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Abstract 

In this paper precision of the system controlling delivery by a helicopter of a water capsule designed for 

extinguishing large scale fires is analysed. The analysis was performed using a numerical method of distribution 

propagation (the Monte Carlo method) supplemented with results of application of the uncertainty propagation 

method. In addition, the optimum conditions for the airdrop are determined to ensure achieving the maximum area 

covered by the water capsule with simultaneous preserving the precision level necessary for efficient fire 

extinguishing. 

Keywords: water capsule airdrop control system, uncertainty analysis, GUM uncertainty framework, propagation 

of distributions. 
 

© 2016 Polish Academy of Sciences. All rights reserved

 
1. Introduction 

 
For more than a dozen years the use of water aerosol for quenching small-scale fires proved 

to be extremely efficient [1−3]. Application of such aerosol for extinguishing large-scale fires, 
however, is a problem with a shorter history. Explosive production of aerosol necessary for 

such a purpose seems to be the only realistic method since a large amount of aerosol has to be 
generated in a short time. 

The method of explosive production of water aerosol is based on detonating a pyrotechnic 
charge fixed inside a water bag [4]. Such a water capsule can be delivered in a short time to the 

location of fire by a helicopter. The system controlling the capsule’s airdrop enables to release 
the capsule automatically at a distance which secures reaching by it the optimum point above 
the target at which it explodes producing aerosol [5, 6]. Such a method can be used for 

extinguishing large-scale forest fires or fires of objects poorly accessible for conventional 
firefighting equipment, like high industrial structures. 

In principle, the problem of delivering a water capsule to a given point above the ground is 
similar to the problem of hitting a target by a bomb. Unfortunately, many papers on this subject 

are not easily available to a broader scientific community, especially those containing 
description of implementation of the weapon delivery systems and their verification. Therefore, 
in the paper data from experimental research of flight of containers made of flexible materials 

and subjected to considerable deformations are taken into consideration. The existing literature 
contains studies of theoretical foundations, simulations and analysis of experimental data 

concerning flight of practically rigid objects (bombs, fuel tanks etc.) [7−10]. Besides, none of 
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the available studies contains complete analysis of uncertainties of hitting the target by a 

released object. 
The airdrop control system consists of, among others, an onboard computer that computes 

the capsule’s trajectory and communicates with a GPS receiver registering the current position 

and velocity, and with a programmable fuse allowing to predetermine the moment of explosion 
[5, 6]. 

The hitting precision of a capsule in the horizontal axis of about 10 m enables to extinguish 
efficiently (with one airdrop) any fire with a diameter of up to 20 m as the aerosol cloud 
diameter is about 40 m. This guarantees immediate quenching of fires in the initial stage. 

Because the acceptable ‒ from the point of view of the fire extinguishing efficiency ‒ height of 
explosion above the ground is between 8 m and 16 m, it is assumed that the necessary vertical 

axis precision is 4 m for the optimum height of explosion equal to 12 m above the ground [6].  
The experiments carried out in 2008 [5] gave an introductory confirmation of efficiency and 

precision of the system. The results of experiments conducted in 2009 again gave satisfactory 

results. A limited number of trials, however, did not enable to determine the exact motion 
(position and velocity) parameters of the aircraft at the airdrop moment that would guarantee 

determining the explosion point with sufficient precision. In this context it was decided to 
simulate a larger number of trials using the Monte Carlo method to estimate the uncertainty of 
hitting the target by a capsule (in both the horizontal and vertical axes) and to examine the 

influence of aircraft motion parameters on the eventual hitting precision.   
 

2. Theoretical background 

 
The flight of the capsule is a case of a motion of a material body in the horizontal projection 

in the presence of drag and horizontal (v1) and vertical (v2) air currents (Fig. 1).  
 

 

Fig. 1. The horizontal projection from the height H with the initial velocity v0. 
 

The drag force is determined by the following formula:  

 v
22

2
zxdrag vv

Ac
+−=

ρ
F ,  (1) 

where: c – is the aerodynamic drag coefficient; ρ – is the air density [kg/m3]; A – is the 

transverse cross-section area of the capsule [m2]; v −  is the capsule’s velocity vector; vx − is 

the capsule’s horizontal velocity component; vz − is the capsule’s vertical velocity component.  
The equations of motion for the horizontal (x) and vertical (z) coordinates of force, 

acceleration and velocity are as follows: 
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where: m − is the mass of the capsule [kg]; g − is Earth’s gravity [m/s2]; ax − is the capsule’s 

horizontal acceleration component [m/s2]; az − is the capsule’s vertical acceleration component 
[m/s2].  

The variable b denotes the generalized drag coefficient (in [kg/m]) for a body in the 
horizontal motion, determined from the formula b = cxρAx/2, where Ax is the cross-section area 

of the body and cx is the drag coefficient for the body for its motion along the X (horizontal) 
axis; the generalized drag coefficient k for the same body in the vertical motion is determined 
from the same formula with parameters Az instead of Ax and cz instead of cx.  

The motion of the body is influenced by both the horizontal and vertical air currents 
characterized by their velocities (cf. Fig. 1) v1 and v2, respectively. Taking them into account 

one has to modify (2) thus obtaining:  
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where: vxx(t) = vx(t) – v1 and vz(t) – v2 are the velocity differences. 

The initial conditions of (3) are given as:  
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3. Experimental research  

 

Creating a system enabling to determine the right airdrop moment required working out a 
numerical procedure for determination of the capsule’s trajectory for the measured parameters 
of the flight – the velocity and height above the target, as well as the generalized drag 

coefficients b and k [5] that had to be determined experimentally. For the latter purpose it was 
necessary to arrange an experimental setup for determining the position of the capsule in a two-

dimensional frame of reference. 
In order to attain this, a number of reference points have been chosen to guide the helicopter 

pilot on approaching the target. Four color flags (A‒D) were used as “ticks” for marking the 
horizontal length scale interval (xscale); for the vertical coordinate the identical role was played 
by the rope of the known length (zscale) used for hanging the capsule under the helicopter (Fig. 2). 

The trials were registered with a Phorton Ultima 1024 video-camera working in the mode of 
250 frames per second. In the course of the films’ analysis the position of the capsule in the 

two-dimensional coordinate system was determined as a discrete function of time. The analysis 
was performed with the VIANA computer program [11].    

The measurement method was based on inspecting the film’s frames one by one and 

determining the capsule’s coordinates measured in the numbers of pixels – each frame had the 
form of a 1024 x 1024 bit-map. 

The experimental data were used for determining, with the least square method, the third-
order polynomial to be used as the analytical model for the data representation. The capsule’s 
velocity in time was determined as the derivative of this model dependence of its position on 

time. In a similar way model functions for the capsule’s acceleration were determined.       
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Fig. 2. Arrangement of the experimental setup during helicopter’s flight. The helicopter carrying a water  

capsule hanging on a rope is visible on the left. The capsule is equipped with a stabilizing parachute. 

 

At this stage of the data analysis one deals with the following set of formulae representing 
parameters of the capsule’s trajectory as functions of time:  
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In Fig. 3 an example of the capsule’s trajectory reconstructed from a film is shown.  
 

 

Fig. 3. A trajectory of the capsule’s flight. In fact the plot represents a discrete  

set of points not visible at the figure’s resolution. 

 
In Fig. 4 dependencies on time of the horizontal and vertical coordinates of the capsule’s 

position for the same trial are shown.  
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Fig. 4. Dependence on time of the capsule’s horizontal and vertical coordinates.  

The same comment as made for Fig. 3 applies. 

 
For this trial the following particular third-order polynomials of time, approximating sets of 

points from the left and right part of Fig. 4, respectively, are obtained:  
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The determined coefficients R2 of the above equations are very close to 1. All of the 

coefficients of the regression equations are significant because the probability of exceeding the 
calculated F-Snedecor value is equal to 0 (Table 1). 

The drag coefficients b and k were determined using (3) after taking into account the 
inequalities: 
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that follow from assuming the coordinate frame shown in Fig. 1.  
 

Table 1. The parameters of the regression functions (obtained from Minitab [12]). 
 

  
Coefficient 

 
Value  
of 

coefficient 

 
Standard 
error  

coefficient 

Probability 
of exceeding of 

calculated  
F-Snedecor value 

p(F) 

 
Determination 
Coefficient 

R2 

x(t) a3 ‒0.0359   0.0049    0.000 0.9999 

a2 ‒0.1557    0.0327       0.000 

a1 27.6024    0.0615      0.000 

a0  0.6080 0.0311     0.000 

z(t) b3 0.0210   0.0049     0.000 0.9999 
 b2 ‒4.8535    0.0327 0.000 

b1 ‒0.3299    0.0616    0.000 

b0 91.8120    0.0311   0.000 
 

The formulae giving the drag coefficients are as follows:  

 

xxzzxx

x

vvv

am
b

⋅+

⋅

=
22

, (9) 

51



 
G. Śmigielski, W. Toczek, et al.: METROLOGICAL ANALYSIS OF PRECISION … 

 

 
( )

zzzzxx

z

vvv

gam
k

⋅+

+−

=
22

. (10) 

The coefficients determined by such a method include information on the influence of 
horizontal and vertical air-currents on the capsule’s motion. 

After taking into account (5) and (6) that approximate dependence of the position, velocity 
and acceleration of the capsule on time, the formulae defining the drag coefficients assume the 

form:  
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and obviously give explicitly time-dependent coefficients. For further computations, however, 
values of the coefficients averaged first over time for a single flight, and then over subsequent 

flights, were used. 

 

4. Determination of target hitting uncertainties 

 
For the sake of determination of values of the target hitting uncertainties and determination 

of the optimum values of the capsule release parameters an application working in the 
LabVIEW environment was created, with which numerical computations using the Monte 

Carlo method were executed [13−19]. 
The scheme of work of the application is shown in Fig. 5. In the first step the values of vx 

and H are picked at random from the assumed intervals of values (to be specified in Subsection 

4.1) of both the capsule’s velocity and height above the ground at the moment of release. Those 
random values are used as estimates of the expectation values for the normal distributions with 
the standard uncertainties given in Table 2.  

 

 

Fig. 5. A scheme of LabVIEW applications action. 
 

In the second step, values of vx, H, b and k are picked at random according to the 
corresponding distributions, and computations of the horizontal and vertical distance and of the 

flight’s time are executed using a specific numerical procedure.  
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This step is repeated 105 times for each pair of values picked randomly in the step one. This 

enables to determine standard uncertainties of the horizontal and vertical distance for given 
initial conditions using LabVIEW statistical functions. The application enables also to check 
whether the computed uncertainty values fulfill the assumptions that the value of expanded 

uncertainty of hitting the target in the horizontal axis U(x) does not exceed 10 m and the value 
of expanded uncertainty of hitting the target in the vertical axis U(z) is not larger than 4 m.  

The expanded uncertainties are determined by the formula: 

 U(y) = kp u(y),   (13) 

where: kp – is the coverage factor; u(y) – is the measurement uncertainty of the variable y 

(determined by its standard deviation).  
For the coverage probability of p = 95% and 105 Monte Carlo trials the determined kp = 1.96 

[14]. The data used in the Monte Carlo computations are shown in Table 2.  

The uncertainty results of velocity and height (the vertical position coordinate) 
measurements are related mainly to the accuracy of the measuring apparatus – the GPS receiver. 

To increase the accuracy of positioning the helicopter, two GPS receivers GX1230GG from 
Leica, working in the difference regime, are used. One of them, serving as the reference, is 
located on the ground, and the moving one (rover) is installed on the board of the helicopter [5]. 

A typical value of the expanded uncertainty for the GPS receiver velocity is 0.2 m/s with the 
confidence probability of 95% [20]. Since for such a confidence probability the divisor is 2, the 

standard uncertainty is 0.1 m/s. The standard uncertainty value for kinematic difference 
measurements determined in the technical specification of the Leica 1230GG receiver is 0.02 m 

[21]. 
The average drag coefficients bav and kav (and their standard uncertainties) were computed 

from the experimental data. 
 

Table 2. The data used in the Monte Carlo computations. 
 

 

Source of 
uncertainty 

 

Estimate 
 

Probability 
distribution 

Value of 
standard 

uncertainty 

Helicopter 
velocity  

vx  Normal 0.1 m/s 

Generalized 
drag coefficient  

(vertical 
component)  

bav = 1.14 kg/m t-Student 0.36 kg/m 

Generalized 
drag coefficient  
(horizontal 
component) 

kav = 0.86 kg/m t-Student 0.2 kg/m 

Height  H  Normal 0.02 m 

     
In the considered case one has to do with uncertainties of types A and B. The type A 

uncertainty was estimated by analyzing the series of 8 experiments. The type B uncertainty 
results from the method of measuring the capsule’s position in space and time. The estimated 

uncertainty of space coordinates was 0.5 m, whereas the time uncertainty was 0.004 s (the time 
interval between two subsequent frames). The uncertainties of velocity u(v) and acceleration 
u(a), and finally the uncertainties u(b) and u(k) have been estimated using formulae for the total 

uncertainty.    
Because the type A and B uncertainties had comparable values, and due to a small number 

of observations, the Student’s t-distribution was used, and the total uncertainty values shown in 
the table were determined as the geometric sum of the type A and B uncertainties [13, 16]. 
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4.1. Determination of the optimum values of capsule release parameters  

 
The computations have been carried out for the range of vx values from 1 m/s to 100 m/s and 

values of height from H = 20 m to H = 250 m from which 5000 pairs of values were picked at 
random and used as the input data. The overall time of computations with a Pentium i5 

processor was about 40 hours.  
The plot of pairs of variables vx and H for which the imposed precision conditions described 

in section 1 and 4 are fulfilled, is shown in Fig. 6. As is clear, the limiting value of H is close 

to 180 m. The largest value of vx for the minimum assumed height can reach about 72 m/s.  
The straight line connecting the two limiting points determines a simplified limitation for 

the flight parameters of the aircraft (Fig. 6). The limitation is not absolute as some (vx, H) pairs 
fulfilling criteria of acceptable uncertainties are located above the line. The exact limitation, 
however, cannot be described by a simple formula and would not be practically applicable for 

correcting flight parameters before the airdrop.        
The equation of the limiting straight line has the form: 

 18936.2 +⋅−=
x
vH . (14) 

The set of points (velocities and corresponding heights of the release point) obtained by such 

a procedure was used to determine the capsule’s flight range (triangular points in Fig. 6 forming 
a parabola-like “curve”). The maximum value can reach x = 163 m for a certain velocity from 
the interval between vx = 47 m/s (H = 78.08 m) and vx = 53 m/s (H = 63.92 m). 

For the points lying on the straight line represented by the (14) the capsule’s position 
uncertainty have been computed using two alternative methods. The uncertainty computations 

were executed using a modified version of the application shown in Fig. 6.  
 

 

Fig. 6. A cloud of points fulfilling the accuracy criterion of the capsule airdrop system (light-grey diamonds), 

the straight line described by (14) (black line), and the dependence of the airdrop range on the flight velocity  

(as well as the corresponding height of the release point) at the moment of airbag release  

for the points described by (14). 

 

4.2. Estimating the capsule’s position uncertainty using the method of propagation  

       of probability distributions 

 

For each pair of points (vx, H) (lying on the straight line given by (14)) 106 points were 

computed using the Monte Carlo method, which gave a set of values of tzx ,, , as well as U(x) 
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and U(z). The obtained values of uncertainty U(x) varied between 1.2 m and 9.5 m, whereas 

those of U(z) – between 0.1 m and 3.9 m, depending on the capsule’s initial velocity and the 
height of the release point. The uncertainty U(x) increases with the initial velocity and U(z) with 
the height of the airdrop. 

 

4.3. Estimating the uncertainty of the capsule’s position at the target using the method  

       of uncertainty propagation   

 
It is impossible to compute the uncertainty of hitting the target by the capsule according to 

the recommendations given by the GUM guidebook [13], due to the lack of analytical solutions 
of the system of (3). The uncertainties can be estimated, instead, using the set of approximate 

equations:  
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Since variables for the x and z coordinates in (15) are not coupled, each of the equations can be 

integrated separately, thus obtaining:  
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The estimates of the position uncertainty for the axes 0X and 0Y, respectively, can be obtained 

by computation of corresponding composite standard uncertainties according to the formulae:   
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where the sensitivity coefficients are defined by:  
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The expansion coefficients were determined on the basis of the number of effective degrees 
of freedom computed using the Welch-Satterthwait formula [16] for the confidence level 95%. 

The results obtained in this way served as the basis for computing the expanded uncertainties. 
Depending on the initial velocity of the capsule and the airdrop height the U(x) values range 

from 1.7 m to 15.1 m, whereas U(z) – from 0.1 m to 3.8 m. 
The maximum values of U(x) and U(z) obtained with the Monte Carlo method fulfill the 

accuracy criteria determined in Section 1, while those obtained with the second method fail to 

fulfill those criteria. One should remember, however, that the latter uncertainties have been 
determined from the approximate equations of motion for the capsule’s flight.   

Below the results of computations of expanded uncertainties performed with both methods 
for a typical cruise speed of the W3 Sokół helicopter used during practical field tests, i.e.,  
v = 29 m/s and the corresponding airdrop height obtained from (14), i.e., H = 120.6 m, are 

shown. Computations with the Monte Carlo method (for 106
 trials) gave the following results: 

x = 129.1 m, z = 112.9 m, t = 4.799 s, U(x) = 6.6 m and U(z) = 2.3 m. 

For the purpose of computing the analogous values with the distribution propagation method 
the uncertainty budgets for the flight range for both the horizontal and vertical axes, obtained 
from the data contained in Table 2, were exposed. All the data, as well as the dependences given 

by (16−22) were inserted into the application code LabVIEW.  
 

Table 3. The uncertainty budget for position along the horizontal axis. 
 

 

Source of 
uncertainty 

 

Value of 
uncertainty 

 

Type of 
probability 
distribution 

 

Divisor 
 

Sensitivity 
coefficient 

 

Degrees of 
freedom 

 

Standard 
uncertainty 

Helicopter 
velocity  

0.2 m/s Normal 2 4.24 s ∞ 0.42 m 

Generalized 
drag coefficient 
(horiz. comp.)  

0.36 kg/m t-Student 1 ‒6.83 m2/kg 7 2.46 m 

Combined standard uncertainty        uc(x) = 2.50 m 

Effective degree of freedom       7.42 
Coverage factor         2.36 
Expanded uncertainty       U(x) = 2.36 × 2.50 m = 5.9 m 

 
Table 4. The uncertainty budget for position along the vertical axis. 

 
 

Source of 
uncertainty 

 

Value of 
uncertainty 

 

Type of 
probability 
distribution 

 

Divisor 
 

Sensitivity 
coefficient 

 

Degrees of 
freedom 

 

Standard 
uncertainty 

Height 0.02 m Normal 1 1  ∞ 0.02 m 

Generalized 
drag coefficient 
(vert. comp.)  

0.2 kg/m t-Student 1 3.26 m2/kg 7 0.65 m 

Combined standard uncertainty        uc(z) = 0.65 m 

Effective degree of freedom        7.01 
Coverage factor         2.36 
Expanded uncertainty        U(z) = 2.36 × 0.65 m = 1.5 m 
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The computations using the distribution propagation method gave the following values 

(Tables 3 and  4): x = 130.7 m, z = 110.1 m, U(x) = 5.9 m, U(z) = 1.5 m. They are close to the 
values obtained with the Monte Carlo method, and the discrepancies result from the inaccuracy 
of the mathematical model (15). Nonetheless, the values of expanded uncertainties of the 

capsule’s position obtained with both methods match the accuracy criteria determined in 
Section 1.   

 

5. Summary  

 

The above discussed computations enabled to determine parameters of approaching the 
target by the helicopter. To hit the target the flight velocity and its height above the target have 

to fall into the set shown in Fig. 6 (cloud of grey points). Since verification of fulfillment of the 
exact criterion is difficult, a simplified method, based on the equation of the approximating 
limiting straight line (14) can be used. Such a method can be very easily implemented for 

computer operations and its principal virtue is its speed. If the information indicating that the 
input conditions are not fulfilled appears in the course of flight at the console of either the pilot 

or the airdrop system operator, the pilot is expected either to reduce the flight’s height and/or 
velocity.  

It should be stressed that the obtained values of parameters are based on earlier testing-

ground trials. The target hitting accuracy is determined mainly by the drag coefficients b and k 

that are estimated with considerable uncertainties (Table 2). Had these uncertainties been 

smaller the acceptable heights and velocities of flight and the set of acceptable points would 
have become larger and a substantial increase of the range of the capsule’s flight would have 
been an important consequence.  
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