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Abstract 

A traditional frequency analysis is not appropriate for observation of properties of non-stationary signals. This 

stems from the fact that the time resolution is not defined in the Fourier spectrum. Thus, there is a need for methods 

implementing joint time-frequency analysis (t/f) algorithms. Practical aspects of some representative methods of 

time-frequency analysis, including Short Time Fourier Transform, Gabor Transform, Wigner-Ville Transform and 

Cone-Shaped Transform are described in this paper. Unfortunately, there is no correlation between the width of 

the time-frequency window and its frequency content in the t/f analysis. This property is not valid in the case of a 

wavelet transform. A wavelet is a wave-like oscillation, which forms its own “wavelet window”. Compression of 

the wavelet narrows the window, and vice versa. Individual wavelet functions are well localized in time and 

simultaneously in scale (the equivalent of frequency). The wavelet analysis owes its effectiveness to the pyramid 

algorithm described by Mallat, which enables fast decomposition of a signal into wavelet components. 
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1. Introduction 

 

The instrumentation and measurement (I&M) is used in many different fields of technology. 

It should keep up with the progress in many other modern and fast growing areas. It seems that 

the most significant among them are information and communication technologies (ICT) and 

digital signal processing (DSP). Computer engineering with its latest advances enables practical 

use of advanced signal processing algorithms in real time. 

It should be noted that the traditional frequency analysis is not suitable for observing the 

properties of non-stationary signals. In that case, a joint analysis in time and frequency is 

required (JFTA - Joint Time-Frequency Analysis). The time-frequency (t/f) analysis enables 

simultaneous observation of signal properties both in time and in frequency domains. The main 

shortcoming of the t/f analysis is that there is no correlation between the width of the time-

frequency window and its frequency content. Furthermore, this content is always fixed in terms 

of a signal shape. It is a sinewave [1−2]. 

The wavelet analysis is devoided of both of these drawbacks. Unlike in the case of a sine 

waveform, which define the basis for the Fourier transform, the set of wavelet forms is 

unlimited. Which wavelet is the best, depends on intended application. The most specific 

feature of the wavelet transform is that individual wavelet functions are well localized in time 

(or space - for images) and in scale (compressing or stretching a time-limited wavelet) [3]. 

Wavelets can have a different time compactness as well as shape smoothness [4]. The resulting 

ability of wavelets to describe a "signal with discontinuities", with a limited number of 
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coefficients and with good location in time, is their most meaningful advantage over the time-

frequency transforms. 

Wavelets owe their remarkable performance, and also their popularity in the signal analysis, 

to an algorithm described by Mallat in 1989, called the Mallat pyramid [5]. This algorithm is 

used to obtain the decomposition of the measured signal into wavelet components, using so 

called quadrature mirror filters. 

 

2. Short-Time Fourier Transform 

 

The Short-Time Fourier Transform (STFT) is a typical algorithm of the time-frequency (t/f) 

analysis [1,6,7]. It allows extracting the information of how the signal spectrum changes over 

time. The analyzed signal, with the help of a sliding time window ϕ(t), is divided into blocks 

(which may overlap). The effect of the sliding time window, with its location described by the 

τ parameter, is described by the formula (1). 

 

)()()( τϕ
τ

−= ttxtx .         (1) 

 

Each signal block is subject to the spectral analysis independently. As in the conventional 

Fourier analysis, time windows of different shapes are used to remove abrupt changes (cuts) of 

the signal at both ends of the block. Next, the spectral content of the signal is examined. 

Two basic normalized parameters are defined for time windows ϕ(t) [8]: the center (the 

center of gravity) ∇t and the radius (analog of width) ∆t, both measured in terms of the mean 

square value. In a similar way, the parameters of the window are defined in the frequency domain 

- ∇ω and ∆ω, respectively. 

The product of the normalized width of the window in the time domain and the normalized 

width of the window in the frequency domain is constant for a given window. Thus, improving 

the resolution in the time domain degrades the resolution in the frequency domain, and vice 

versa. So, selecting a window width is always a compromise.  

According to the uncertainty principle [9]: 
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For example, for a rectangular window (with the width of 2ε) parameters ∆t and ∆ω  take the 

values: 

∞=∆=∆
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,
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So, it is the ideal time window and the worst, unacceptable frequency window for the t/f 

analysis. 

In light of the foregoing, STFT of the signal x(t), with respect to the window ϕ(t) put in the 

position (τ,ξ) in the t/f plane, where τ - denotes the position on time axis, and ξ - on ω axis, can 

be defined as: 

∫
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In the traditional Fourier transform, the calculation of a single component requires 

knowledge of the function x(t) along the entire processed block of signal. In the case of STFT, 

knowledge of x(t) is required only within the range specified by the position of the window ϕ(t-

τ).  
The interpretation of the t/f window position on the t/f plane is shown in Fig. 1. 
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Fig. 1. A window’s location across the t/f plane. 
 

Traditionally, a shifted window ϕ(t-τ) is considered together with x(t) - visualized in {} 

braces in the expression (5). The product x(t)ϕ(t-τ), as a windowed signal, is subject to the 

traditional Fourier transform: 
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But, if the factor ϕ(t-τ) is considered together with e-jξt instead of x(t), like in the expression 

(6) - visualized in {} braces, it can be said that the sliding window ϕ(t-τ) is used to modulate 

the amplitude of the sine wave ejξt. Then, the expression describing STFT looks like: 
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And the function: 
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behaves like a package of sine waves oscillating inside the window ϕ(t). This package may be 

considered as a set of new basis functions for STFT, which are limited in time as well as in 

frequency. This approach allows to treat STFT as an algorithm that decomposes x(t) into the 

components of the base defined by equation (7). 

The discrete version of the equation (4) becomes (8): 
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where Tp is the sampling period. For normalization, when Tp=1: 
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Based on STFT, a spectrogram may be determined which is a signal energy representation: 

SPEC [Xn,k]=| Xn,k |
2. 

Fig. 2 shows an example of the STFT analysis (with two different widths of the time 

window). The examined signal, sampled with the frequency of 1000Hz, consists of two parts 

(time intervals: 0.10-0.15s and 0.25-0.58s). The first part is a sinusoidal signal with the 

frequency of 312Hz, the second part is a superposition of two signals: the sine-wave with the 

frequency of 84Hz and the sine-wave with the frequency modulated linearly in the range of 

180-400Hz. The original waveform is shown at the bottom of each part. The right part of the 

illustrations shows the power spectrum of the signal. 

 

 
 

 

 

Fig. 2. A practical example of the STFT decomposition for a narrow time window (top part: Hanning,                         

32 samples) and a wide time window (bottom part: Hanning, 128 samples). 

 

Analyzing the traditional signal spectrum it may be determined which frequency components 

of the signal are present, but nothing could be said about the moments of their presence. It is 

also difficult to determine the nature of signal changes in frequency. However, by observing 
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the signal decomposition in the t/f plane, we can determine both the moments of occurrence of 

a specific signal components and the nature of their changes in frequency. 

Unfortunately, STFT signal decomposition in time and frequency can be determined only 

with a certain limited precision, defined by the window parameters. Usage of a narrow time 

window (and thus wide in the frequency domain) results in a bad location in the frequency 

domain and a relatively good resolution in time (Fig. 2 top). The use of a wide time window 

(Fig. 2 bottom) gives a good location in frequency and poor location in time. 

 

3. Gabor transform 

 

There is a special case of the t/f analysis (10), in which the time window has a specific, 

Gaussian shape. It turns out that the spectrum of this window also has the Gaussian shape. 
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This case meets the conditions of a time-frequency window with the following normalized 

parameters: the time window: α∆ ==∇
tt

,0 , the frequency window: 
α

∆
ωω

2

1
,0 ==∇ . 

That window is called the Gabor window after its inventor. The measure of quality of a 

Gabor window is the product of: 
2

1
=∆∆
ωt

, which reaches the lower limit of the uncertainty 

principle. The analytical notation of the Gabor transform is presented by (11): 
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For the purpose of numerical calculations a concept of the discrete Gabor transform defined 

for a finite set of points in the t/f plane was introduced. A discretized version of the Gabor 

transform, for a continuous signal x(t), in terms of the window position across the t/f plane, 

(when changes: τ → τn, ξ → ξk take place) is described by (12): 
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A continuous signal x(t) may be reconstructed according to the equation known as the Gabor 

decomposition, similar to the Fourier series [9]: 
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In this case, there is a package of sine-waves modulated by the Gaussian window g(t). That 

package is called the Gabor decomposition base, which due to the Gaussian shape of the 

window with a minimal size across the t/f plane, is considered to be optimal in terms of signal 

decomposition and reconstruction.  

 

A practical algorithm for computing the discrete Gabor decomposition has the form [10]: 
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Gabor decomposition coefficients Gn,k are determined by the STFT algorithm according to the 

equation [10]: 
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Fig. 3 shows the results of the t/f analysis using the Gabor transform of the same signal 

described above for the STFT decomposition. 

 

 
 

Fig. 3. The result of the time-frequency analysis using the Gabor transform (Gaussian window, 64 samples). 

 

4. Wigner-Ville Transform 

The transforms described above do not provide direct information about the signal energy 

but only about its amplitude. Of course, there is a possibility of determining the energy spectrum 

by simply squaring obtained spectral components. However, it would be more convenient to 

define the transform as: 
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Next, rather than to calculate the value of energy at a certain point in time, it would be better 

to calculate it in a finite, symmetrical time interval (t-τ/2,t+τ/2), placed in the neighborhood of 

t moment. This requirement formed the basis of the definition of the Wigner-Ville transform 

(17). 
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It should be stressed that the Wigner-Ville transform describes a non-linear signal 

decomposition in the t/f plane. 

After discretization, the equation (17) takes the form: 
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A practical method of calculating the Wigner-Ville transform for a discrete signal x[n] is 

described by the formula (19) [10]: 
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where ℜ[n,i] denotes a correlation function described as: ℜ[n,i]=z[n+i]z*[n-i], and z[n] is the 

signal interpolated from x[n]. The transform may also be calculated from the formula (20) [8]: 
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where: ℑ[n,i]=X[n+i]X*[n-i] and X[n] means the Fourier transform of the signal x[n]. Fig. 4 

presents results of analyzing the same above-mentioned signal using the Wigner-Ville 

transform. 

The Wigner-Ville transform has a very high time-frequency resolution. However, for 

complicated signals, there are clearly visible parasitic interferences between original frequency 

components (elements 1,2,3 in Fig. 4).  

 

 
 

Fig. 4. An example of the t/f analysis using the Wigner-Ville transform (with interferences). 

 

The Wigner-Ville representation is not linear, so the spectrum of two combined signals is 

not the sum of their separate spectra, but includes also a cross-spectrum. In a sense, they 

represent the correlations between each pair of signal components. The individual elements of 

the signal are described by specifying their duration in time and their frequency range. 
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Thus, the elements (0.10÷0.15s, 312Hz) and (0.25÷0.58s, 180÷400Hz) generate the 

interference numbered 1. Elements (0.25÷0.58s, 180÷400Hz) and (0.25÷0.58s, 84Hz) generate 

the interference numbered 2, and finally elements (0.10÷0.15s, 312Hz) and (0.25÷0.58s, 84Hz) 

generate the interference denoted by 3. Although the amplitudes of the interferences may reach 

high values, their mean value is usually limited. 

 

5. Choi-Williams transform 
 

An intuitive method of reducing unwanted interferences in the Wigner-Ville transform is to 

add a kind of filter to it. The result is described by the equation [10]: 
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where K(m,i) is a kernel function. Each transform calculated according to the above formula, 

belongs to the so called Cohen's class. And when the function K(m,i) becomes: 
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it defines the so called Choi-Williams (CW) transform. The CW transform enables to reduce 

parasitic interferences while maintaining many useful features of the Wigner-Ville transform.  

Fig. 5 shows an analysis of the aforementioned signal using the Choi-Williams transform. 

 

 
 

Fig. 5. An illustration of the t/f analysis using the Choi-Williams transform. 
 

This transform can significantly suppress interferences occurring between signal 

components at different time moments and different frequencies (the case 3 in Fig. 4). 

Interference between signal components occurring at the same moments or having the same 

frequency components remain at the same level as for the Wigner-Ville transform. The speed 

of calculations for the Choi-Williams transform is relatively small. 
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6. Cone-shaped transform 
 

A cone-shaped transform is another approach to reduce the parasitic interferences. Here, in 

turn, the kernel function is defined as [10]: 
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The constant c is usually taken as 500. The level of interferences can be regulated by 

changing the α parameter. Unfortunately, reduction of interferences is associated with 

deterioration of the t/f resolution. 

Fig. 6 presents the results of analyzing the same signal with the Cone-shaped transform. This 

transform also effectively suppresses type 3 interferences from Fig. 4. There is, however, a 

quite strong interference between elements of the same frequency or time (number 1 and 2). 

 

 
 

Fig. 6. An illustration of the t/f analysis using the Cone-shaped transform. 

 
 

7. Continuous wavelet transform 

 

A continuous wavelet transform (CWT) of a function x(t)∈ L2(ℜ) and a wavelet ψ(t) is 

defined as [11,12]: 
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where L2(ℜ) is a one-dimensional vector space of functions which are measurable and 

integrable in a sense of the mean square, σ  is a scale parameter and τ  a shift. Strictly speaking, 
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the continuous wavelet transform is described not in the time-frequency (t/f) but in the time-

scale (t/s) space. However, after using a proper transformation the scale can be converted to 

frequency (1/σ reflects the frequency). The τ parameter represents the location of the wavelet 

along the time axis. 

In order to be a wavelet and also to enable reconstruction of x(t), the function ψ (t) must be 

limited in time and satisfy the condition (26) [13,14,15]. In simple terms we can say that the 

wavelet must oscillate and fade. 
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A wavelet can be considered as a window function similarly to the t/f window in the   STFT. 

It means that the t/f window can be replaced by the wavelet (let’s refer to it as the wavelet 

window) ψ(t) [16]. So, it is possible to define two basic normalized parameters in the time 

domain: the center ∇t (the center of gravity) and the radius ∆t (analog value of the width), both 

measured in terms of the mean square value. The parameters of the window in the frequency 

domain are defined - ∇ω and ∆ω, respectively. The transform W(τ,σ) describes the properties of 

x(t) observed in the t/f window with the ends [9]: 

.)(
1

),(
1

],[ 





∆+∇∆−∇×∆++∇∆−+∇
ωωωω

σσ

στσστσ
tttt

  (27) 

It should be noted that the product of  window radii in the time and frequency domains is 

constant over the entire t/s plane [9]: 
ωω

σ

σ ∆∆=∆∆
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4
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2 .      

The location of a time-frequency window of the wavelet transform on the t/f plane (for 

convenient comparison with the t/f analysis) is shown in Fig. 7. 
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Fig. 7. The location of a wavelet window across the t/f plane. 

 

It shows clearly that the shape of a wavelet window, which determines the analysis 

resolution, is a function of the window position on the t/s plane, in contrast to STFT, where the 

t/f resolution is constant across the entire t/f plane. 
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The concept of a continuous wavelet transform (CWT) requires the continuous scale and 

continuous shift in time. Of course, in the context of discrete signals the continuity means 

changes of single signal samples. 

It should be noted that a higher scale of the wavelet analysis is equivalent to a more stretched 

wavelet. The more stretched a wavelet (higher scale), the larger section of the signal to which 

it is being compared and the coarser signal features are described. 

Rather than being a shortcoming of the method, the fact that the wavelet analysis does not 

map a signal’s features in the t/f but in the t/s plane, is its strength. The method proves to be a 

natural way to describe many physical phenomena perceived by human senses. 

 

8. Discrete Wavelet Transform 

 

In order to define a Discrete Wavelet Transform (DWT) the following assumptions are 

made: 

,22 l
ss −−

== τσ       (28) 

where l describes the shifting, and s is the scale factor (l = 0,1,2, ...    s = 0,1,2, ...). The above 

formulas combined with the assumption of discretization of x(t), produce a new, discrete form 

of the wavelet transform [9]: 
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It is worth bearing in mind that the wavelet transform does not satisfy the shift invariance 

condition. Furthermore, the time shift of a function xm(t)=x(t-τm) comes in a form of the formula 

(30) [9]. 
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where indexes ψ and x have a symbolic meaning – the wavelet ψ(t) is used for decomposition 

of the signal x(t). 

At this point, one can formulate the expression of a wavelet series, which holds for any 

function x(t)∈ L2(ℜ) 
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If {ψl,s(t)} forms an orthonormal basis in L2(ℜ) space, then similarly as in the case of a Fourier 

series [5]: 
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The wavelet series is obtained by sampling a continuous wavelet transform across the t/s plane, 

at certain dyadic points (l2-s, 2-s). Should the base {ψl,s(t)} not satisfy the orthonormal condition, 
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the analysis becomes more difficult. If that is the case, the so-called dual wavelets as well as 

the formula for bases {ψd
l,s(t)} need to be defined [17]. 

 

9. Mallat’s wavelet decomposition algorithm - Mallat pyramid 

A very effective method of implementing the DWT algorithm based on filtering was 

described in 1989 by Mallat [5]. It refers to the method of “encoding in subbands”, known 

earlier from the frequency analysis. Two new concepts were introduced to the wavelet analysis: 

an approximation and a detail. The term “approximation” describes the low-frequency signal 

components. The “detail” describes the high frequency components. The aforementioned 

filtering process includes two filters: a low-pass (G) filter and a high-pass (H) one. The low-

pass filter separates the approximation of the analyzed signal and the high-pass one the detail 

of the signal. The complete process of decomposition involves a number of such modules 

forming the so called wavelet decomposition tree. An example of such a tree is given in Fig. 8. 
 

 
 

Fig. 8. A wavelet decomposition tree: a0 - the original signal, di – the detail in the i-th scale, ai – the 

approximation in the i-th scale. 

 

According to Fig. 8, the original signal a0 passes through a pair of complementary filters 

which divide it into two components: a1 (approximation) and d1 (detail). 

An example of a one-level wavelet decomposition of a real measurement signal is given in 

Fig. 9. 

 
 

Fig. 9. The effect of a one-level wavelet decomposition. 

 

From the metrological point of view, one could narrow down the discussion about wavelets 

to the decomposition process, also known as the analysis process. However, it is often necessary 
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to reconstruct the original signal, as in the signal compression. This process is referred to as a 

signal reconstruction or synthesis. 

The original digital signal can be reconstructed using an algorithm similar to the pyramid 

analysis. A single step of the reconstruction process is illustrated in Fig. 10. The original digital 

signal with a resolution of 1, is obtained by repeating this procedure J times, where J is the 

number of levels of the wavelet decomposition. 

 

 
 

Fig. 10.  Reconstruction of the digital approximation of ��� from a1 in a lower resolution and the detail d1. 
 

Filters used for the wavelet decomposition are determined by a chosen wavelet (its shape). 

Strictly speaking, the shape of a wavelet ψ(t) is closely related to the high-pass filter that 

extracts details in the wavelet decomposition. 

There is one more, very characteristic function, associated with wavelet sets. It is a so called 

scaling function, denoted by ϕ(t). Its shape is related to the transfer function of low-pass filter 

responsible for separation of approximation. The shape of the scaling function is similar to the 

shape of the corresponding wavelet, except that it contains a DC component. The scaling 

function is defined by a recursive mathematical notation, using the dilation equation [5]:  
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In the context of the scaling function, a wavelet is defined by the same dilation equation, but 

described by a different set of coefficients: 
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The coefficients {hk} and {gk} define a couple of quadrature mirror filters. In the case of 

orthonormal base they are related to the mathematical formula gk=(-1)khN-k. 
 

10. Examples of Wavelets 
 

There is an almost unlimited number of valid wavelets which could be created, as well as so 

called filter banks [18]. Finding the best one depends on intended implementation. The names 

of wavelets usually come from their shapes or the names of people who used them for the first 

time and published the results. Some of wavelet names are: Daubechies, Haar, Coiflets, Symlet, 

Spline, Battle-Lemarie. 

Some properties of wavelets can affect the quality of analysis. These properties are [19]: 

• the operating range of the scaling function, the mother wavelet and their Fourier 

transforms that determines location properties in time and frequency domains; 

• the symmetry - which is the condition for avoiding a phase distortion; 

• the number of statistical moments identically equal to zero - which determines the 

quality of potential signal compression; 

• the regularity - which determines to some extent a smooth representation of the data; 

• the orthogonality or bi-orthogonality; 
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• the existence of an explicit description; 

• the existence of a scaling function. 

The variety of wavelet functions is very high. For example, Daubechies wavelet functions 

do not have explicit description. The basis for their definition is a scaling function ϕ(t) and a 

corresponding mother wavelet function ψ(t).  

Daubechies wavelet functions of N-th order have N vanishing moments (equal to zero). The 

support of the function is equal to (2N-1) unbalanced orthogonal functions. Examples of 

Daubechies wavelet functions and their spectra are shown in Fig. 11 [20,21]. 

 

 
 

 
 

Fig. 11. Two examples of wavelets with scaling functions and their spectra  

(2nd order Daubechies – db2, 10th order Daubechies – db10). 

  

Coiflets were also created by Ingrid Daubechies. They are also defined by a recursive 

formula and do not have an explicit description. If N is an order of a wavelet function ψ, the 

number of vanishing moments is equal to 2N, while the number of vanishing moments of the 

scaling function ϕ is equal to 2N-1. Coiflets have the operating range equal to 6N-1 and are 

much more symmetrical than Daubechies wavelets. They are also orthogonal. 

The wavelet representation can be easily extended to the n-dimensional space (n>1). In 

practice, the two-dimensional space is in widespread use, for example for image processing. A 

special case of a two-dimensional multi-resolution approximation is the separable multi-

resolution approximation. It has been shown that in this case the scaling function ϕ(x,y) can be 

written in the form ϕ(x,y)=ϕ(x)ϕ(y), where ϕ(x) and ϕ(y) are one-dimensional scaling functions.  
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11. Applications of the time-frequency and wavelet analysis  
 

In general, signal representations in time-frequency and time-scale domains are most often 

used in the vibro-acoustics, speech signal analysis, biomedical signal (ECG, EEG) analysis,  

power network analysis, pulse echography and telecommunications [22‒24]. In vibro-acoustics 

the t/f analysis provides information on the level of noise and possible defects of machines. In 

the case of a speech signal, it gives the ability to recognize individual features of a speaker or 

even the content of speech. For biomedical signals, the t/f analysis enables detection of certain 

signal features useful in medical diagnosis.  It must be remembered that the choice of the type 

of t/f representation can have a significant impact on the shape of the spectrum obtained and 

the possibility of its interpretation. Each representation has its own advantages and 

disadvantages in relation to a specific application [25, 26]. 

The t/f algorithms were implemented in - designed by the authors – a virtual instrument for 

the time-frequency analysis of an arbitrary one-dimensional signal. The virtual instrument 

consists of a PC, a data acquisition board (DAQ) and a LabWindows/CVI programming 

environment. Examined signals may be read directly by the DAQ board or from a file in ASCII 

format. Prior to the time-frequency analysis it is possible to remove a trend from the examined 

signal. This allows us to better visualize the spectrogram of a signal without a DC or low 

frequency trend. 

The designed virtual instrument has been used to analyze the speech and biomedical signals, 

such as ECG and phonocardiograms. An example of the time-frequency analysis of a speech 

signal is presented in Fig. 12 and 13. 

 

 
 

Fig. 12.  The t/f decomposition of a speech signal – the linear scale. 
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Fig. 13.  The t/f decomposition of a speech signal – the logarithmic scale. 

 

The spectrogram observation allows to illustrate the mechanism of human speech. The 

spectrogram presented in Fig. 12 shows the signal energy as a function of time and frequency 

in the linear scale. The diagram in the top right corner shows the power spectrum of the signal 

in the linear scale. It's obvious that it carries much less information than the spectrogram. The 

spectrogram plotted in the logarithmic scale (Fig. 13) enables to observe large differences 

between amplitudes of individual frequency components. 

Another important application of the t/f analysis is evaluation of the power quality. The 

effect of analyzing a power network signal (50 Hz) disturbed with 700Hz oscillations is given 

in Fig. 14. 

 
 

Fig. 14. The effect of analyzing a power network signal (50 Hz) disturbed with 700Hz oscillations. 
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The next example (Fig. 15) contains a disturbed (by breathing) ECG signal. The Daubechies 

wavelet of the 4th order and the five-level decomposition were used. The details reflect clearly 

extracted fragments of signal corresponding to the wavelet at the appropriate scale. 

 

 
 

Fig. 15. The discrete wavelet transform analysis: the ECG signal (from the top: the signal, the approximation,  

the details in the scales of 5,4,3, 2 and 1). 

 

In the case of an ECG, the most interesting results are observed in the scales 1 and 2. This 

type of analysis may be used to precisely determine the location of some characteristic points 

of an ECG (QRS) signal, which are important from the medical diagnosis point of view. 

 

12. Summary  
 

For purposes of the analysis of non-stationary signals, it is necessary to present the frequency 

characteristics as a function of time. Roughly, this is done by calculating the instantaneous 

signal spectra on the basis of its fragments, designated by observation of the time window, 

sliding along the signal. In general, time-frequency methods allow to explore the properties of 

the signal in the joint time and frequency domains. The family of time-frequency 

representations of non-stationary signals includes Short-Time Fourier transform, Gabor 

transform, Wigner-Ville, Choi-Williams, Cone-shaped, and many others.  

Time-frequency methods of signal analysis are widely used in practice. The most popular is 

processing of speech signals, biomedical signals (EEG, ECG) [27], seismic signals and 

electrical power network signals [28]. The t/f analysis also plays a very important role in the 

vibration analysis of machine testing. The methods give a lot more interesting results than the 

use of a traditional spectral analysis. Very interesting effects may also be observed in the case 

of highly noisy signals. Even signals hidden under the background noise can leave clear marks 

in a spectrogram. 

The wavelet analysis was originally designed as a tool that could eliminate the disadvantages 

of both traditional and Short-Time Fourier spectrum analysis. The goal was achieved: the t/f 

resolution changes over a single iteration of the analysis. Owing to that fact the wavelet analysis 

has an extremely wide range of applications. However, thinking that the only advances in the 

wavelet analysis include just refreshing and unification of already known theories and 

techniques is an ill-founded misconception. There are still vast ranges of new applications and 

discoveries in this field waiting to be made.  
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