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THE INFLUENCE OF A RAIL LATERAL BENDING ON
THE STRESS — STRAIN STATE OF A WHEEL - RAIL CONTACT
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Summary. The aim of the article is to evaluate the influen€ea rail lateral bending on wheel — rail contact
interaction. At first the rail lateral bending isodeled using FEM and then the normal contact probite
solved with and without results obtained; the satioh results are given.
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INTRODUCTION

Traditionally the wheel — rail contact is dividada the normal and the tangential
problems. The aim of solving the normal problemc@tact patch shape and size
detection, and also normal pressure distributiothinj while the aim of solving the
tangential problem — wheel — rail coupling forcdimigon using data achieved from
normal program solution. This division is usuallysiified because the friction has
negligible influence on contact patch size and sues distribution if the bodies are
treated as elastic ones. The division is necedsarthe simplification of the solution
since the treatment of the contact problem in gdrease, when the contact area is not
known a priori, is still not achieved.

Only a finite number of treatises is known, thasaée the approximative
analytical solutions of different contact probletasses [Hertz 1881], [Carter 1926],
[Cattaneo 1938], [Mindlin 1949], [Mossakovskiy 1956Therefore the various
numerical methods are used to solve the wheell-€aatact problem today: variational
and non-variational methods, and also finite anghidary elements methods.

The variational principle use the modern variatioafulus ideas and methods.
Its foundations were laid by Signorini [Signorir@35] and for elastic bodies in contact
are advanced by Kalker [Kalker 1990], Golubenko dlubenko 1993], Boucly and
Nelias [Boucly 2007]. Despite the variational inatities theory progress, the solution
of the contact problem entails great difficultiehe problem is posed in a three-
dimensional formulation; when replacing the covac®inequalities by the sequence of
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variational ones, that have an equivalent extrefimahulation, one need to solve the
linear programming task (which is complicated fisdbr several times to obtain
solution

The nonvariational principle has a basic in a dataéscontact problem
formulation in the form of equality and inequalitpnstraints on contact surface. A
search of solution for a contact problem may regmmes sequence of elasticity theory
problems with qualifying boundary conditions, thdéfines the terms of contact
interaction (works [Johnson 1985.], [KostyukevicB91], [Yazykov 2004], [Bokiy
2006]). The disadvantage of this approach is thatbtain a solution one need to solve
the elasticity theory problem for several timescdnvergence of the iterative process
for obtaining a solution is not theoretically prdyehough it turns out well to get a
numerical result with a desirable precision in ficac

Due to the increase in efficiency of modern commytnachinery during the last
two decades the finite elements method (FEM) isewided for simulating a wheel —
rail contact (works [Telliskivi 2001], [Damme 2006]Zhao 2009]). The main
advantages of FEM are: highly realistic results &&nobtained; no restrictions on
geometry of contact surfaces; complex material biela models. However grids in
FEM models contain tens and even hundreds thousianddes, that make calculations
sufficiently time consuming.

Boundary elements method (BEM) is extremely suédbl contact modeling,
because unlike FEM only surfaces of contacting ésdliave to be discretized. Besides
that BEM is semy-analytical, that make it more aate, especially for high stress
concentration provilems. However even that the diyaof computational nodes in the
grid is much smaller than in FEM, the matrixes mo& — symmetrical and dense, that
makes calculations time consuming too. An applicatf BEM for wheel — rail contact
problems is studied in [Rudas 2000], [Abascal 2010]

As it can be seen, a wide range of contact modets ® define the wheel-rail
interaction. Having the aim to compare accuracy eifidiency of existing theoretical
models of wheel — rail contact and those that beélldeveloped, a group of researchers
of Manchester Metropolitan University have promgbsmntact benchmark [lwnicki
2006]. The benchmark consists of prescribed sintjeel or wheelset contact study and
dynamical vehicle simulation. According to benchkparormal and tangential contact
problems are considered. For normal contact probleninputs are the wheel and ralil
profiles and their mutual orientation (lateral déisement and yaw angle), and vertical
load on wheelset. However the rail lateral bendimgn the wheelset balances in track
gauge is not provided in. At the same time it idlweown from literature that the
lateral load from wheel to rail can obtain val@8s— 40 kN even on straight track. This
paper aims to evaluate the rail lateral bendinigiérfce on wheel — rail contact.

WHEEL — RAIL CONTACT MODELING

Rail lateral bending was simulated using Ansys F&tware [Ansys]. The 3D
model of UIC60 rail having length 1m was developEle obtained value was meshed
with 3-D 10-node tetrahedral structural solid elatseSolid92. To avoid rail plastic
deformation , in the area of load applicationddhé of the rail) the mesh was refined.
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The lateral force of 30 kN was uniformly distribdten small part of rail surface (see
fig.1).

The structural FEM analyses was performed with tecbanodel. The maximal
lateral displacement was obtained in the top pofntniddle section and has value of
0,2435 mm.

The normal contact problem was solved using the ifiedd method [Bokiy
2006], assuming frictionless contact.

Fig. 1. 3D FEM model of the rail

Let's consider contact interaction of two elastiodies, each of them is
connected with rigid body — rigid support. It iscapted that we can assume the contact
surface is flat at any moment of interaction process and lays in a common tanhgen
planerz, which passes through the initial contact p@mntlt is assumed that wave and
inertial effects are negligible. The interactiondsfined with A,(t) function, which
represents forward approach of rigid supports.

Let’s introduceOxyz Cartesian coordinate system, which is linked twelobody
(i =1). Let's put the origin t®, Ox and Oyaxes are placed m, Oz axis points
inside the lower body..

Let's denote normal contact pressure BYs,t); and w(st) is a relative
displacement function of interacting bodies alaemxis, defined irg point:

Ws,t) =W (1) ~w, () + F(s) =2, (1), (1)
where: w; (s,t) - elastic displacements of bodies surfacdés) - initial gap between
the bodies. Then the contact interaction conditiave the form:

ws,t)20, P(sit)=0 , Rstws,t)=0, sOQ, t0[0,T]. (2

Here Q is assumed contact area.

Let’s assume that following relationship takes plac

W —W, = AR, ©)
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A is a linear integral operator with integration domW . If we approximate
bodies with elastic half-spaces , then kernelsdafned with Boussinesque-Cerrultti
formulas for unit load acting upon the elastic ygdhce. Then (1) takes form:

W(s,t) = AR, + £(s) =, (1) . 4)(

If we substitute the above expressionwfé,t) in (2), we will get the
relationship, which P,(s,t) must be satisfied. This relationship is equal iteedr
operator equation relative 8, (s,t) :

P,(xy) = h(P, ~ED(F,)) ,

D(R,) = AR, + f(xy)-4,(1), (5)
_» y=0
h(y)—{o, y<0

where: x, yOW, E(x y) - arbitrary positive function.

The contact pressure determination came to findRygx, y,t) function, defined
on set Qx[0,T], which satisfies (5) and initial conditiond?, (x,y,0) =0 for all
(xy)dQ; £(0)=0.

To get the approximate solution of (5) let's pratde it's discrete analogue.
Let's divide the loading proced®,T] into | intervals (ty,t;),(t;,t5) . ..., (.t).
The assumed contact a®ais covered with grid which consists & similar quadric
elementsQ; (i =1 N) with sides parallel t®x, Oy axes. The normal contact pressure
pi(t,) and also the corresponding elastic displacememtevery boundary element
Q, in time t,, are constant within the element and equal to wloe(x,y;) - Q;

elements center.

Based on the discretization made and taking in& abcount that the normal
problem solution under continuous loading doesmpehd on loading history, for
contact pressure definition in timg, we arrive to the next system of equations :

pi(tm) = h(y| (tm)) ’
Vilte) = Piltn) — E, (ki_lai,k B t) + 0 (tm) @)

gi(tm) = f()ﬂ 'yi)_Az(tm) )
where:i =LN, m=11,E >0, a4 are the coefficients of flexibility matrix, deéad
according to A kernel formulas. Ifi = j and quadric boundary elemef¥;, with side
h:
&, =4c,In(L++/2)
If i# ] then the distributed load on elemedt is replaced with resultant force
acting on the element’s center:
= Q%

ai,'
. Bi
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2
where:i, j =LN, w=megQ,), o5 =-/(% = x)>+(%; - y;)? . q=zl,g -

For solving the system of equation (7) we can applylinear analogue of Seidel
method for linear equations system. Let's assuna ¢m (m-1) step the contact

pressures are known and equalgg(t,,;) , (k=1 N), and E; =1/4; (i=1N), then
on m step contact pressurgg (t,,) can be found using the following iterative process

pin+l (tm) = h(yinJrl (tm))

n__ 1S n 2. ol .
Vi - a l(z:lal,kpk (tm)+ Zal,kpk(tm)+g|(tm)
)| =

k=i+1

gi(tm) = f()ﬂ 'yi)_Az(tm)
As a criterion of stopping the iteration processanh load step is suitable to use
rms difference

J,ﬁ > (P ) = PR <2
k=1

The given algorithm of solving the normal contactkgem was realized as a
software in C++ Buider 6.0 programming environment.

For a numerical simulation the wheel S1002 and EHIC60 profiles from
Manchester Contact Benchmark were used. Thoselggdire depicted on fig.2. The
other inputs are: Wheel rolling radius=460 mm, @Gawidth=1435 mm, Flange-back
spacing=1360, Vertical load=100 kN, Young's modulls = 2.1x13" I1a, Poisson
ratio v =0.28.

Tape-circle
40 30 20 10 -10 20 30 -40 -50 radius at (0.0) \ -5

Y-Axis \
10 Highest point of
inclined rail profile at

(0.0)

50 Z-Axis
Z-Axis

Fig. 2. Wheel and rail profiles [lwnicki 2006]

The initial contact points locations were definesing algorithm introduced in
[Kostyukevich 1991].

The simulation results are shown on fig.3. The Wiz rail profiles without
rail bending are drawn with a solid green line, ahd one with rail bending with a
dashed gray line.. It must be admitted that trenging in position of wheel profile is
connected with the lateral rolling motion of the eglset. The points of initial contact
with and without bending are marked with maroowles.

As it can be seen from the figure, a rail bendiag & significant impact upon the
size and a shape of a contact patch. In Case bhqutitrail bending) the maximum
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pressure is 1175 MPa, the contact patch area 185 In Case 2 (with rail bending)
the maximum pressure is 1330 MPa, , the contacthpatea - 127 mfm Hence, the
difference between the contact patches’ area esce@¥h.

Fig.3. The normal problem solution results (1 —eithrail bending, 2 — with one)

CONCLUSIONS

The mathematical model of normal contact betweenvtheel and the rail is
developed. It is shown that the solution of thenmalr contact problem without rail
lateral bending may lead to significant (over 3@¥prs in contact area detection.

REFERENCES

1. Abascal R, Rodriguez-Tembleque L., 2010.: A bounddgment formulation for wear
modeling on 3D contact and rolling-contact problefmgéernational Journal of Solids and
Structures. Volume 47, Issues 18-19, P. 2600-2612

2. Bokiy I, 2006.: A Numerical Approach for Solving TwiElastic Bodies Contact Interaction
Problem With Friction and History of External Lodgplication. Yakut State University
Bulletin, vol. 3., P. 42-46

3. Boucly V., Nélias D., Green I., 2007.: Modeling bétRolling and Sliding Contact Between
Two Asperities, ASME J. Tribol., 129, P. 235 - 245.



84

Alexander Golubenko, Alexander Kagsvich, llya Tsyganovskiy, Vladimir Nozhenko

4. Carter F.W., 1926.: On the action of a locomotivividg wheel. Proc. Roy. Soc., Ser. A.
Vol. 112. P. 151-157.

5. Cattaneo C., 1938.: Sul contatto di due copri eliagtistribuzione locale degli storzi. Rend.
Dell’Academia nazionale dei Lincei. Vol.27. Se6.342-348.

6. Damme, S., 2006.: Zur Finite-Element-Modellierures étationdren Rollkontakts von Rad
und Schiene. PhD thesis, Berichte des Institutdigchanik und Flachentragwerke Heft.

7. Golubenko A., 1993.: Wheel Rail Coupling: The Treatisiev, 448pp.

8. Hertz H., 1881.: Uber die Beruhrung fester elastigi Korper. Jerne und angewandte
Matematik. Bd.92, P. 156-171.

9. Johnson K.L., 1985.: Contact Mechanics. Cambridge URriess

10. Iwnicki S., ShackletonP., 2006.: MMU Wheel — Railn@act Benchmark.

11. Kalker J.J., 1990.: Three-Dimensional Elastic BedieRolling Contact.- Kluwer Academic
Publishers

12. Kostyukevich A.l, 1991.: A Numerical and Experimantdentification of the Locomotive
Wheel — Rail Coupling. PhD Thesis, Machine-Buildingtitute, Luhansk, Ukraine

13. Mindlin R.D.,1949.: Compliance of elastic bodies ontact. J. Appl. Mech. . Vol.16. No.3
P. 259-268.

14. Mossakovskiy V.., 1956.. On rolling of elastic bes. Proc. Of Il All-Union
Mathematicians Congress, Vol.1, P. 207.

15. Rudas M, Baynham J., Adey R.A., 2000.: Simulation bee&l-rail damage. Computers in
Railways VII, Transactions of the Wessex Institute.

16. Signorini A., 1955.: Solidi incomprimibili, Ann. MaPura Appl., P. 147 - 201

17. Telliskivi T., Olofsson U., 2001.: Contact mechaniasalysis of measured wheel-rail
profiles using the finite element method. JournaRail and Rapid Transit, Proc. Instn.
Mech. Engrs., 215, Part F.

18. Yazykov V.N., Pogorelov D.Yu., Mikhalchenko G.SQQ2.: Railway Vehicle Simulation
Using Non-Elliptical Wheel-Rail Contact Model. XXIternational Congress of Theoretical
and Applied Mechanics (ICTAM), Warsaw, Poland

19. Zhao X., Li Z., Dollevoet R., 2009.: Solution of ThW¥heel — Rail Rolling Contact in
Elasticity and Elasto-Plasticity Using a TransiEittite Element Model. 8Intern. Conf. on
Contact Mech. And Wear of Rail/Wheel Systems, Firgitaéy.

20. www.ansys.com

BJIMAHUE BOKOBOI'O OTKATHUSA PEJIBCA HA HAITPSIPKEHHO —
JE®OPMHUPOBAHHOE COCTOAHHUE B KOHTAKTE «KOJIECO - PEJIBC»

Auexcanap Iosny6enko, Anexkcanap KoctioxkeBuy,
Habs Lbiranoscekuii, Bragumup Hoxenko

AHHOTAIMS. L[CJ'II:IO JIAaHHOM CTaThU SBISTCS OIEHKA OOKOBOTO OTXATHS peiibCa Ha nIponecc B3aUMOICHCTBUS
KoJieca € pEIIbCOM. CHavana OOKOBOE OT)KaTHe peibCa MOACIHUPYETCA C IOMOLIBIO METOAA KOHEYHBIX
DJIEMEHTOB, a 3aTE€M pPCHIACTCsA HOpMaJibHAass KOHTAKTHAsA 3aJlada € Y4€TOM IIOJIYyYUYCHHBIX PE3YJIbTaTOB U 663;
TIPUBEACHBI PE3YIbTAThI YUCIICHHOTO MOACIUPOBAHUS.

KiioueBblie ¢jioBa: 60KOBOE OT)KATHE PpeIbCa, KOHTAKT «KOJIECO - PEIILC>», HOPMaJIbHas 3a1a4a



