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Abstract 

Correct incipient identification of an analog circuit fault is conducive to the health of the analog circuit, yet very 

difficult. In this paper, a novel approach to analog circuit incipient fault identification is presented. Time 

responses are acquired by sampling outputs of the circuits under test, and then the responses are decomposed by 

the wavelet transform in order to generate energy features. Afterwards, lower-dimensional features are produced 

through the kernel entropy component analysis as samples for training and testing a one-against-one least 

squares support vector machine. Simulations of the incipient fault diagnosis for a Sallen-Key band-pass filter and 

a two-stage four-op-amp bi-quad low-pass filter demonstrate the diagnosing procedure of the proposed approach, 

and also reveal that the proposed approach has higher diagnosis accuracy than the referenced methods. 

Keywords: analog circuits, incipient fault diagnosis, wavelet transform, kernel entropy component analysis, least 

squares support vector machine. 
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1. Introduction 

 

Generally, about 20% of an electronic system is analog, but about 80% of faults occur in 
this segment. The analog circuit fault diagnosis plays an important role in the preventive 

maintenance of electronic systems. Nevertheless, it falls far behind the well investigated 
digital circuit fault diagnosis, because of component tolerance effects, insufficient information, 

and nonlinearity of analog circuits. 
During the recent few years, there has been useful research into the analog circuit fault 

diagnosis at board, system, and chip levels [1−16], [18, 19], [21−23]. The feature extraction 
and classifier selection are two main problems which need to be addressed in the analog 
circuit fault diagnosis. The feature extraction is the first problem, which strongly affects the 

successive classifier’s efficiency. The effective features can reflect significant differences 
among fault classes, which contribute to a high-performance classifier. In the diagnosis 
performed in [2] impulse responses of the circuits under test (CUTs) were applied directly to 

the classifier, which caused a tremendous computing workload. The wavelet transform was 

introduced to the diagnosis [3−9], and coefficients [3−7] and coefficient energies [8, 9] were 
generated as features. The principal component analysis (PCA) [5], kernel principal 

component analysis (KPCA) [10], linear discriminant analysis (LDA) [11] and kernel linear 
discriminant analysis (KLDA) [12] were proposed to reduce the dimension of 

high-dimensional features for the purpose of simplifying the workload, and positive results 
were obtained. With regard to the successive classifier, an artificial neural network has been 
normally and widely used, for it can implement the fault diagnosis by using the extracted 

CUTs’ performance data [13−16]. However, it has some disadvantages, as: failing to obtain 
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local optimal solution, a low convergence rate, and poor generalization. The support vector 

machine (SVM) [17] accounts for the trade-off between learning ability and generalizing 
ability by minimizing the structure risk, and has been used to the analog circuit fault diagnosis 
[18, 19]. The least squares support vector machine (LSSVM) enhances the SVM formulation 

by adopting a least-squares linear system as the loss function [20], which can reduce the 
computation complexity and improve the performance. Therefore, LSSVM is considered to be 

an effective tool for the analog circuit fault diagnosis in many recent works [21−23]. 

For the purpose of monitoring the performance degradation and predicting failures of 
analog circuits, it is very important to identify faults at their incipient stage. However, most of 
the above works focus on the analog circuit fault diagnosis, rather than the incipient fault 

diagnosis. The reason is that overlapping different fault classes easily occurs, since a 
difference between incipient fault and nominal values of each component is small, which 

makes distinguishing various incipient fault classes difficult.  
The Kernel entropy component analysis (KECA) is a spectral method based on a kernel 

similarity matrix and manages to maintain the maximum Renyi entropy of input space data set 
[24]. In this paper, a novel approach for the analog circuit incipient fault diagnosis based on 
KECA and one-against-one (OAO) LSSVM is presented. The wavelet transform is employed 

to process the measured impulse signals to produce energy features. KECA is used to reduce 
the dimension of energy features and to generate low-dimensional features as input data. 

Different incipient fault classes are classified by OAO LSSVM. Incipient fault diagnosis 
simulations of a Sallen-Key band-pass filter and two-stage four-op-amp bi-quad low-pass 
filter circuit have been carried out to demonstrate the proposed approach. In addition, KECA 

has been compared with KPCA in visualization effect of scatter plots, and also compared with 
PCA, KPCA and KLDA in the diagnosis simulation. 

The material in the paper is organized in the following order: Section 2 briefly describes 
the wavelet transform and generation of energy features. Section 3 introduces KECA. OAO 
LSSVM is presented in Section 4. Section 5 shows simulation results and their discussion. 

Finally, Section 6 contains the conclusions. 

 

2. Wavelet transform and generation of features 

 
The wavelet transform is an effective technique which has been widely used in signal 

processing [25]. It decomposes a signal f(x) into details and approximations.  

Let us assume that ( )xψ  is a mother wavelet defined as: 

                            
,

1
( ) ( )

a b

a

x b
x

a
ψ ψ=

−

,                          (1) 

where a is the scaling parameter and b is the translating parameter. 
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where c(a, b) refer to the wavelet coefficients of f(x).  

Let us assume that Z is a set of integers;{ }
Zk k

V
∈

 is the orthogonal multi-resolution analysis;

{ }
Zk k

W
∈

 is the associated wavelet space. The f(x) projection on Vk can be obtained by: 

                     
1 1

1 1, 1 1,
k k k

i i

V V W k k i k k i

i Z i Z

P f P f P f c dφ ψ
+ +

+ + + +

∈ ∈

= + = +∑ ∑ ,            (3) 

 



 

Metrol. Meas. Syst., Vol. XXII (2015), No. 2, pp. 251–262. 

where 
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refer to the f(x) projections on Vk+1 and Wk+1 at 2k+1 resolution, 

respectively; cik+1 and dik+1 denote the scaling and wavelet coefficients of f(x) at 2k+1 resolution, 

respectively; 
1k

φ
+
and 

1k
ψ

+
refer to the scaling and wavelet functions at 2k+1 resolution, 

respectively. Therefore, ck+1 and dk+1 represent the approximations and details which are the 
low-frequency and high-frequency components of f(x) at 2k+1 resolution, respectively. 
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The detail and approximation coefficients can be obtained from (3) and (4). Since the 
approximation coefficients can capture the basic structure of the signal f(x), the coefficient 
energies at various levels are obtained: 
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where i = 1,2,…u and u is the length of low-frequency component at 2k+1 resolution. For the 
sake of avoiding large dynamic ranges in one or more dimensions, the energies of detail 

coefficients at various levels are normalized, and then the energy features are generated. The 
Haar function has a regularity of zero and a compact support, so it is well suitable to extract 

features from signals characterized by swift variations and short durations. Hence, the Haar 
wavelet is used as the wavelet function in the work. 
 

3. KECA 

 

In order to simplify the workload, a dimension reduction approach needs to be used to 
reduce the dimension of energy features. Compared to the widely used KPCA [26], KECA is a 

novel technique in the dimension reduction field [27, 28]. It manages to maintain the 
maximum Renyi entropy of input space data set, and in contrast to KPCA maintains 
second-order statistics of data set maximally. Hence, KECA is employed to perform 

dimension reduction in the work. 
The Renyi quadratic entropy is defined as: 

                         2log( ) (x) xH p p d= − ∫ ,                            (6) 

where p(x) is the probability density function. Since logarithm is a monotonic function, the 
quantity is defined as: 

                            ( ) 2 (x) xV p p d= ∫ .                             (7) 

A Parzen window density estimator is deduced in order to estimate V(p) and H(p): 
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The sample mean approximation of the expectation operator is used: 
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where C is an N×1 vector of ones and K is an N×N kernel matrix which elements (u, u′) are 

equal to (x , x )
u u

k
σ ′

. On the basis of eigenvalues and eigenvectors of the kernel matrix, K is 

eigen-decomposed as: 
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where E is a matrix which columns are the eigenvectors
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matrix which elements are the eigenvalues. ˆ ( )V p  can be expressed as: 
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Each term T 2( )
i i i

λ µ= e C  contributes to the entropy estimate in the expression (11). The 

first h largest contribution eigenvalues and eigenvectors are selected, then 1/2 T

eca h h
φ = A E , and

T

eca ec e aa c
φ φ=K  can be acquired in the Mercer kernel space. This is the primary difference 

between KECA and KPCA. 
 

4. LSSVM 

 

LSSVM is an improvement of the standard SVM. In the algorithm, a quadratic 

programming problem is replaced by a linear set of equations to obtain the support vectors 
and a least-squares linear system is adopted as the loss function. A model is defined in the 

primal weight space: 
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 ( )ϕ ⋅ is in charge of mapping the input data to a high dimensional feature space. 

Considering the functional complexity and fitting error, the LSSVM optimization problem can 
be defined as: 
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where c and 
i
ξ  are the penalty parameter and random errors, respectively.  

The Lagrangian of (13) is given by: 
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where αi are Lagrange multipliers. The solution of (15) can be obtained by partially 

differentiating in regard to each variable: 
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After variables w and 
i
ξ  are eliminated, the equation can be substituted as a linear 

function group: 

                         

T
1

1

01 0

a YK c I

b

−     +
  =         

r

r

,                         (17) 

where
1

T
[ ,  . . . , ]

l
α α α= ; 

1

T
[ ,  . . . , ]

l
Y y y= ;  (x , )x

i j i j
K k= , and is a kernel function which 

follows the Mercer’s theory; 1 [1,  . . . ] ,1=

r

. 

The LSSVM model can be described as: 
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where ai and b are solutions to the linear system. 

LSSVM is originally designed as a binary classifier, but the analog circuit incipient fault 
diagnosis is a multi-class recognition problem. Hence, a one-against-one (OAO) LSSVM is 

selected to address the m-class problem in analog circuit fault diagnosis. OAO LSSVM needs 
to constitute m*(m−1)/2 binary LSSVM classifiers, and each classifier is trained using the 
data of one class as positive and the data of another class as negative. Max Wins algorithm is 

adopted to combine these results of classifiers and it explores the resultant class of the input 
data by choosing the class voted by the majority of LSSVM classifiers. 

 

5. Simulations and results 

 

The occurrence probability of a single incipient fault condition is significantly higher than 
a multiple incipient fault condition in the analog circuit incipient fault diagnosis, and the 

approach which is available for a single fault condition can also be applied to a multiple fault 
condition. Hence, the single incipient fault condition is taken for granted to demonstrate the 
proposed diagnosis approach. 

 

5.1. Simulation procedure and settings 

 

In this section, a Sallen-Key band-pass filter with 25 kHz central frequency and a 

two-stage four-op-amp bi-quad low-pass filter with 10 kHz central frequency are considered 
as exemplary circuits. A single 10 V pulse with 10 us duration is used as the input. Time 
responses are acquired by sampling the CUTs’ outputs. Let us assume the tolerances of 

resistors and capacitors are 5%. Generally, a component is considered to be faulty when its 

value has deviated from its nominal value by about 50% [2−16], [18, 19], [21−23], therefore a 
component with a 25% deviation from its nominal value is considered to indicate an incipient 

fault in the work. 100 output sample data for each fault class have been collected. Combining 
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effectiveness and efficiency, the 6-level Haar wavelet transform has been employed to 

decompose the time responses for the purpose of generating 6-dimensional energy features. 
Furthermore, the lower-dimensional data have been obtained as samples through KECA. For 
the sake of convenience and simplicity in visualization and comparison, the original 

6-dimensional features are reduced to 2-dimensional features. The first 50 sample data have 
been used to train OAO LSSVM to set up a classification model, whereas the rest 50 sample 

data have been applied to test the performance of the classification model. The simulation 
procedure is shown in Fig. 1. 

 

 
 

Fig. 1. The simulation procedure. 

 

5.2. Simulation results and analysis 

 
5.2.1. Example 1 − Sallen-Key band-pass filter 

 
A Sallen-Key band-pass filter circuit showed in Fig. 2 is used as the first exemplary circuit. 

The nominal value of each component is labeled in the figure. Through the component 
sensitivity analysis, R2, R3, C1 and C2 are considered to be the critical components, since 
they have a greater impact on the center frequency. Hence, the components are selected as 

experiment components. The faulty impulse responses are processed so as to form 9 fault 
classes, including R2↑, R2↓, R3↑, R3↓, C1↑, C1↓, C2↑, C2↓ and no fault (NF), where ↑ and ↓ 

refer to values higher and lower than the nominal one, respectively. The fault codes, fault 
classes, nominal and faulty component values are shown in Table 1. 

 

 
 

Fig. 2. The Sallen-Key band-pass filter circuit. 
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Table 1. The fault codes, fault classes, nominal and faulty component values for band-pass filter. 
 

Fault code Fault class Nominal Faulty value 

F0 NF − − 

F1 R2↑ 3kΩ 3.75kΩ 

F2 R2↓ 3kΩ 2.25kΩ 

F3 R3↑ 2kΩ 2.5kΩ 

F4 R3↓ 2kΩ 1.5kΩ 

F5 C1↑ 5nF 6.25nF 

F6 C1↓ 5nF 3.75nF 

F7 C2↑ 5nF 6.25nF 

F8 C2↓ 5nF 3.75nF 

 

 
 

Fig. 3. The scatter plots of fault classes characterized by 2-dimensional features of band-pass filter by KECA. 

 

 
 

Fig. 4. The scatter plots of fault classes characterized by 2-dimensional features of band-pass filter by KPCA. 

 
Subsequently, the first two most significant component vectors which contribute the most 

to the Renyi entropy are extracted by KECA. Fig. 3 reveals the scatter plots of fault classes 
characterized by 2-dimensional features. It is obvious that F0, F1, F2, F3, F4, F5, F6, F7 and 
F8 fault classes are distinct ambiguity groups. This manifests all fault classes are well 

separated by KECA. This is conducive to the classifications of OAO LSSVM. The first 50 
sample data from each fault class group have been randomly selected as training data in order 
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to train OAO LSSVM, and the rest 50 sample data have been used to test. The overall 

diagnosis accuracy in the simulation is 100%. 
In order to make a visualization comparison, KPCA is applied to reduce the dimension of 

the energy features. The first two principal component vectors with the first two large 

eigenvalues have been generated and the reduced 2-dimensional features are shown in Fig. 4. 
It is obvious that F1, F2, F3, F4 and F5 fault classes are distinct ambiguity groups in the 

figure. However, there is obvious overlapping for F0, F6, F7 and F8 fault classes. It can be 
observed from Figs. 3 and 4 that the KECA based groups of samples are clearer and much 
better from the classification point of view when compared to KPCA. This reveals that KECA 

can generate better extraction performance than KPCA. 

 
5.2.2. Example 2 − Two-stage four-op-amp bi-quad low-pass filter 

 
A two-stage four-op-amp bi-quad low-pass filter is shown in Fig. 5, and it is used as 

another exemplary circuit. The circuit is more complex, since it consists of 4 capacitors, 24 
resistors and 8 operational amplifiers. Each component value has been labeled in the figure. 
R4, R6, R7, R9, R18, C2 and C4 have been selected as the experiment components. 15 fault 

classes, including R4↑, R4↓, R6↑, R6↓, R7↑, R7↓, R9↑, R9↓, R18↑, R18↓, C2↑, C2↓, C4↑, 

C4↓ and NF, have been formed after the faulty impulse responses were processed. The fault 

codes, fault classes, nominal and faulty component values are shown in Table 2. 
 

 

Fig. 5. The two-stage four-op-amp bi-quad low-pass filter circuit. 

 
After acquiring the energy features, KECA is used to reduce the dimension of energy 

features to 2. Fig. 6 reveals the scatter plots of fault classes characterized by 2-dimensional 
features. It is obvious that F1, F4, F5, F6, F8, F10, F12 and F14 fault classes are distinct 
ambiguity groups, whereas F3, F7 and F11 fault classes are partially overlapping. However, it 

is difficult to distinguish whether F9 and F13 fault classes, as well as F0 and F2 fault classes 
are overlapping in the figure. Therefore, the scatter plots of F9, F13 and other fault classes, F0, 

F2 and other fault classes are magnified and shown in Fig. 7a and Fig. 7b, respectively. It is 
obvious that F0, F2, F9 and F13 fault classes are non-overlapping in the figure. Fig. 8 shows 
the scatter plots of fault classes characterized by 2-dimensional features by KPCA. F0, F1, F2, 

F4, F5, F6, F8, F9, F12, F13 and F14 fault classes are distinct ambiguity groups in the figure. 
Nevertheless, there is complete overlapping for F3, F7, F10 and F11 fault classes. This 
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example also reveals that KECA can generate better extraction performance than KPCA. 

 
Table 2. The fault codes, fault classes, nominal and faulty component values for low-pass filter. 

 

Fault code Fault class Nominal Faulty value 

F0 NF − − 

F1 R4↑ 1570Ω 1962Ω 

F2 R4↓ 1570Ω 1176Ω 

F3 R6↑ 10kΩ 12.5kΩ 

F4 R6↓ 10kΩ 7.5kΩ 

F5 R7↑ 10kΩ 12.5kΩ 

F6 R7↓ 10kΩ 7.5kΩ 

F7 R9↑ 2640Ω 3300Ω 

F8 R9↓ 2640Ω 1980Ω 

F9 R18↑ 10kΩ 12.5kΩ 

F10 R18↓ 10kΩ 7.5kΩ 

F11 C2↑ 0.01nF 0.0125nF 

F12 C2↓ 0.01nF 0.0075nF 

F13 C4↑ 0.01nF 0.0125nF 

F14 C4↓ 0.01nF 0.0075nF 

 

Based on the visualization effect of scatter plots in Figs. 3, 4, 6, 7 and 8, it can be easily 
learned that the separability of features reduced by KECA is further enlarged than by KPCA, 

and this indicates that different fault classes can be well separated by KECA. Therefore, 
choosing significant components based on Renyi entropy is more appropriate in the analog 

circuit incipient fault diagnosis. Meanwhile, the faults processed by KECA can be identified 
more conveniently and satisfactorily than by KPCA. 

 

 
 

Fig. 6. The scatter plots of fault classes characterized by 2-dimensional features of low-pass filter by KECA. 

 
The first 50 sample data and the rest 50 sample data of each fault class have been used as 

training data and testing data, respectively. Table 3 demonstrates accuracies of the diagnosis 
approach in diagnosing the 15 fault classes. The F0, F1, F2, F4, F5, F6, F8, F9, F10, F12, F13 

and F14 fault classes can be classified correctly. Meanwhile, 50 test data of the F3 fault class 
are classified correctly 49 times and misclassified as the F7 fault class once; 50 test data of the 
F7 fault class are classified correctly 46 times, and misclassified as the F3 fault class twice 

and the F11 fault class twice; 50 test data of the F11 fault class are classified correctly 45 
times, and misclassified as the F3 fault class twice and the F7 fault class 3 times. The overall 

diagnosis accuracy is 98.7%. 
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a)                                            b) 

  

Fig.7. The scatter plots of a) F9, F13 and other fault classes and b) F0, F2 and other fault classes characterized by 

2-dimensional features of low-pass filter by KECA. 

 

 
 

Fig. 8. The scatter plots of fault classes characterized by 2-dimensional features of low-pass filter by KPCA.  

 
Table 3. Accuracies of the diagnosis approach for low-pass filter. 

 

Fault code Fault class Accuracy 

F0 NF 100% 

F1 R4↑ 100% 

F2 R4↓ 100% 

F3 R6↑ 98% 

F4 R6↓ 100% 

F5 R7↑ 100% 

F6 R7↓ 100% 

F7 R9↑ 92% 

F8 R9↓ 100% 

F9 R18↑ 100% 

F10 R18↓ 100% 

F11 C2↑ 90% 

F12 C2↓ 100% 

F13 C4↑ 100% 

F14 C4↓ 100% 
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5.3. Comparison of simulation results 

 

PCA [5], improved KPCA [10] and KLDA [12] have been used to reduce the dimension of 
features in recent analog circuit fault diagnosis works [5, 10, 12]. The proposed diagnosis 

approach in our work is compared with the approaches in [5, 10, 12]. The energy features of 
example 1 and example 2 are used to test the referenced approaches and compare the 

simulation results for performed incipient fault diagnoses under the same simulation 
conditions. The diagnosis accuracy of each approach is shown in Table 4. From the results 
contained in the table, it can be observed that performing the incipient fault diagnosis by 

using KLDA as a preprocessor allows to obtain more positive results than by using PCA and 
KPCA. Meanwhile, the results in the last column show that the proposed approach has higher 

diagnosis accuracy than the referenced approaches. 
 

Table 4. The diagnosis accuracies of our approach and the referenced approaches. 
 

Example Reference [5] Reference [10] Reference [12] Our work 

Example 1-bandpass filter 97.1% 99.1% 99.6% 100% 

Example 2-lowpass filter 95.9% 97.9% 98.4% 98.7 % 

 

6. Conclusions 

 

In this work, a novel approach has been presented to perform the analog circuit incipient 
fault diagnosis by using the wavelet transform, KECA and OAO LSSVM. The wavelet 

transform of time responses has produced coefficients at various levels and further generated 
the energy features which are related to each of fault classes. KECA has been used to reduce 

the dimension of energy features from a high dimension to a low dimension. Different fault 
classes have been identified by OAO LSSVM. Through comparing the scatter plots of fault 
classes characterized by 2-dimensional features, it can be easily concluded that KECA is 

better than KPCA in dimension reduction. Comparison of simulation results have verified that 
the proposed approach has higher diagnosis accuracy than the referenced methods. 
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