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Abstract

Estimation of satellite three-axis attitude using only one sensor data presents an interesting estimation problem. 
A  flexible and mathematically effective filter for solving the satellite three-axis attitude estimation problem 
using two-axis magnetometer would be a challenging option for space missions which are suffering from other 
attitude sensors failure. Mostly, magnetometers are employed with other attitude sensors to resolve attitude 
estimation. However, by designing a computationally efficient discrete Kalman filter, full attitude estimation 
can profit by only two-axis magnetometer observations. The method suggested solves the problem of satellite 
attitude estimation using linear Kalman filter (LKF). Firstly, all models are generated and then the designed 
scenario is developed and evaluated with simulation results. The filter can achieve 10e-3 degree attitude accuracy 
or better on all three axes.

Keywords: satellite three-axis attitude estimation, two-axis magnetometer, observations, LKF, PD controller.
© 2015 Polish Academy of Sciences. All rights reserved

1.	 Introduction

Satellite attitude estimation is a problem that has been reviewed in depth over the last few 
decades. Since the time before Sputnik was launched in 1957, estimating the orientation of 
an objective in the three-dimensional space has been an interest in the field of dynamics and 
control. A recurrent challenge in satellite attitude estimation is to estimate the three-axis attitude 
from a  set of noisy measurements that have been previously used or will be experienced. 
The  estimation algorithm combines measurements in different ways to attain the required 
attitude estimation accuracy. In comparison with attitude determination algorithms (such as 
TRIAD and the Q-method), attitude estimation methods (such as the Kalman filter) are able 
to work with measurements of even a single attitude sensor which is an important advantage 
[1]. Over 50 years, the Kalman filter is still one of the most widely used data fusion systems. 
Typically, the Kalman filter is derived using vector algebra as a  minimum mean squared 
estimator [2]. The Kalman filtering is most applicable for satellites equipped with three-axis 
gyros as well as attitude sensors [3]. Due to the power limit in satellites, processing of attitude 
sensor measurements by the on-board computer has computational restrictions. To solve this 
problem recursive algorithms based on the Kalman filter are frequently applied. The major 
setup issue for the Kalman filter is tuning the filter, i.e. precise selection of a motion model 
error and measurement noise statistics. Filter tuning can substantially influence the filter 
performance.

One of the main references on spacecraft attitude determination is by Wertz. This handbook 
is one of the early works used by many specialists in this field. In the field of three-axis attitude 
determination of a  spacecraft most methods are using either a  Kalman filter or batch least-
squares differential correction techniques [4]. Other early attitude determination research 
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results have led to the TRIAD technique, the QUEST technique, and additional solutions to 
the Wahba’s problem. Attitude determination methods based on the Wahba’s loss function are 
generalized to include estimation of parameters other than the attitude, such as sensor noises  
[5–9]. Use of the Kalman filter in the Apollo navigation computer that took Neil Armstrong to 
the moon and (most importantly) brought him back was the most famous use of the Kalman filter 
in the spacecraft attitude estimation field [10]. The sensitivity of the steady-state covariance of 
a scalar Kalman filter to Kalman gain selection is described by Gelb [11]. Ma and Jiang have 
made one of the most important attempts at the magnetometer-only attitude determination. To 
estimate the attitude of the spacecraft and calibrate the magnetometers, they implemented an 
unscented Kalman filter with magnetometer measurements [12]. Mark L. Psiaki has developed 
and simulated three-axis magnetometer attitude determination using an extended Kalman filter. 
His model is proper for a low-cost three-axis attitude stabilization system beyond its usefulness 
purely for attitude determination. The Psiaki’s Kalman filtering methods showed the error 
magnitude around 2−3 degrees after 100 s with a low initial filter offset [13]. Shou, H. N. and 
Lin C. T have developed a micro-satellite attitude determination model using Kalman filtering 
in a three-axis magnetometer data approach [22]. De Ruiter has presented implementation of 
a simple Kalman filter for correcting gyro-determined satellite attitude estimates with attitude 
measurements made using external sensors such as sun sensors, magnetometers, star trackers, 
and so on. His filter uses constant steady-state Kalman filter gains and demonstrates a close-to-
optimal steady-state performance [14]. Unlike the original Monte Carlo methods [18], which 
used large numbers of pseudorandom samples to estimate a  probability distribution, newer 
methods apply much smaller sample quantities for representing only the means and covariances 
of the distribution. Various sampling strategies have been developed for nonlinear filtering. The 
resulting filter implementations include sigma-point filters, [19], unscented Kalman filters [20], 
and particle filters [21].

The contribution of the presented research comes from addressing a problem that is very 
interesting in the attitude control of satellites, especially when a  satellite suffers a  failure in 
some of its attitude sensors that threats the mission success. Every effort is to be made to save 
the satellite. The research at hand will answer the question: how to help the Attitude and Orbit 
Determination and Control Subsystem (AODCS) to estimate the satellite attitude using only 
magnetometer measurements? The objective of this work is to develop an alternative three-
axis attitude estimation system using a six-state Kalman filter and only two-axis magnetometer 
measurements from one satellite orbit. This alternative estimation system improves the 
reliability of the AODCS subsystem in the absence of other attitude sensors. In this paper the 
application of a six-state discrete Kalman filter to estimate the satellite attitude using only noisy 
data from one sensor is explained.

2.	 Satellite dynamic model

The total satellite angular momentum vector consists of the angular momentum of the 
satellite body and the angular momentum of control actuators. The present satellite model is 
a three-axis attitude control satellite equipped with three reaction wheels aligned with the body 
frame axis. The general satellite dynamic model is given by the following expression [15]:

	 .H H HB W= +
  

		  (1)

Transformation from one frame to another is used to simplify calculations. An appropriate 
attitude determination system depends on proper transformation [16]. If small angle 
approximations are generated and the second order terms set to be zero, the Direction Cosine 
Matrix (DCM) transformation in connexion with Euler angles and quaternions methods is easy 
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to employ, so they are used in this analysis. Equations of angular velocity in a rotating frame 
with 3→2→1 transformation are given as in [15]:
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where: BRω  is the angular velocity vector of the body frame relative to the reference frame, Φ is 
the roll angle, θ is the pith angle, ψ is the yaw angle, and for small angles becomes:
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where: Ω is the angular orbital rate of the satellite body. Based on (1), if the second order terms 
are neglected, the body acceleration of satellite is solved:
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where: Tdist is the disturbance torque vector.
By the following state variable substitutions these second order equations are reduced to the 

first order equations:

	 .
T

x φ φ θ θ ψ ψ 
 =
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 

 		  (8)

With this replacement, the satellite dynamic equations are expressed in the matrix form:

	 ( ) .x A BF x Bud= − +


 		  (9)

Unauthenticated
Download Date | 5/11/16 7:33 AM



580

M. F. Mehrjardi, H. Sanusi, et al.: THREE-AXIS ATTITUDE ESTIMATION OF SATELLITE THROUGH …

A is the plant matrix given by:
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B is the control matrix given by:

	 .

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

T

B

 
 
 
 
  

= 	 (11)

F is the proportional derivative (PD) controller gain matrix and ud is the matrix of disturbance 
moments and internal reaction wheel moments:
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3.	 Magnetometer model

A magnetometer sensor is chosen because of its reasonable accuracy, mass and power 
consumption. A magnetometer provides an accurate value for the magnetic field vector at 
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the location of the satellite. This sensor measures the direction and magnitude of the local 
geomagnetic field in the orbit. Comparing magnetometer measurements with the same vector 
in the inertial frame determines the attitude of satellite. The measurement model is assumed to 
be of the form given by:

	 ,B ABB I υ= + 	 (14)

where: 3
BB R∈  is the magnetic field measurement in the satellite body coordinate system, 

3A R∈  is the transformation matrix that maps the inertial frame to the body frame, 3
IB R∈  

is the known magnetic field vector in inertial coordinates, and υ  is assumed to be the zero-
mean Gaussian measurement error with the standard deviation 3 3mIσ × . In this simulation, axes 
of the magnetometer are aligned with the body axes. At each discrete time step data from tow 
magnetometer axes are selected at random for attitude determination. For the purpose of this 
study, it is assumed that the measurement error of the magnetometer is regulated as if the 
accuracy of the sensor was less than 0.10. The noise level is inherent to the magnetometer and 
is treated as a zero-mean Gaussian white sequence. Also, the magnetometer sampling rate is 
considered to be 0.1 Hz.

The model used by the attitude determination system is the World Magnetic Model that has 
been discussed in [23]. The World Magnetic Model uses spherical harmonics to calculate the 
Earth’s magnetic field vector at any point in space over time. The model requires the current 
position and time of the satellite to quantify the magnetic field vector. The magnetic field vector 
of the Earth can be returned at any point of the orbit by the given position. The magnetic field 
model used in this study takes the form:

	 ( , , , ) V( , , , ),B r t r tλ ϕ λ ϕ= −∆ 	 (15)
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and λ, φ, and r are the longitude, latitude, and radial distance to the centre of Earth, respectively. 
And:
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where the parameters g and h in (16) are available in a tabular format in the World Magnetic 
Model and the parameter a is the geomagnetic reference radius.

4.	 Kalman filter design

In the field of satellite attitude estimation, the family of Kalman filter algorithms estimate 
the state of a satellite system basing on recursive noisy measurements, and minimize the cost 
function which is given by:

	
^ ^

[( ) ( )],TJ E X X X Xk k k k= − − 	 (18)

where: E is the expectation, kX  is the true plant state vector, and 
^

kX  is the estimated state 
vector [1]. The discrete Kalman filter structure given in [17] is based on: 
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and Table 1 shows the filter definitions.

Table 1. Kalman filter definitions.

Symbol Definition Size Symbol Definition Size

kx


State vector  6 × 1 kH Feedback sensitivity matrix 3 × 6

kΦ State transition matrix 6 × 6 kv


Sensor white noise sequence 3 × 1

k∆ Deterministic weighting matrix 6 × 3 kR Sensor noise covariance matrix 3 × 3

ku


Deterministic forcing function 3 × 1 kP Error covariance matrix 6 × 6

kw


Plant white noise sequence 6 × 1 ˆkx Optimal estimate of         6 × 1

kQ Plant noise covariance matrix 6 × 6 ˆkx− Estimate of state        at time prior 6 × 1

kz


Measurement vector 3 × 1 kK Optimal Kalman gain 6 × 3

The filter itself is based on a prediction process which is followed by an update process. 
In this work, before updating the covariance prediction, first the Kalman Gain with the initial 
covariance prediction is calculated and then a new prediction is generated.

A six-state linear Kalman filter has been chosen to estimate both attitude and attitude rates 
from the noisy magnetometer data. A favourable characteristic of this recursive filter is that 
there is no need to store previous sensor measurements. The value of the optimal Kalman gain 
matrix varies with each time step. In the implementation of the discrete Kalman filter, the 
measurement noise covariance is usually practically measured prior to operation of the filter. 
Defining the plant noise covariance is generally more challenging because we typically are 
unable to directly observe the process we are estimating. In this work, the plant noise covariance 
matrix is varying with time and the solution for extracting the plant noise covariance matrix 
given by [17] is used.

First the matrix β is formed: 

	
1...
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where: W is the power spectral density matrix associated with the forcing function ud. To get 
Φ, the lower-right partition of β is transposed and then the Q is obtained from the upper-right 
partition of β. For the purpose of analysis and proper tuning, the time varying nature of Q matrix 
over one period of orbit is considered.

To enter the Kalman filter loop, an initial estimate, ,ˆ
0x−  and its error covariance, ,0P−  are 

chosen: 

kx


kx

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where the ‘^’ superscript presents estimation while the ‘-’ notation denotes estimation.
During the simulation by taking a  closer look at the filter it was proved that some system 

covariance matrix variables can be adjusted to modify the filter performance. The system covariance 
matrix is an assumption of noise which occurs in the system model. Because a  small system 
covariance matrix correlates to small amount of noise and has naturally a better estimate result, 
therefore it is evident that the desired system covariance matrix should be the smallest possible.

For the purpose of proper tuning of the filter, considering the time varying nature of both 
Q and P matrices is essential. In the simulation, if Q decreases, the filter will have a tendency 
to follow the predicted estimate. On the other hand, if Q increases, the filter will follow the 
measurements. So a right balance has been found for the filter because if Q is too low, then the 
filter has difficulty in tracking satellite manoeuvres, but if Q is too high, the pointing accuracy 
suffers from the magnetometer noise effect.

5.	 Proportional plus derivative controller

Many types of controllers are available and each of them has its own unique characteristics. 
It is shown that gains of a  PD controller can be adjusted to minimize the settling time and 
overshoot. Each reaction wheel is equipped with a separate PD controller. The following PD 
controllers are used for three reaction wheels and they are given by [15]:

,h k k
x vx x

φ φ= + 

	 ,h k k
y vy y

θ θ= +  	 (23)

.h k k
z vz z

ψ ψ= +



These control laws are based on the change rate of reaction wheel angular momentum 
that is the reaction wheel torque and are a  function of the measured Euler angles and rates. 
Determination of suitable position and rate feedback gains is necessary to obtain robustness.

The following equation is used to determine the Euler moment relations [15]:

	 T= (H )= (H )+ ×HI B

d d

dt dt
ω

   

,	 (24)
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where: T


 is the total torque vector, H I



is the angular momentum of the satellite with respect to 
the inertia frame, HB



 is the angular momentum of the satellite around the body frame and ω is 
the satellite angular velocity. It is assumed that the second order terms are neglected and it can 
be shown that the equations are [15]:

24 ( ) ( )x x y x y z x y z y z x xT I I I h h I I I h h I hφ φ φ ψ ψ θ ψ= + Ω − − Ω − Ω + Ω − + − − + − Ω +   

  ,

	 23 ( )y y x z x z x z y yT I I I h h h h I hθ θ ψ ψ φ φ= + Ω − + + Ω + Ω − − Ω +   

 ,	 (25)

2 ( ) ( )z z x y y x x y x x y z zT I I I h h I I I h h I hψ ψ ψ φ θ φ φ= + Ω − + − Ω + Ω + Ω − + − + + Ω +    

 . 

These equations describe the motion of the satellite when subject to ext ernal torques. By 
decoupling and taking the transform function of equations the following results are obtained:

2
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The objective is to determine suitable position and feedback gains to increase satellite 
robustness. The nominal characteristic equation for the second order system and the final value 
theorem [24] are used to determine the feedback gains:

	 2 2( ) 2 ,s s sn nω ξ ωΛ = + + 	 (27)

	
0

( ) lim ( ) lim ( )
t s

f f t sF s
→∞ →

∞ = = ,	 (28)

where: 
nω  is the natural frequency, and the damping factor is denoted .ξ  Each of the 

denominators in (26) is inserted to (27). By applying these equations the position feedback 
gains are determined from the following equations:

24 ( )
,

T I I hx y x ss y sskx
ss

φ φ
φ

− Ω − + Ω
=

(29)
2( )

,
T I I hz x y ss y sskz

ss

ψ ψ
ψ

−Ω − + + Ω
=

where: ss subscript denotes the steady state.
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The natural frequency is determined by taking the square root of the last term in denominator 
in (26). After that, the velocity feedback gains are calculated:

2 ,k Ivx nx xω=

	 2 ,k Ivy ny yω= 	 (30)

2 .k Izvz nzω=

6.	 Simulation testing

An important complement in analysing Kalman filter evaluation is simulation testing. 
The code is started by defining some known constants, and then defining the number of time 
steps and the duration of each time step. The simulation is run for one orbital period which is 
sufficient to evaluate how fine the filter is following changes in the trajectory. Systematic errors 
such as a parameter uncertainty or biases mostly reduce the stability or accuracy, or both. The 
simulation combines the satellite attitude dynamics equation with a definite initial state 0( )x t  to 
generate the state time history ( )kx t  for 0,1,2,...k = . The filter takes noisy measurements and 
integrates with the initial estimate of covariance and estimates of the initial states to produce 
an estimate of the state time history ˆ ( )kx t+  for 0,1,2,...k = . Even with disturbance torques, 
measurement noise and a modelling error, the estimated state ˆ ( )kx t+  in a well-designed filter 
has to converge quickly to the actual state and stay near it. Many of variables used in the 
simulation have to be initialized to zero before being employed for the first time. The initial 
simulated parameters of the test-case spacecraft are: a (semi-major axis) = 2477116 m, e (orbit 
eccentricity) = 0.70215, i (orbit inclination) = 063.5 , and Δt (time step) = 4 seconds.

7.	 Results

The results of the simulation prove that designing satellite attitude determination and control 
of satellite with only two-axis magnetometer sensors is possible. Fig. 1 shows the satellite 
attitude over a period of one orbit for both actual and estimated satellite attitude along all three 
axes. In order to better analyse the results, a  close-up view of a  small snapshot of the roll 
axes is shown in Fig. 1d. However, the sensor observations are randomly spread due to the 
presence of noise, instead of falling on the true attitude as in the case of an ideal sensor. In 
this situation, a  discrete Kalman filter produces the optimal attitude estimation. The results 
demonstrate effective attitude tracking using the Kalman filter as it cuts through the noise. 
With using the filter, the range of measurements being 9.3337 × 10–5 degree is reduced to 
1.8786 × 10–5  degree, so that it can help to control system more smoothly. The filter is also able 
to decrease the measurement standard deviation from 1.5383 × 10–3 degree to the estimation 
standard deviation of 3.8888 × 10–4 degree.

Figure 2 shows the satellite attitude rate estimation. The relation between the body rate, the 
angular rate and the orbital rate is given by (2), (3) and (4). The roll, pitch and yaw angles are 
derived from the angular rate what can be seen by comparing Fig. 1 and Fig. 2. Mostly these 
rates come from the rate gyroscopes but as shown, the estimated rates based on magnetometer 
measurements are accurate. Since magnetometers can only measure angles, no observations are 
shown in this figure.

Figure 3 shows control torques applied to the reaction wheels over a period of one satellite 
orbit. For this purpose, the output of the discrete Kalman filter served as the input to the 
controller. Comparing Fig. 2a with Fig. 2c, and Fig. 3a with Fig. 3c, the torques from the 
reaction wheels are opposing the roll rate and yaw rate in order to stabilize along both axes. 
However, the pitch axis behaves slightly different, as in (2). The cross-coupling effect and 
stiffness in the pitch axis produces a higher rate which can be seen in Fig. 2b. 
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Fig. 1.The true and estimated response of satellite attitude: a) roll; b) pitch; c) yaw; d) roll snapshot.

         a) 					                b)

         c) 					                 d)

Fig. 2. The true and estimated satellite rate: a) roll; b) pitch; c) yaw; d) roll snapshot.

         a) 					                b)

         c) 					                 d)
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The reaction wheel torques are increased because of the cross-coupling of the reaction wheel 
momentum. This happens due to the attitude error along the axis. The reaction wheels turn 
against the angular momentum associated with spinning of the satellite around its own centre of 
mass until the satellite achieves the correct attitude.

As expected, at the perigee of orbit a bigger torque is applied to the pitch reaction wheel and 
therefore at the perigee the angular momentum of the pitch reaction wheel is also higher, as 
shown in Fig. 4.

			     a)

		          b)

			     c)

Fig. 3. The satellite control torque: a) roll; b) pitch; c) yaw.
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8.	 Conclusion

In this work, the satellite was modelled as a rigid body and satellite dynamics equations 
were derived and transformed into a  state space equation and discretized, resulting in 
a  difference equation. This difference equation is a  plant model and consists of a  state 
transition matrix and a  deterministic control matrix. A two-axis magnetometer provided 
measurements to the Kalman filter and the filter output was fed into the controller to 
counteract disturbance torques. From the simulation results it was proved that the designed 

			   a)

			   b)

Fig. 4. The reaction wheel momentum: a) roll; b) pitch; c) yaw.

			   c)
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three-axis estimation method based on only two-axis magnetometer is effective for predicting 
the satellite attitude from noisy sensor data. A filter designed in this work is coupled with the 
magnetometer and can reach the data standard deviation of  3.8888 × 10–6 degree which is an 
acceptable accuracy in space missions. Based on the results, the method for satellite attitude 
estimation using only two-axis magnetometer observations for attitude updates is feasible 
when the rate gyroscope sensor fails in the mission.
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