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Abstract 

This paper presents a simple DFT-based golden section searching algorithm (DGSSA) for the single tone 

frequency estimation. Because of truncation and discreteness in signal samples, Fast Fourier Transform (FFT) and 

Discrete Fourier Transform (DFT) are inevitable to cause the spectrum leakage and fence effect which lead to a 

low estimation accuracy. This method can improve the estimation accuracy under conditions of a low signal-to-

noise ratio (SNR) and a low resolution. This method firstly uses three FFT samples to determine the frequency 

searching scope, then − besides the frequency − the estimated values of amplitude, phase and dc component are 
obtained by minimizing the least square (LS) fitting error of three-parameter sine fitting. By setting reasonable 

stop conditions or the number of iterations, the accurate frequency estimation can be realized. The accuracy of this 

method, when applied to observed single-tone sinusoid samples corrupted by white Gaussian noise, is investigated 

by different methods with respect to the unbiased Cramer-Rao Low Bound (CRLB). The simulation results show 
that the root mean square error (RMSE) of the frequency estimation curve is consistent with the tendency of CRLB 

as SNR increases, even in the case of a small number of samples. The average RMSE of the frequency estimation 

is less than 1.5 times the CRLB with SNR = 20 dB and N = 512. 
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1. Introduction 

 

The frequency estimation of sine wave of a digital signal as an important area of research in 
modern signal processing has been applied in the fields of power systems [1], dynamic 
characterization of devices and circuits [2], biomedicine [3], optical metrology [4]. Although 

DFT is very effective and, in the case of FFT, fast enough to be applied in real-time applications, 
it may become very inaccurate at the non-coherent sampling because of the spectral leakage 

phenomena [5−6]. It is well known that an N-point DFT is calculated for the data length of N 

samples leading to a resolution 2π/N of the frequency estimation. Frequency estimators mainly 
include non-iterative IpDFT algorithms and iterative DFT-based algorithms [7]. Generally, a 

two-stage search can be implemented to improve the frequency estimation. First, a coarse 
estimation is usually performed by an N-point FFT to locate the index of the largest magnitude. 
Secondly, a fine search is executed around the vicinity of the index. Several alternative search 

methods such as IpDFT or iterative methods for the second stage were reviewed in [8]. 
IpDFT with the Agrež algorithm [9] and IpDFT with the Yoshida algorithm [10] were 

described in [8]. In [11], Rife and Vincent proposed an estimator, which is called the Rife 
algorithm with a two-point interpolated DFT for the frequency estimation of a sinusoidal signal. 

In order to improve the estimation accuracy, a modified Rife algorithm (MRife) [12−13] was 
proposed based on applying FFT twice, by moving the signal frequency to the midpoint of two 
neighboring discrete frequencies. 
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In [14], many iterative DFT-based methods of frequency estimation were reviewed, which 

involved a parametric STMB iterative algorithm [15], an interpolated DFT BY1 algorithm with 

leakage correction [16], etc. 
This paper presents a simple DFT-based golden section searching algorithm (DGSSA) for 

the single tone frequency estimation by minimizing the LS error of three-parameter sine fitting. 

DGSSA is a two-stage process. Firstly, the DFT of the sampled sequence is calculated, and the 
fine searching scope is determined. In the second stage, the golden section searching algorithm 

is adopted for fine searching of the estimated frequency. Moreover, it is proved that the root 
mean square error (RMSE) of the proposed frequency estimator is consistent with the tendency 

of CRLB as SNR increases by comparing with different estimation algorithms. 
 

2. Frequency estimation with sine fitting algorithm 

 

2.1. Signal model  

 

A single tone frequency sinusoidal signal observed under white Gaussian noise can be 
modeled in the four-parameter sine fitting as follows: 

( ) ( ) ( ) cos( ) ( )
v

y n x n e n A n t C e nω ϕ= + = ⋅ ⋅∆ + + +  ( )0,1, , 1 ,n N= −L                (1) 

where Av, ω = 2πfc, φ and C are the amplitude, angular frequency, initial phase and dc 
component, which are all unknown, respectively [17]. The error term e(n) which consists of 
observation noise, quantization noise, parameter inaccuracies, etc. [18] is modeled as a zero 

mean white Gaussian stochastic process with variance σ2. The Gaussian assumption is crucial 
to the validity of the theoretical results derived in this paper and may seem restrictive. In many 

practical cases where the measurement noise is independent of the signal x(n), the Gaussian 
assumption is a reasonable approximation, and the least-squares approximation is valid [19]. N 

samples (y0,y1,……,yN−1) are acquired at sampling time: 

 n

s

n
t

f
=  ( )0,1, , 1 .n N= −L  (2) 

The sampling frequency fs is assumed to be larger than 2*fc to satisfy the Nyquist Theorem. 

The relationship between the frequencies fc and fs is equal to: 

 ,

c

s

f M J

f N N

δ+
= =  (3) 

where M presents the number of sample cycles, in general being a not-integer value. J and δ 

(−0.5 ≤ δ < 0.5) are the integer and fraction parts of M, respectively. If the sine wave is sampled 
coherently, then δ = 0 and the phase difference between two adjacent samples is equal to 2π/N. 

Most of the four-parameter sine fitting are applied in parameter estimation under the assumption 
of coherent sampling. However, in practice, such a condition can never be perfectly met since 

the true value of signal frequency fc is unknown. When non-coherent sampling occurs, we have 
δ ≠ 0. 
 

2.2. Four-parameter sine fitting 

 

Three-parameter sine fitting procedures have been standardized in the IEEE Standard 1057 

[20] and 1241 [17]. The amplitude, phase and dc component of the acquired samples can be 

estimated accurately in the three-parameter fitting by a non-iterative procedure, assuming that 
the sine frequency is known. However, in the four-parameters fitting, the above three 
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parameters and frequency of the input sine wave are all unknown. The iterative method begins 

with the initial frequency estimation, and the fitting equations are nonlinear. 

Equivalently, the observed data y(n) in (1) are expressed as: 

 ( ) cos(2 ) sin(2 ) ( ),
c n c n

y n A f t B f t C e nπ π= ⋅ + ⋅ + +  (4) 

where A = Avcosφ and B = −Avsinφ are the amplitudes of the in-phase and in-quadrature 
components in Volt, respectively. C and fc are the dc component in Volt and the frequency of 

input sine in Hertz, respectively. Therefore, the initial phase can be expressed as: 

 

arctan( ) 0

.

arctan( ) 0

B
A

A

B
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π
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We intend to estimate the sine wave that best fits, in a least square (LS) error sense, to these 
N samples. The phase φ is considered to be a random variable uniformly distributed within an 

interval of 2π. In general, the four-parameter sine fitting algorithm needs an initial value of the 
estimated frequency f0. Then it uses the following matrix and vector: 
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Since from (4) the following relation is fulfilled: Y = D*[A; B; C], (7) follows if matrix 
D(f0) is of full rank: 

 1
( ) ( )
T T

A

B D D D Y

C

θ
−

 
 = = 
  

. (7) 

Then the LS error can be calculated and shown in (8) as: 

 [ ]
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ε π π

−

=

= − ⋅ − ⋅ −∑ . (8) 

By minimizing the LS error in (8) with respect to the vector θ, the best estimated
^

θ  of the 

sine-wave parameter vector θ is obtained. 
The four-parameter sine fitting is linear only when the frequency is known. Otherwise, it is 

nonlinear. Therefore, the four-parameter sine fitting, started from different initial frequency 

estimation values, may converge on different local minima and lead to a large estimation error. 
If the initial frequency f0 is accurate, the minimum LS error can be obtained; otherwise the error 

will be large. So, the accuracy of the estimated value of initial frequency f0 is very important 
for the convergence of the four-parameter fitting. The normalization error curves of the four-
parameter sine fitting of different numbers of observed cycles are shown in Fig. 1. 

In Fig. 1, the LS error of the four-parameter sine fitting as a function of frequency ratio (f0/fc) 
was calculated for different numbers of oscillation cycles(periods) per one DFT, M = 0.6, 0.8, 

1, 3, 5 and 10, respectively. The frequency of input sine wave is set to 2.012342 Hz which is 
sampled at 100 S/s. It can be concluded that, when the estimated value of initial frequency is 
infinitely close to the true value, the normalization LS error is minimized. That is to say, the 

four-parameter sine fitting is convergent. However, a slight shift in the frequency causes an 
increase of the LS error because the frequency mismatch changes the phase of all the 

reconstructed sine wave points, making all the points add to the LS errors. Taking into account 
the multiple periods of samples, a small frequency shift can cause a large error because it causes 
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the N*∆f frequency for all the recorded samples, cumulatively. The error increases depending 

on the contributions to the RMS signal value. 

 

 
Fig. 1. The normalization LS error versus frequency ratio (f0/fc) for different numbers of oscillation cycles. 

 

In addition, beyond the range of
0

( ,s

k

f
f

N
−

0

),s

k

f
f

N
+ the maxima of LS error are 

approximately equal to 0.7, when M >1. k0 is the index of the maximum of the DFT spectrum. 

In this scope, there is only one minimum value of LS error corresponding with the frequency 
[21].  

Most of frequency estimation algorithms based on DFT consist of two stages, which are the 
coarse estimation and the fine estimation. In the first stage, the DFT of the time series is 
calculated, with the frequency accuracy of ∆f which is equal to fc /N. In the second stage, by 

using different interpolation strategies, the frequency deviation 
^

δ  between the true frequency 
and k0 is estimated. If no window is used, the exact (9) is adopted to estimate the frequency by 

the interpolated DFT. Our goal in this paper is to calculate
^

δ . 

 
^ ^ ^

0 0
( ) ( 0,1, 1; 0.5 0.5).f k f k Nδ δ= + ⋅∆ = − − ≤ <L  (9) 

IEEE1241 requires that at least four periods of the sine wave are recorded [22]. In order to 

avoid getting into local minima, it can be made possible that the proposed algorithm works well 
even throughout as few periods of the record length as possible. 
 

3. Proposed DFT-based golden section searching algorithm (DGSSA) 

 

3.1. Optimizing golden section searching range  

 

In one-dimensional linear searching problems, several searching strategies are used to 

determine the search steps, such as a binary search, the Newton’s method, and a golden section. 
As shown in Fig. 2, because the optimal point (f0/fc = 1) is unique in the sense of the frequency 

range, it is a unimodal optimization problem. The first and second derivatives are required in 
the Newton’s method; however, the all-order derivatives of the normalization LS error of the 
three-parameter fitting algorithm at different frequency points are difficult to calculate. So, the 

Newton’s method is not suitable. The golden ratio search has been thought the best for the uni-
modal optimization [23]. In addition, the convergence ratio of the binary search is lower than 

that of the golden section, which has a higher convergence speed. In this paper the golden 
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section is adopted to find the optimal frequency through minimization of the LS error, as shown 

in (8) with a straight search. 

In recent years, the golden section has been applied to optimize timings of traffic signal 
systems with good results [24]. As shown in [25], the golden ratio is introduced to enhance the 

local search of simple genetic algorithms. Two local optimums tend to the same pit of the 

solution space. It is assumed that there is a potentially better estimation value between the two 
local optimums. So, the location of local optical optimized values can be identified by the 

golden ratio, that is to say, two boundary value locations of the golden section searching 
algorithm can be determined.  

In the coarse estimation stage, an N-point DFT of x(n) is calculated, as shown in Fig. 2. The 

peak value X[k0] − as shown in (10) − in the DFT magnitude spectrum is expected to be around 
the true frequency fc, represented by the blue symbol □. 
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∑
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Fig. 2. The magnitude spectrum of the sine wave with DFT. 

 
As shown in Fig. 2, it can be assumed that the maximum spectral line obtained by DFT of 

the frequency is point P. The adjacent spectral lines X[k0 − 0.5] and X[k0 + 0.5] in relation to 
X[k0] are marked point A and B as: 

 0
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Because δ of the true frequency satisfies the relation (−0.5 ≤ δ < 0.5), the true frequency is 

located within the range of 0 0
[( 0.5) , ( 0.5) ).s s

f f
k k

N N
− ⋅ + ⋅  According to the golden ratio, it is 

assumed that the potential local frequency is C1 or C2, that is, the relationship between the 
segment AC1 and the segment AB satisfies the golden ratio definition. In addition, the 

relationship between the segment BC2 and the segment AB also satisfies the golden ratio 
definition.  

n 
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In Fig. 3, the normalized LS RMSE of the three-parameter algorithm is plotted against the 

index of DFT samples. The red mark ○ indicates the RMSE corresponding with the frequency 

estimated by DFT, the green mark □ indicates the RMSE corresponding with the frequency 
estimated by the proposed algorithm. It is seen that, by using a sine with fc = 20.09375 MHz, fs 
= 100M Hz, SNR = 20 dB, N = 32, the four-parameter sine fitting LS error ε is larger when 

using DFT to estimate the initial frequency. By the optimized frequency searching algorithm 
proposed in this paper, frequency accurate result is determined. 

 

 

Fig. 3. The normalized LS RMSE of the three-parameter algorithm as a function of the index of DFT sample. 

 

3.2. DFT-based golden section searching algorithm 

 

In the DGSSA algorithm the sine-wave frequency estimation can be found by looking for 
the index of (10), i.e., of the discrete-time Fourier transform (DtFT). When the search domain 

is reduced by (11−12),  e.g. by using the Newton’s search, the strategy is replaced by the golden-

ratio division. The paper presents an original, new solution for the precise estimation of single 
sinusoid parameters (frequency, amplitude, phase, DC). The method consists of the following 

steps: 
1) The initial frequency estimate is calculated by using an N-point DFT and setting a stop 

condition p or the number of iterations I. 

2)  According to the value of k0, there are two cases in determining the left and right border 
frequencies F(l) and F(r) by making use of k0-index of max(abs()) value of DFT: 

a) If k0 ≠
 
0, then 

0
0.5 0

( ) ( 0.5)
k

F l f f k
−

= =∆ ⋅ −  and 
0
0.5 0

( ) ( 0.5).
k

F r f f k
+

= =∆ ⋅ +  

b) If k0 = 0, then ( )F l f ξ=∆ ⋅  and 
0
0.5 0

( ) ( 0.5)
k

F r f f k
+

= =∆ ⋅ + .ξis the coefficient of F(l) which 

is small enough to ensure F(l) < fc, for example 10−5. 
3)  Then, the golden division is applied and two inner frequencies F(m) and F(t) are calculated 

– inner with respect to F(l) and F(r). 

4)  For these frequencies the model (amplitude, phase and DC) fitting to the signal is done − 

(7) − and the LS fitting errors ε(m) and ε(t) are calculated. 
5)  According to ε(m) and ε(t) values of frequencies F(m) and F(t), F(m) and F(t) are modified 

and “flag” is set (0 or 1) (step 8). 

6)  Again, the three-parameter sine fitting (amplitude, phase, DC) is done and the errors ε(m) 

and ε(t) are calculated. 

7)  If |F(r) − F(l)| > p or I < I, go to (4); otherwise continue. 
8)  fc = F(m) or F(t) according to the “flag” value (0 or 1). 

In order to improve the estimation accuracy, changes of the algorithm in fine searching are 
proposed, as shown in the above process. The amplitudes, phases and dc components are 
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recalculated after the frequency is adjusted by the three-parameter sine fitting to ensure that the 

corrected signal model is being used in each updating process in the above steps (4) and (5) for 

the new frequency searching range.  
The frequency updating procedure is shown in Fig. 4. 
 

 
 

Fig. 4. The updating process of the corrected frequency in each update of the frequency scope by DGSSA  

on the condition of sine-wave frequency fc = 2.012342 Hz, sampling frequency fs = 100 Hz; N = 32.  

The initial boundaries are F(l) and F(r), respectively. 

 

As shown in Fig. 4, by calculating the N-point DFT of observed samples, two border 
frequencies F(l) and F(r) are obtained. The frequencies are used according to step (4) as the 
input to perform the three-parameter fitting algorithm. By comparing the RMSE values of F(m) 

and F(t) the first corrected frequency C11 is obtained. The decreased scope is updated to the 
range of A to C11. The RMS errors of updated F(m) and F(t) are recalculated, then the second 

corrected frequency C12 is obtained, and so on. 
It can be seen from Fig. 4, that the corrected frequency is close to the minimum from the 

initial scope after running the procedure only 4 times. Because there is only one extreme point 

in the searched region, the searched scope is decreased gradually. By setting a stop condition 
or the number of iterations reasonably, the global convergence can be obtained. 

 

3.3. Cramer-Rao Lower Bound 

 

The CRLB is the lower bound on the covariance of any unbiased estimation. The CRLB of 
the estimated frequency using IEEE Standard 1057 is derived in [19]. 

 
2^

2

2 2 2 2

6 12
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2( ) ( 1) ( 1)
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ππ
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where SNR is defined as 

2

2
,

2

v
A

SNR

σ

=  Av is the amplitude of the sine wave and σ2 is the variance 

of the noise. 
 

4. Numerical comparisons  

 
For all simulations in Section 4, the signal is modeled as:

( ) cos cos(2 ) sin cos(2 ) ( ).
v c n v c n

y n A f t A f t C e nϕ π ϕ π= ⋅ − ⋅ + +   

The signal model parameters are set: Av = 5 V, C = 0 V, and phase φ which is uniformly 

distributed over [0,2 )π rad. e(n) is the white Gaussian noise added to the signals. All simulation 

experiments were implemented using MATLAB r2008a, and run on a personal computer with 
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Intel(R) Core (TM) I3, CPU 1.8G Hz, 4.00 GB memory, and the Microsoft Windows7 operation 

system. In our experiments, three goals will be pursued and attained. The first goal is to test the 

accuracy and convergence feature of the proposed method. The second objective is to verify its 
immunity to the white Gaussian noise. The third goal is to test the impact of the number of 

samples on the accuracy and computational complexity. To ensure good estimations of the 

frequency in the presence of additive white Gaussian noise, in accordance with the Monte Carlo 
method, each value has been averaged over 1000 times. Comparisons of the performance of the 

proposed DGSSA method with the recent representative frequency estimation methods 
including Rife [11], MRife [13], BY1 with leakage correction [16], the iterative Steiglitz-

McBride (STMB) extension of the Prony algorithm [15], Yoshida IpDFT [10], IpDFT with 
HANNING window algorithm and the CRLB, are performed. 

 

4.1. Estimation accuracy and convergence of DGSSA 

 

To verify the accuracy of the proposed procedure, signals with a random uniformly 
distributed phase from 0 to 2π were considered. In this analysis, comparisons are made among 
DGSSA for 5 iterations (DGSSA, I = 5) and 15 iterations (DGSSA, I = 15), Rife, MRife, BY1 

with leakage correction for 5 iterations (BY1-LC, I = 5) and 15 iterations (BY1-LC, I = 15), the 
iterative Steiglitz-McBride (STMB) extension of the Prony algorithm for 5 iterations (STMB, 

I = 5) and 15 iterations (STMB, I = 15), Yoshida IpDFT, IpDFT with HANNING window 
algorithms and the CRLB to validate usefulness of the proposed estimator. For each random 

phase, 1000 estimations are taken to calculate with SNR = 20 dB. In this section, the sampling 
frequency is 100 MS/s. The number of observed samples is N = 512, and J = 100. Fig. 5 presents 

the mean value of the estimation error (estimation bias) as a function of δ varied within [−0.5, 
0.5) with the increment of 0.05. Fig. 6 and Fig. 7 depict the RMSE and the maximum modulus 
of the absolute error of δ estimation under the same simulation conditions. 

The frequency estimation is a nonlinear estimation problem; therefore, it is not surprising 

that all estimators, including the proposed one, are biased. Among non-iterative DFT-based 
methods, the poorest bias and RMSE belongs to the Rife method which is well known in the 

literature [13]. Fig. 5 clearly shows that the Rife method has the same precision as the MRife 
method when |δ| > 0.3. As δ moves towards the centre of the sliding interval, performance of 
the Rife method is worsened rapidly. The estimators by Yoshida IpDFT, IpDFT with 

HANNING window algorithm have the similar bias value and RMSE in the absence of noise. 
Compared with the MRife, Hann window and Yoshida IpDFT methods, the proposed DGSSA 

with 15 iterations has a lower estimation error. In DGSSA, a high accuracy is obtained by 
increasing the iteration time. Fig. 6 and Fig. 7 clearly show that, for the STMB and BY1-LC 

methods, increasing the number of iterations does not improve their performance remarkably. 
As |δ|  increases, the RMSE and absolute error of BY1-LC for the frequency estimation increase, 
too. However, with fewer iterations, DGSSA has a lower estimation accuracy. That is because 

the value of iteration step of DGSSA is a constant value. Conversely, by using 15 iterations, 
DGSSA has the similar estimated accuracy as STMB. It is also seen that the performance of 

DGSSA is not affected by the initial phase. The average value of RMSE can be approximately 
1.4 times higher than the CRLB. 

In order to analyze the convergence feature of DGSSA, sine wave signals with a random 

uniformly distributed phase are fitted by DGSSA, BY1-LC and STMB, respectively. Fig. 8 
shows the convergence of the algorithms versus the number of iterations for N = 1024, SNR = 

20 dB, J = 57, δ = 0.24 and fs = 100 MS/s. For each iteration procedure, 1000 simulations were 
realized. 

Figure 8 shows that for BY1-LC, the number of iterations has the minimal impact on its 

performance. With the STMB and DGSSA methods, when the number of iterations increases 
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above a certain threshold value, the iteration procedure has a minor effect to the accuracy. The 

threshold value for DGSSA is 14, whereas for STMB it is 6. 
 

 
Fig. 5. The mean bias of frequency estimation as a function of δ change in the interval δ = [−0.5:0.05:0.45]. 

 

 
Fig. 6. The RMSE of frequency estimation as a function of δ change in the interval δ = [−0.5:0.05:0.45]. 

 

 
Fig. 7. The maximum modulus of the absolute error of δ estimation as a function of δ change in the interval  

δ = [−0.5:0.05:0.45]. 
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Fig. 8. The convergence with different numbers of iterations. 

 

4.2. Signal to noise ratio analysis 

 
To evaluate the immunity to noise of the proposed algorithm, signals containing noise with 

a random uniformly distributed phase from 0 to 2π are generated. SNR varies from 0 dB to 40 
dB with the step of 4 dB. Fig. 9a and 9b compare the bias error and RMSE values which describe 

the errors on 
^

δ  of the proposed and other six methods for different SNR values.  
 

                                          a) 

 
                                          b) 

 
Fig. 9. Comparison of the bias error and the standard deviation of frequency estimation  

with observed samples (J = 43, δ = 0.008) vs. SNR with 1000 simulations, N = 1024, 

fs = 100 MHz. a) the bias error as a function of SNR; b) the standard deviation  

of frequency estimation as a function of SNR. 
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In this figure, the parameters J and δ are fixed to specific values, which are J = 43, δ = 0.008. 

For each value of SNR, 1000 runs with fs = 100 MS/s, N = 1024, and 15 iterations are analyzed. 

As expected, with increasing the noise level, performance of considered methods 
deteriorates. It is seen from Fig. 9 that, except the Yoshida method, for other non-iteration DFT-

based methods the RMSE values of the estimation errors go away from the CRLB when SNR 

increases. That is because the spectral leakage dominates over the noise level. Fig. 9 shows that 
the least biased estimators are the proposed DGSSA and STMB with 15 iterations (This is the 

general truth for any SNR.). By using DGSSA and STMB, we can observe that the RMSE of 
frequency estimates decreases linearly as SNR increases, with almost the same slope of CRLB. 

As can be observed in this figure, the mean values of RMSE for DGSSA (I = 15) and STMB (I 
= 15) are roughly equal to 1.4 times of CRLB. However, the RMSE for BY1-LC (I = 15) is 1.8 
times of CRLB. 

By using DGSSA, not only the frequency but also the other three parameters (amplitude, 
phase and dc component) of a single-tone sine wave can be estimated accurately. To prove it, 

these three parameters in this simulation are fixed to specific values, which are Av = 5, φ = π/3 
and C = 0. All other parameters are set as the same as in Fig. 9. Fig. 10 presents the absolute 
error and RMSE of these three parameters based on the proposed estimator. It can be seen that 

the RMSE values of these three parameters have a similar slope of frequency estimation.  
 

 
Fig. 10. The estimation performance of three parameters with DGSSA vs. SNR. 

 

4.3. Sample number analysis 

 
The sinusoidal signals considered in the following analysis are affected by the number of 

samples N. For a small N, the systematic errors due to a lower frequency resolution become 
smaller than the errors due to noise, and the accuracy of the proposed frequency estimator is 

shown in Fig. 11. The parameters are set as follows: fs = 100M S/s, fc = 4.2 MHz, N1 = 32, N2 = 
64, N3 = 128, N4 = 256, N5 = 512, N6 = 1024, N7 = 2048 and SNR = 40 dB. For each N, 1000 runs 

are done. All other parameters are set as in Fig. 9. 
Figure 11 shows the absolute errors and RMSE values of estimated frequency obtained by 

different methods as functions of numbers of samples N. It can be observed that the RMSE 

values of estimators decrease as N increases. It can be seen that the best estimates are in all 
cases obtained by using iterative DFT-based algorithms. Because of a low frequency resolution, 

the accuracy of estimators for non-iterative DFT-based methods is deteriorated as N decreases. 
For any considered value of N, DGSSA and STMB can give more accurate results. When N = 
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16, that is J = 0, δ = 0.672, the RMSE of DGSSA (I = 15) is 2.8 times of CRLB. However, 

when N is 32 (J = 1, δ = 0.344), the RMSE of DGSSA (I = 15) is about 1.4 times more than 

CRLB with SNR = 40 dB. When N is 2048 (J = 86, δ = 0.016), the RMSE of DGSSA (I = 15) 
is about 1.47 times more than CRLB. It can be concluded that the tendency of RMSE of DGSSA 

is consistent with CRLB when N is larger than 16. Furthermore, it keeps a relatively constant 

distance from CRLB. In addition, because of integer period truncation in windowed 
interpolation, the FFT algorithms, Yoshida IpDFT, and IpDFT with HANNING window 

algorithms are not suited for frequency estimation of partially periodical samples. As shown in 

Fig. 11, for N = 16（J = 0, δ = 0.672）the estimated frequency cannot be realized by the IpDFT 

with Hanning window and Yoshida algorithms. The results presented in Fig. 11 show that the 

proposed method can work with a very small number of signal cycles, in contrary to some other 
competitors. 

Figure 12 shows how the computational requirements of the proposed algorithm depend on 
the number of samples N of the processed signals. 

 

 
Fig. 11. The performance of DGSSA with different numbers of samples (SNR = 40dB). 

 

 
Fig. 12. The normalized processing time versus the number of samples. 

 

It can be concluded that increasing the number of samples N in the BY1-LC method does 
not need more computation time. BY1-LC may be less complex than STMB because it only 

needs to compute the correction for three DFT bins in each iteration step. In addition, the STMB 
algorithm and the DGSSA algorithm have the same change trend as N is increasing. However, 
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with a larger number of N, the matrix decomposition of three-parameter fitting needs more 

processing time in DGSSA. 

 

5. Conclusion 

 

In this article, we have reviewed estimation of the frequency of a single-tone sine under the 
condition of noise. The robustness, accuracy, convergence, noise immunity and computation 

complexity of the proposed estimator are compared with many methods by many MATLAB 
simulations. The remarkable feature of the proposed DGSSA method is obtained by the golden 

section searching algorithm using three DFT spectral samples. By increasing the iteration time, 
better results are obtained at the cost of a higher computational complexity in the proposed 
method. The RMSE of MRife and BY1-LC is larger than that of the STMB with the same 

number of iterations. As can be observed from simulations, the mean value of RMSE for 

DGSSA (I = 15) is roughly equal to 1.4 times of CRLB with SNR within the range of 0−40dB. 
However, compared with the STMB method, longer computation of DGSSA is required; 
however, the other three parameters of sine wave (amplitude, phase, and dc component) can 
also be evaluated accurately at the same time. So, the DGSSA algorithm may be a very good 

choice for a number of practical applications. 
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