ebers-Moll model composed of two diode-controlled source 

combinations and emitter, base, and collector resistors [17] (see Fig. 1 for npn transistors). 
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Fig. 1.  The Ebers-Moll model of an npn transistor.  

 

The emitter and collector diodes are described by the equations 
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The diodes acting alone are specified by the equation 

 ( ) 
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The emitter and collector currents of the transistors and the currents of all the diodes acting 

alone will be considered as elements of the vector 
3
i , whereas the corresponding voltages as 

elements of the vector 
3
v . Then we can write 

 ( )
33
vTgi =  ,  (4) 

where g  is a vector function consisting of the functions 
F
g , 

R
g , 

D
g  of all the transistors and 

diodes, T  is a block diagonal matrix of the form 
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where 1  is 
dd
nn ×  identity matrix. In the discussed circuit we wish to find the actual values 

of r  resistors and ( ) ( ) ( )





 += 1

ii

FF

i

F
ββα  factor { }( )

t
n,,i K1∈ , considered as potentially 

faulty. For this purpose the diagnostic test is arranged as follows. We apply a DC voltage 

source to the input node and - for different values of this voltage - measure the voltages 

m
v̂,,v̂ K

1
 at the nodes accessible for measurement and the currents flowing through all 

independent voltage sources acting in the circuit (see Fig. 2). 
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Fig. 2.  Arrangement of a diagnostic test. 

To describe this circuit we use the node approach. For this purpose we choose a grounded 

node as the datum node and introduce the node–to–datum voltages 
n
e,,e K

1
, where n  is the 

number of the remaining nodes. Next we create the incidence matrix [17], i.e. a rectangular 
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matrix of n  rows and knnhrb
dt
++++= 2  columns whose ( )j,i -th element j,ia  is defined 

by  









−=

.nodewithincidentnotisbranchif

,nodeentersbranchif

,nodeleavesbranchif

0

1

1

,

ij

ij

ij

a
ji

 

The columns correspond, in succession, to the resistors considered as potentially faulty, 

resistors considered as fault–free, the branches be  and bc  of the transistors as well as the 

branches of the diodes acting alone, and the DC voltage sources. The nodes are numbered in 

such a way that at the end the measurement nodes and the nodes corresponding to the non-

grounded terminals of the voltage sources are drawn up. As a result, an incidence matrix can 

be presented in the form 

 [ ]
4321

AAAAA = ,  (6) 

and the equation 

 0=Ai , (7) 

holds, where [ ]TT

4

T

3

T

2

T

1
iiiii = . The sub-vectors 

1
i , 

2
i , 

3
i , 

4
i  of the vector i  correspond to 

the columns of the sub-matrices 
1

A , 
2

A , 
3

A , 
4

A . Hence, it holds 

 eAv
T

11
= ,  (8) 

 eAv
T

22
= ,  (9) 

 eAv
T

33
= ,  (10) 

where 
1
v , 

2
v , 

3
v  are the vectors of the branch voltages corresponding to the vectors of the 

branch currents 
1
i , 

2
i , 

3
i . The vector [ ]T

1 n
ee L=e  consists of the node voltages. The branch 

equations are as follows 

 eAGvGi
T

11111
==  ,  (11) 

where ( )
r
x,,x K

11
diag=G , where 

r
x,,x K

1
 are the conductances of the resistors considered 

as potentially faulty, 

 eAGvGi
T

22222
==  ,  (12) 

where ( )
h

G,,G K

12
diag=G  consists of the conductances of the resistors considered as fault–

free, 

 ( ) ( )eAgTi
T

313 +
=

r
x  ,  (13) 

where ( )
1+r

xT  is given by (5) with i -th coefficient ( )
1+

=
r

i

F
xα , { }

t
n,,i K1∈ , considered as 

potentially faulty. Equations (7) – (13) lead to the matrix node equation 

 ( ) ( ) ( ) 0,iAeAgTAeAGAeAA =+++
+ 44

T
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T

222

T

111
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rr
xxx K  (14) 

which describes the circuit. The node voltage vector e  can be decomposed as follows 
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where v̂  is an ( )km +  - vector consisting of m  measured voltages and k  voltages of DC 

voltage sources. The km +  elements of the vector v̂  are known. The remaining node voltages 

being elements of the vector [ ]T
1 n̂

yy K=y , where ( )kmnn̂ +−= , are unknown variables. 

The equation (14) consists of n  individual equations with ( )kmrn +−++ 1  unknown 

variables 
111 +rn̂

x,,x,y,,y KK . Let kmr +>+1 , which means that the number the unknown 

variables is larger than the number of equations. For example, if 15=n , 4=+ km  and 

81=+r , then the number of equations is 15, whereas the number of unknown variables is 19, 

including 11 node voltages and 8 unknown parameters (7 conductances of the resistors and 

one 
F
β  coefficient 

81
xx

r
=

+
). In such a case we need 2 equations of the form (14) 

corresponding to 2 different voltages of ( )j
ss vv = , 21,j = . As a result, we obtain a set of 30 

individual equations with 30 unknown variables, including 22 node voltages, and 8 unknown 

parameters. 

Let ( )kmr +=+ 21 , then we create 2 equations of the form (14), which can be presented in 

the form 

 
( ) ( )( )
( ) ( )( ) ,0

,0

=

=

xyf

xyf

,

,

22

11

 (16) 

where ( ) ( ) ( )[ ]T
1

j
n̂

jj
yy K=y , 21,j = , is the vector of the node voltages in the circuit with the 

input voltage ( )j
ss vv = , [ ]T

11 +
=

r
xx Kx , and ( )jf  ( )21,j =  is the symbol of the function on 

the left–hand side of the equation (14). Each of the equations describes the circuit driven by a 

different value of 
s
v , the j -th equation ( )21,j =  of the system (16) is as follows  
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where ( )j
v̂  and ( )j

4
i  are given or known from measurement. The number of individual 

equations of the system (16) is n2 . Since any vector ( )jy  ( )21,j =  contains ( )kmn +−  

unknown node voltages, the number of unknown variables of the system (16) is 

( )( ) nrkmn 212 =+++−  and equals to the number of the individual equations. To solve the 

system, the Newton-Raphson algorithm can be directly applied. Unfortunately, numerical 

experiments show that in such a case the Newton-Raphson algorithm usually fails, as it is 

shown in Section 3. This is why we propose a more efficient approach based on the idea of 

the block relaxation with the Newton-Raphson algorithm used to solve the block equations 

and to correct the final solution, as described in the sequel. 

The unknown variables 
11 +r

xx L , where ( )l
Frx α=

+1
, { }

t
n,,l K1∈ , ( )kmr +=+ 21 , will 

be divided into 2 sets, each consisting of ( )km +  elements and assigned to 2 sub-vectors ( )1
x  

and ( )2
x . Then, the system (16) becomes 

 

( ) ( ) ( ) ( )( )
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Let ( )1
1
x̂  and ( )2

1
x̂ be the vectors ( )1

x  and ( )2
x , respectively, consisting of the nominal values 

of the corresponding parameters, whereas ( )1
1
ŷ  and ( )2

1
ŷ  are the vectors ( )1

y  and ( )2y  which 

satisfy the circuit equation in this case. We set ( ) ( )2
1

2
xx ˆ=  into the first equation of the system 

(17) 

 ( ) ( ) ( ) ( )( ) 0=
2

1

111 xxyf ˆ,,  . (18) 

The equation (18) consists of n  individual equations with ( )kmn +−  unknown node voltages 

(elements of ( )1
y ) and km +  unknown parameters (elements of ( )1

x ). We solve this equation 

for ( )1
y  and ( )1

x  using the Newton-Raphson algorithm, obtaining ( )1
1
y
~  and ( )1

1
x
~ . Then we 

proceed to the second equation of the system (17), substituting ( ) ( )1
1

1
xx
~
= ,  

 ( ) ( ) ( ) ( )( ) 0=
21

1

22 xxyf ,
~
,  (19) 

and solve the equation (19) for ( )2y , ( )2
x , obtaining ( )2

1
y~ , ( )2

1
x~ . Next, we find 

 ( ) ( ) ( ) ( )( ) 21
2

1
:

1111
,i,ˆ~ˆˆ iiii

=−+= xxxx  , (20) 

 ( ) ( ) ( ) ( )( ) 21
2

1
:

1111
,i,ˆ~ˆˆ iiii

=−+= yyyy  , (21) 

and repeat the described above procedure. As a result, the sequences 
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 (22) 

are generated, where ( )( ) ( )( )[ ] K,3,2,1,ˆ,ˆˆ
TT2T1

== j
jjj

xxx  . The procedure is terminated if 

( ) ( )
11
ε<−

+

i

j

i

j
ˆˆ yy , 21,i = , and 

21
ε<−

+ jj
ˆˆ xx  , where 

1
ε  and 

2
ε  are tolerances which define 

the required accuracy of the obtained solution. To improve the efficiency of the method we do 

not assume restrictive values of 
1
ε  and 

2
ε , obtaining an approximate solution. This is 

considered as initial guess of the Newton-Raphson algorithm applied to the system (16) which 

usually rapidly converges to the accurate solution. As a result, we find 
iii
xGR 11 ==  

( )r,,i L1=  and ( )

1

1

1
+

+

−

=

r

rl

F
x

x

β  of the l -th transistor. 

Note 

If ( )kmrkm +<+<+ 21  the last equation of the system (16) is reduced. E.g., if 4=+ km  

and 71=+r , then one individual equation of ( ) ( )( ) 0=xyf ,
22  is discarded. 

 

Convergence of the block relaxation method strongly depends on the way in which the 

elements of vector x  are assigned to subvectors ( )1
x  and ( )2

x . To make possible finding 

multiple solutions of the system of equations (16) we consider all possible assignments of the 

elements 
11 +r

x,,x K  to ( )1
x  and ( )2

x , and for each of them solve the system (17) using the 

described above approach based on the block relaxation method. Usually, for some of the 

systems this method is divergent and they are discarded. The solutions of the others may be 
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identical or different. In the last case there are several solutions of the system (16), what 

means that several sets of the parameters values meet the diagnostic test. For instance, if 

81=+r  and 4=+ km , eight elements of the vector x  are assigned to ( )1
x  or ( )2

x . There are 

70 combinations of the assignments, leading to the same number of systems (17) which have 

to be solved using the proposed method. Usually, the time of solving all these systems is very 

short (in the example given in Section 3 it is less than 1s). 

Two variants of the described method are discussed in this paper. The first one is devoted 

to the diagnosis of multiple faults of resistors only. In this case the transistors are considered 

as fault–free and 
1+r

x  is a fixed parameter. The method gives one or more sets of the 

parameters values { }
r
x,,x K

1
 which meet the diagnostic test. The second variant of the 

method deals with the fault diagnosis of a set of resistors { }
r

R,,R K

1
 and one of the 

transistors. In such a case we perform 
t
n  diagnoses, each for the same set of parameters 

{ }
r
x,,x K

1
 corresponding to the conductances of resistors 

r
R,,R K

1
 and one parameter ( )i

rx 1+
 

{ }
t
n,,i K1∈ corresponding to the i -th transistor. If only one of the diagnoses gives an 

accepted solution, e.g. for pi = , ( ){ }p

rr x,x,,x
11 +

K , and the others fail, just this set of   

parameters meets the test. As a result, we find values of the resistances of all the resistors 

considered as potentially faulty and 
F
β  of p -th transistor, which together meet the 

diagnostic test. Otherwise we exploit another test, repeat the procedure and find the common 

set. The details are explained in Section 3. 

 

3. Numerical example 
 

The proposed method was implemented in Delphi and tested using several circuits. The 

calculations were executed on a computer with the processor INTEL(R) Core(TM) i7-2600. 

One of the exemplary circuits is discussed below. 
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Fig. 3.  An example of a circuit. 

 

Let us consider the diode-transistor circuit shown in Fig. 3. The nominal values of all the 

resistances are indicated in this figure and their tolerances are 5%. The parameters of the 
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Ebers-Moll model for all the transistors are as follows: 99010.
F
=α  ( 100=

F
β ), 50.

R
=α , 

fA30210.I
ES
= , fA40020.I

CS
= , mV864225.v

T
= , 1=

F
n , 1=

R
n , 0===

EBC
RRR . 

The parameters of both diodes are: fA20010.I
D
= , 1=

D
n , mV864225.v

T
= . The 

exponential characteristics of the diodes included in the transistor model and acting alone 

have been linearized above V8.0 . To perform the diagnostic test we measure node voltages 

at nodes A, B, C ( 3=m ) for two values of the input voltage ( )
V15

1
=

in
v , ( )

V5
2
=

in
v  and the 

currents flowing through the voltage source 
in
v  in both cases. The measurement accuracy of 

the voltages and the currents is µV10.  and µA1.0 , respectively. The number of the nodal 

equations is 11=n . Hence, the number of equations of the representation (16) is 22. We 

assume the following values of tolerances: 010
1

.=ε  and 00010
2

.=ε , whereas the tolerance 

of the Newton-Raphson method used to correct the solution of the system (16) is 6
10

− . 

 

Variant 1 

Let the set of resistors { }
81

R,,R K  be considered as potentially faulty and the other circuit 

parameters have their nominal values. In this case all the transistors are considered as fault–

free, 
1+r

x  is fixed, 8=r , 3=m , 1=k , hence, ( )kmr += 2 . The representation (16) consists 

of 22 equations with ( )( ) 142 =+− kmn  unknown node voltages and 8=r  unknown 

parameters. We examined 25 different sets of the resistor values every time performing the 

diagnostic procedure described in Section 2. Two of the cases are discussed below. 
 

Case 1 

For the actual values of parameters { }
821

R,,R,R K  indicated in column 2 of Table 1 the 

proposed method gives two sets of the resistances which satisfy the test, shown in columns 3 

and 4. To find the correct set of the resistances we apply another test assuming ( )
V12

1
=

in
v , 

( )
V7

2
=

in
v . As a result, the method gives two sets indicated in columns 5 and 6. The common 

part of the sets provided by both tests is the actual one. 

 

Table 1. Results of Variant 1, Case 1. 
 

Parameters Actual values Results (test 1) Results (test 2) 

Set 1 Set 2 Set 1 Set 2 

R1 [kΩ] 12 (+33.3%) 12.00 12.00 12.00 12.00 

R2 [kΩ] 4 (-20%) 4.00 3.89 4.00 3.89 

R3 [kΩ] 1 (+100%) 1.00 0.60 1.00 0.60 

R4   [Ω] 220 (+46.7%) 220.00 220.00 220.00 220.00 

R5   [Ω] 700 (-30.0%) 700.00 700.00 700.00 700.00 

R6   [Ω] 70 (-12.5%) 70.13 35.76 70.38 35.37 

R7 [kΩ] 5.7 (-5.0%) 5.69 57.15 5.67 71.38 

R8 [kΩ] 2.7 (-10.0%) 2.70 22.04 2.70 26.79 

 

Case 2 

The resistances are as follows: ( ){ 3.0% kΩ279
1

+= .R , ( )1.6%- kΩ924
2

.R = , 

( )2.4% Ω488
3

−=R , ( )2.0% Ω147
4

−=R , ( )2.0% Ω1020
5

+=R , ( )1.2% Ω81
6

+=R , 

( )2.8%- kΩ835
7

.R = , ( )}30% kΩ93
8

+= .R . The proposed method gives one (correct) set of 
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resistances which satisfy the test: {  kΩ279
1

.R = ,  kΩ924
2

.R = ,  Ω488
3
=R , 

 Ω00147
4

.R = ,  Ω1020
5
=R ,  Ω9180

6
.R = ,  kΩ845

7
.R = , }kΩ903

8
.R = .  

 

In both cases the Newton-Raphson algorithm fails, when applied directly to the system (16) 

consisting of all 22 equations.  
 

The results of 25 diagnoses, performed using the proposed approach, are as follows. The 

percentage of the correct results equals to %92 ; in %32  we obtain only one correct set, 

whereas in 60%  - the correct set and one or two virtual ones. In %8  the method diverges. 

The average time of one diagnosis is 0.8s. The Newton-Raphson algorithm applied directly to 

the system consisting of all 22 equations fails in 23 out of 25 cases.  

 

Variant 2 

Let the set of seven resistors { }
8654321

R,R,R,R,R,R,R , and 
F
β  of one transistor be 

considered as potentially faulty. In this case 81=+r , 3=m , 1=k . Hence, ( )kmr +=+ 21 . 

The representation (16) consists of 22 equations with 14 unknown node voltages and 81=+r  

parameters. 
 

Case 1 

The actual values of  parameters are shown in column 2 of Table 2. For the same test as in 

Variant 1 the procedure described in Section 2 gives two sets of parameters that meet the test, 

indicated in column 3 and 4. Using another test with ( )
V12

1
=

in
v , ( )

V7
2
=

in
v and choosing the 

common set we find the actual set of parameters. 

 

Table 2. Results of Variant 2, Case 1. 
 

Parameters Actual values Results 

Set 1 Set 2 

R1 [kΩ] 9.36 (+4.0%) 9.36 2.95 

R2 [kΩ] 4.75 (-5.0%) 4.75 529.42 

R3   [Ω] 650 (+30%) 649.97 484.81 

R4   [Ω] 157 (+4.7%) 157.00 50.39 

R5 [kΩ] 1.03 (+3.0%) 1.03 234.00 

R6   [Ω] 100 (+20.0%) 100.00 125.85 

R8 [kΩ] 4.0 (+33.3%) 4.00 4.32 
( )1
F
β  10 (-90.0%) 10.00 35.52 

 

For the sets: ( ){ }i
F

,R,R,R,R,R,R,R β
8654321

, 65432 ,,,,i = , the method either is divergent or 

leads to an incorrect solution (e.g. containing negative values of some parameters). Thus, we 

obtain a unique (correct) set of the parameters which meet the test. 

 

Case 2 

The actual values of  parameters are indicated in column 2 of Table 3. Applying the procedure 

described in Section 2 we obtain three sets of parameters which meet the test having equal 

rights; they are shown in columns 3, 4, and 5. 
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Table 3. Results of Variant 2, Case 2. 
 

Parameters Actual values 
Results 

Set 1 Set 2 Set 3 

R1 [kΩ] 8.1 (-10.0%) 8.10 9.43 9.68 

R2 [kΩ] 4.7 (-6.0%) 4.70 4.32 4.38 

R3 [kΩ] 520 (+4.0%) 520.00 519.22 527.96 

R4   [Ω] 140 (-6.7%) 140.00 139.73 138.30 

R5 [kΩ] 1.2 (+20.0%) 1.20 1.18 1.14 

R6   [Ω] 85 (+6.2%) 85.00 85.09 66.51 

R8 [kΩ] 3.3 (+10.0%) 3.30 3.30 3.24 

F
β  ( )

10
2
=

F
β  (-90.0%) ( )

10
2
=

F
β .00 ( )

5999
1

.

F
=β  ( )

673
3

.

F
=β  

 

In all the cases the Newton-Raphson algorithm fails, when applied directly to the system (16) 

consisting of all 22 equations. 

 

We considered 36 different sets of resistances and beta forward factors and every time applied 

the proposed diagnostic method. The results are as follows. The percentage of the correct 

results equals to %80 ; in 0%2  we obtain only one correct set, whereas in 60%  - the correct 

set and one or more (up to five) virtual ones. In %20  the method diverges. The average time 

of one diagnosis, comprising 6 sets of  parameters (including the same resistors and different 

F
β ), is 2.5s. 

If more than one set of the parameters values are obtained, an additional test should be 

performed and the common set selected. 

 

4. Conclusion 

 

The paper deals with the multiple soft fault diagnosis of analog circuits containing bipolar 

transistors. This class of circuits is difficult to diagnosis due to strong nonlinearities of BJT 

model. A set of resistors and one transistor are considered as potentially faulty. The proposed 

block relaxation method for solving nonlinear equations describing the circuit with different 

assignments of the unknown variables to the blocks, combined with the Newton-Raphson 

algorithm, is efficient. It is capable of finding one or several sets of the parameters values 

which meet the diagnostic test. The method is effective, fast and does not require much 

computing power. A desirable attribute of the proposed approach is obtaining values of all 

elements considered as possible faulty, in the circuits with a rather small number of nodes 

accessible for measurement. The drawbacks of the proposed method are as follows. Only 

single transistor can be considered as potentially faulty in one diagnostic procedure. The 

method cannot be directly extended to CMOS circuits. 
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