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Abstract 

This paper analyses the effectiveness of determining gas concentrations by using a prototype WO3 resistive gas 

sensor together with fluctuation enhanced sensing. We have earlier demonstrated that this method can determine

the composition of a gas mixture by using only a single sensor. In the present study, we apply Least-Squares 

Support-Vector-Machine-based (LS-SVM-based) nonlinear regression to determine the gas concentration of each 

constituent in a mixture. We confirmed that the accuracy of the estimated gas concentration could be significantly

improved by applying temperature change and ultraviolet irradiation of the WO3 layer. Fluctuation-enhanced 
sensing allowed us to predict the concentration of both component gases. 
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1. Introduction 

 
Awareness of concentration, or even presence, of hazardous gases is crucial for protecting 

life and health of human beings in numerous cases [1–6]. In real-world applications we deal 
with a mixture of various gases and have to develop detection methods that are robust to the 
presence of background gases or humidity. Resistive gas sensors detect various gases by 

recording mainly their DC resistance changes. Therefore a gas mixture can be determined by 
applying a matrix of gas sensors with varying sensitivity to different gases. However, such a 

solution tends to be expensive and is highly energy-consuming. Smarter solutions use a limited 
number of sensors, but require more advanced measurements, like DC changes of the gas sensor 
when its temperature is modulated or fluctuation enhanced sensing utilizing resistance 

fluctuations [3]. An algorithm is then needed to determine concentrations of the detected gases. 
In this experimental study, a prototype WO3 gas sensing layer was used to investigate the 

efficiency of a detection algorithm for determining the gas concentration of a selected gas 
mixture. The gas sensing layer was prepared as reported elsewhere [7]. The investigated WO3 

layer changes its gas sensing properties when modulated by temperature changes or ultraviolet 
(UV) irradiation. We propose to utilize both factors to modulate the sensor’s physical properties 
in order to ultimately improve the efficiency for gas detection. The power spectral density of 

voltage noise Su(f ) across the gas sensor, driven by a constant current in the negative feedback 
of an operational amplifier, was measured. The applied algorithm used a data vector of the 

spectrum Su(f ) normalized by the squared DC bias voltage U. These data are independent of 
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the measurement setup and result from resistance fluctuations when the sensor bias voltage is 

above at least a few hundred mV to reduce the influence of the inherent noise of the operational 
amplifier. 

The normalized power spectral density Su(f )/U 2 was used as input data vector for the 
detection algorithm. This input vector was extended by adding the same product Su(f )/U 2, but 
observed at various conditions. This strategy helped us to elucidate how the methods improved 

the efficiency for gas detection. 
We used exemplary gas mixtures of NO2 and ethanol (C2H5OH) of various concentrations. 

The sensor response to changes of the ambient atmosphere (gas concentration) is usually 
nonlinear, and therefore we decided to apply a nonlinear algorithm, which should assure better 
detection under conditions of nonlinearity. We proposed to apply the Support Vector Machine 

(SVM) algorithm as in other similar cases, such as for electro-catalytic gas sensors [6] or in 
Raman spectroscopy [8], where the input data form a vector of partially correlated values. The 

correlation is unknown and can change for data observed at various gas compositions. Therefore 
we have to apply an algorithm which can be efficient in different situations. 

The SVM algorithm is a supervised machine-learning method, which can operate in one of 
two modes: classification or function estimation (regression). Here we used the least squares 
version of the SVM (called LS-SVM) in the regression mode to determine concentrations of 

gas mixture constituents. The applied algorithm can perform the necessary computations faster 
than its previous versions. 

The SVM method was earlier [9] applied to fluctuation-enhanced sensing in order to detect 
the presence of a large set of various agents in gas mixtures. In the present paper we go further 

by achieving a quantitative analysis of the given agent in a gas mixture by enriching the 
measurement information through selection of working point conditions. 
 

2. Measurement system and data pre-processing 

 

Figure 1 presents a block diagram of the measurement system. The resistive gas sensor was 
placed in a chamber of 1 litre volume, and the gas flow was controlled by three independent 

flow-meters to supply a mixture of two gases: NO2 together with ethanol diluted in synthetic 
air. The combined continous output gas flow did not exceed 100–200 ml/min; this avoided 
turbulence which might otherwise have influenced the observed noise. These conditions 

assured that the recorded noise was stationary (Fig. 2). Other details of the measurement setup 
can be found elsewhere [7]. 

 
 

 

Fig. 1. Block diagram of the measurement setup. 
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The properties of the gas sensor were modulated by changing their working temperature or 

by using UV irradiation. Both factors influenced the sensitivity and selectivity of the WO3 

sensor film, which is consistent with other findings for various gas sensing layers [1, 5, 7]. The 
influence of temperature changes or of UV irradiation can be different for the investigated gas 

sensing layers and gas mixtures. Therefore we were not able to ascertain which of the methods 

would be more efficient for determining gas concentration prior to performing the 
computations. The observed low-frequency noise depended on the applied working conditions, 

and 1/f-like noise dominated in different frequency ranges. We decided to estimate power 
spectral densities up to a few kHz only when the 1/f noise component prevailed. The sampling 

frequency was set to fS = 4 kHz. Normalized power spectral densities were estimated by using 
voltage noise records observed during 500 s and comprising about 2 × 106 samples in order to 
reduce the random error by averaging over the set of estimated spectra. The power spectral 

densities were then employed as input data for the LS-SVM algorithm. 
 

 
Fig. 2. Exemplary time record of observed voltage noise. 

 

We considered four different concentrations (0, 10, 20, and 50 ppm) of NO2 as well as the 
same concentrations of C2H5OH diluted in synthetic air. Thus we obtained sixteen different 

combinations altogether. The case when both gas concentrations were equal to zero corresponds 
to flow of synthetic air only. The measurements were done at two sensor temperatures: 100 and 

225°C, and at two UV diode currents: 0 (without UV irradiation) and 6 mA in which case the 
effect of UV irradiation on the gas sensing layer was saturated (the same results were observed 
with higher currents applied to the UV diode). In this way we obtained four combinations of 

measurement conditions, given in Table 1. 
 

Table 1. Measurement conditions for recording resistance noise. 

UV LED current [mA] Temperature [oC] 

0 (UV diode off) 
100 

225 

6 (UV diode on) 
100 

225 

 
The noise records (each consisting of 2 × 106 samples) were taken to represent 50 

independent spectra for each set of measurement conditions (Table 1) for all 16 combinations 

of concentrations of two gases, thus giving a total of 50 × 4 × 16 = 3200 spectra. Each spectrum 
was estimated from a record of 40 960 voltage noise samples by computing spectra from 
consecutive time records, each 1024 noise samples long, and averaging 40 of them to reduce 
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the random error of the estimated power spectra to as little as 16%. The latter value represents 

a compromise between accuracy of noise measurement and time for noise recording to collect 

a sufficient number of samples. 
The estimated set of 50 spectra for each combination of measurement conditions and gas 

concentrations was divided into two subsets. A set of 40 spectra was used to establish a 

mathematical model for the LS-SVM algorithm, and the remaining 10 spectra were employed 
to test the accuracy of the model. Each of these 50 spectra has a length of 513 points including 

the DC component. Only a part of these frequency bins could be used for gas detection. At 
frequencies close to the maximum frequency of the spectrum (for fS/2) the values were 

attenuated by an antialiasing filter. At very low frequencies, typically covering the first 2–3 
frequency bins, the estimated spectra values exhibited a high variance due to unavoidable drifts. 
Therefore we decided to limit the estimated values by rejecting the first three and last 22 bins 

of each spectrum and eventually obtained 513 – 3 – 22 = 488 frequency bins. 

Four cases of input data-shown in Table 2 − were considered. The length of the input data 

started from 488 points in the first case and reached 4 × 488 = 1952 points in the last one, when 

all measurement conditions were used to predict gas concentration. The aim of constructing 
such data sets was to identify which of the working conditions for the gas sensing layer were 
more informative and gives better accuracy for predicting gas concentrations. 

 
Table 2. Input data vectors for the LS-SVM algorithm. 

No. Measurement conditions Data length 

1 {100 °C, 0 mA} 488 

2 {100 °C, 0 mA} and {100 °C, 6 mA} 976 

3 {100 °C, 0 mA} and {100 °C, 6 mA} and {225 °C, 0 mA} 1464 

4 {100 °C, 0 mA} and {100 °C, 6 mA} and {225 °C, 0 mA} and {225 °C, 6 mA} 1952 

 

3. SVM algorithm 

 

The SVM algorithm is one of the popular techniques of supervised machine learning; it was 

proposed by Vapnik [10]. The fundamentals of this method, and various applications for 
predicting chemical compound concentration, have been presented elsewhere [6, 8, 11–15]. The 
algorithm attracted huge interest among scientists because it is based on a very simple idea and 

leads to high performance in numerous practical applications [14, 16–18]. The algorithm was 
developed originally for pattern recognition by learning from exemplary data belonging to two 

opposite sets. The classification is based on the class of hyper-planes, defined in multi-
dimensional space by a vector w orthogonal to that hyper-plane and maximizing the difference 
between these classes. 

A regression algorithm was developed for situations wherein the data are divided not into 
two separate classes but can predict values of a continuous function. The LS-SVM algorithm is 

its-least squares version and was proposed by Suykens [11]. The latter algorithm transforms a 
quadratic programming problem into a linear problem and makes the necessary computations 
much faster. The Matlab toolbox, used freely for research, provides all necessary and basic 

functions of this method [15]. Our study used the LS-SVMLab toolbox v1.8. The LS-SVM 
algorithm finds an optimal solution by solving a system of linear equations, which is rather a 

trivial computing task for today’s computers. The algorithm can operate in either of two modes: 
classification mode or regression mode (for function estimation). The regression mode can 
predict function values by using the mathematical model created at the entry stage. This task 

can be performed by the LS-SVM algorithm in our experimental studies to predict 
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concentrations of mixed gases and determine which of the working conditions for the gas 

sensing layer is more informative. 

 
3.1. The LS-SVM regression algorithm 

 

In the least-squares version of the SVM algorithm, the original problem of determining 
solutions to predict function values (e.g., gas concentrations) is modified at two points. Firstly, 

the inequality constraints of the minimization problem with a slack variable are replaced by 

equality constraints with an error 
k
e . Secondly, a squared loss function is considered as the 

objective function to determine the learning model necessary for predicting gas concentrations. 

After applying these two modifications, the problem becomes a linear problem which is simple 
to solve. 

 

Fig. 3. Illustration of using a nonlinear kernel function φ(x) in the SVM algorithm. 
 
The fundamentals of the LS-SVM algorithm are presented below, following [11] and [14]. 
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LS-SVM method uses nonlinear mapping, represented by the kernel function φ(x) (Fig. 3), to 

deal with a nonlinear dataset. Then we can present the LS-SVM model as a feature space 
representation of the data set, given by the equation: 
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To find the optimal value of w  and b , we have to solve the optimization problem, which means 
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which is subject to equality constraints according to: 
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The Lagrangian function of the above equation is:  
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where 
k
α  are Lagrangian multipliers. The optimal point of the Lagrangian function is in its 

saddle point, determined by the following conditions: 
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We can see that the system (5), obtained from the Karush-Kuhn-Tucker conditions [19], is 
linear. A solution of such equations can be found by solving a system of linear equations using 

standard methods such as conjugate gradient descent.  
The system of linear equations can be presented in matrix form by: 
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be used in order to model a nonlinear process. For our purposes, this function is 
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SVM implementation requires three tuning parameters (γ, σ, ε), while LS-SVM requires only 
two tuning parameters (γ, σ). A disadvantage of both methods is that the training time increases 
with the square of the number of training samples (N) and linearly with the number of variables 

(dimension of the investigated spectra), which is opposite to the case of classic least-squares 
methods using principal component analysis algorithm [16]. 

 
3.2. Application of the LS-SVM algorithm 

 

In earlier work [8], the authors showed that LS-SVM gives more accurate results and is 
substantially more robust to additive noise than conventional regression methods which apply 

linear functions only (e.g., the Principal Component Analysis method [21]). The LS-SVM 
method also provides a high degree of accuracy for concentration prediction, particularly for 

data sets for which a considerable nonlinearity can be expected. We know that the response of 

the gas sensors − i.e., the change of their DC resistance or resistance noise power spectrum − 
to changes of the ambient atmosphere is nonlinear. An analogous nonlinear relation occurs 

when the ambient atmosphere consists of a gas mixture of various proportions. Thus the LS-

SVM algorithm is expected to be very efficient for gas concentration prediction. This property 
ensues because the kernel function provides nonlinear conversion of the input feature space into 

the higher-dimensional transformed input space where the data are linearly separable. 
The most popular kernel functions are polynomial, sigmoidal or Gaussian RBFs. Here we 

used the latter because the main error of the recorded data is the random error of the estimated 
power spectral densities due to limited averaging time. The RBF kernel function should work 
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well with such a source of data inaccuracy, as considered also in other regression problems [8, 

16]. 

There are many papers discussing the use of the SVM method for data processing in gas 
sensing [6, 12, 16–18]. We should emphasize the necessity of careful selection of LS-SVM 

model parameters to obtain high accuracy of gas concentration prediction. It is important to 

select optimal values of these parameters in order to get the most reliable results of gas 
concentration prediction, as discussed for similar cases [22, 23]. In our experimental study, 

these parameters were selected by applying the function tunelssvm available in the Matlab 
toolbox [15]. This function determines the optimal value of the RBF kernel parameter σ2 and 

the regularization parameter γ at the stage of learning (model creation). The function tunelssvm 
uses different optimization algorithms. First, good starting points are found by rough 
approximation and then the final adjustment is reached by the simplex method. 

 

4. Results of gas concentration prediction 

 

Figures 4 and 5 present results of gas concentration prediction using the LS-SVM regression 

algorithm for a set of 160 test data vectors for the cases #1 and #4, respectively (Table 2). We 
can see that longer input data vectors assure better accuracy of the regression algorithm, i.e., 
lower values of the root mean square error σe of gas concentration prediction (Fig. 6). Such 
results are obvious, because a longer input vector is more informative and should assure more 
appropriate regression, as predicted in theoretical considerations for nonlinear methods [8]. On 

the other hand, we can see that the worst results of gas concentration prediction are found when 
C2H5OH and NO2 have similar concentrations in the mixture (e.g., results in Fig. 5 when both 

gases have a concentration of ~20 ppm). The highest accuracy of gas concentration prediction 
took place when one of the gases dominated in the investigated gas mixture (i.e., when their 
concentrations were strongly different, as when only one gas was present in the mixture; Fig. 

4). 
 

 
Fig. 4. Results of the regression algorithm obtained for the case #1, presented in Table 2. 
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Fig. 5. Results of the regression algorithm obtained for the case #4, presented in Table 2. 
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Fig. 6. Root mean square error RMSE of gas concentration prediction using the LS-SVM regression algorithm 

for the measurement data sets in Table 2. 

 
We can observe a significant decrease of the root mean square error in the case #4. In other 

cases, the error is so large that the concentration prediction error is too high to be accepted for 

hazardous gases. Despite its inconveniences − a more complex calculation and longer time of 

model generation − case #4 is most reliable and should be chosen for practical applications. 
We should mention that the measurement conditions give different information and should 

be selected very carefully to assure the best gas detection results. Thus additional calculations 
to create a regression model were performed when the input data were only 488 frequency bins 

long (as in case #1, Table 2) but representing different working conditions (the temperature of 
the gas sensing layer, and the current for the UV diode irradiating the layer) of the gas sensor, 

specifically (a) 100°C, 6 mA; (b) 225°C, 0 mA; and (c) 225°C, 6 mA. We calculated the root 
mean square error RMSE of gas concentration prediction separately for the above mentioned 

conditions and obtained the following results: (a) RMSE = 11.7 ppm, (b) RMSE = 10.9 ppm, 
and (c) RMSE = 7.9 ppm. This means that the most informative noise data for detecting the 

considered gas mixture (NO2 and C2H5OH) were collected at the conditions 225 °C, 6 mA. We 
were able to conclude that these conditions assured an error of gas concentration prediction that 
was ~40% lower than for other considered conditions. 

The presented procedure and the use of the LS-SVM algorithm helped to determine which 
of the working conditions, applied to the investigated gas sensing layer, was most informative 

for gas detection. The goal was to achieve a quantitative gas composition analysis (an important 
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aspect of metrology [24]) by utilizing fluctuation-enhanced sensing. We should underscore that 

the method does not require any additional data processing (e.g., background noise removal, 

spectra smoothing, etc.), which is common in other chemo-metric methods [25]. This is a 
benefit of the LS-SVM method, because any additional pre-processing method demands 

optimal selection of some additional parameters before its use. We should also emphasize that 

the presented results do not consider a dependence of gas concentration prediction on accuracy 
of the estimated noise spectra. This problem is still open, especially when we have to consider 

some unavoidable drifts at the very low frequency range [26] and their influence on the LS-
SVM method [8]. 

 

5. Conclusions 

 

This experimental study presented a method for predicting the concentration of gases by 
using a single gas sensor. We proved that the LS-SVM method can predict the concentration of 

gas mixture components (NO2 and ethanol) by applying fluctuation enhanced sensing. The LS-
SVM method helped us to establish the working conditions of the investigated gas sensing layer 
for which the prediction of gas concentrations was the most accurate, exceeding results obtained 

under other measurement conditions by 40%. We are confident that the procedure delineated in 
the present work can be applied successfully for a variety of gases and for different sensing 

layers. 
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