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Summary. The aim of the article is to evaluate the influence of a rail lateral bending on wheel – rail contact 
interaction. At first the rail lateral bending is modeled using FEM and then the normal contact problem is 
solved with and without results obtained; the simulation results are given. 
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INTRODUCTION 

Traditionally the wheel – rail contact is divided into the normal and the tangential 
problems. The aim of solving the normal problem is contact patch shape and size 
detection, and also normal pressure distribution within, while the aim of solving the 
tangential problem – wheel – rail coupling force definition using data achieved from 
normal program solution. This division is usually justified because the friction has 
negligible influence on contact patch size and pressure distribution if the bodies are 
treated as elastic ones. The division is necessary for the simplification of the solution 
since the treatment of the contact problem in general case, when the contact area is not 
known a priori, is still not achieved. 

Only a finite number of treatises is known, that describe the approximative 
analytical solutions of different contact problem classes [Hertz 1881], [Carter 1926], 
[Cattaneo 1938], [Mindlin 1949], [Mossakovskiy 1956]. Therefore the various 
numerical methods are used to solve the wheel – rail contact problem today: variational 
and non-variational methods, and also finite and boundary elements methods.  

The variational principle use the modern variations calculus ideas and methods. 
Its foundations were laid by Signorini [Signorini 1955] and for elastic bodies in contact 
are advanced by Kalker [Kalker 1990], Golubenko [ Golubenko 1993], Boucly and 
Nelias [Boucly 2007]. Despite the variational inequalities theory progress, the solution 
of the contact problem entails great difficulties: the problem is posed in a three- 
dimensional formulation; when replacing the covariance inequalities by the sequence of 
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variational ones, that have an equivalent extremal formulation, one need to solve the 
linear programming task (which is complicated itself) for several times to obtain 
solution 

The nonvariational principle has a basic in a classical contact problem 
formulation in the form of equality and inequality constraints on contact surface. A 
search of solution for a contact problem may represent a sequence of elasticity theory 
problems with qualifying boundary conditions, that defines the terms of contact 
interaction (works [Johnson 1985.], [Kostyukevich 1991], [Yazykov 2004], [Bokiy 
2006]). The disadvantage of this approach is that to obtain a solution one need to solve 
the elasticity theory problem for several times. A convergence of the iterative process 
for obtaining a solution is not theoretically proved, though it turns out well to get a 
numerical result with a desirable precision in practice.  

Due to the increase in efficiency of modern computing machinery during the last 
two decades the finite elements method (FEM) is wide used for simulating a wheel – 
rail contact (works [Telliskivi 2001], [Damme 2006], [Zhao 2009]). The main 
advantages of FEM are: highly realistic results can be obtained; no restrictions on 
geometry of contact surfaces; complex material behaviour models. However grids in 
FEM models contain tens and even hundreds thousand of nodes, that make calculations 
sufficiently time consuming. 

Boundary elements method (BEM) is extremely suitable for contact modeling, 
because unlike FEM only surfaces of contacting bodies have to be discretized. Besides 
that BEM is semy-analytical, that make it more accurate, especially for high stress 
concentration provlems. However even that the quantity of computational nodes in the 
grid is much smaller than in FEM, the matrixes are non – symmetrical and dense, that 
makes calculations time consuming too. An application of BEM for wheel – rail contact 
problems is studied in [Rudas 2000], [Abascal 2010]. 

As it can be seen, a wide range of contact models exist to define the wheel-rail 
interaction. Having the aim to compare accuracy and efficiency of existing theoretical 
models of wheel – rail contact and those that will be developed, a group of researchers 
of Manchester Metropolitan University  have proposed contact benchmark [Iwnicki 
2006]. The benchmark consists of prescribed single wheel or wheelset contact study and 
dynamical vehicle simulation. According to benchmark, normal and tangential contact 
problems are considered. For normal contact problem the inputs are the wheel and rail 
profiles and their mutual orientation (lateral displacement and yaw angle), and vertical 
load on wheelset. However the rail lateral bending when the wheelset balances in track 
gauge is not provided in. At the same time it is well known from literature that the 
lateral load from wheel to rail  can obtain values 30 – 40 kN even on straight track. This 
paper aims to evaluate the rail lateral bending influence on wheel – rail contact. 

WHEEL – RAIL CONTACT MODELING 

Rail lateral bending was simulated using Ansys FEM software [Ansys]. The 3D 
model of UIC60 rail having length 1m was developed. The obtained value was meshed 
with 3-D 10-node tetrahedral structural solid elements Solid92. To avoid rail plastic 
deformation ,  in the area of load  application (middle of the rail) the mesh was refined. 
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The lateral force of 30 kN was uniformly distributed on small part of rail surface (see 
fig.1). 

The structural FEM analyses was performed with created model. The maximal 
lateral displacement was obtained in the top point of middle section and has value of 
0,2435 mm. 

The normal contact problem was solved using the modified method [Bokiy 
2006], assuming frictionless contact. 

 

 
 

Fig. 1. 3D FEM model of the rail 

Let’s consider contact interaction of two elastic bodies, each of them is 
connected with rigid body – rigid support. It is accepted that we can assume the contact 
surface is flat at any moment t  of interaction process and lays in a common tangent 
planeπ , which passes through the initial contact point О. It is assumed that wave and 
inertial effects are negligible. The interaction is defined with )(tz∆  function, which  

represents forward approach of rigid supports. 
Let’s introduce Oxyz Cartesian coordinate system, which is linked to lower body 

( 1=i ). Let’s put the origin toO , Ox and Oy axes are placed inπ , Oz axis points 

inside the lower body..  
Let’s denote normal contact pressure as ),( tsPz ; and ),( tsw  is a relative 

displacement function of interacting bodies alongz axis, defined inspoint: 
)()(),(),(),( 21 tsftswtswtsw z∆−+−= ,                                       (1)  

where: ),( tswi  - elastic displacements of bodies surfaces; )(sf  - initial gap between 

the bodies. Then the contact interaction condition have the form: 
0),( ≥tsw , 0),( ≥tsP  , 0),(),( =tswtsP , Ω∈s , ],0[ Tt ∈ .                      (2) 

Here Ω  is assumed contact area. 
Let’s assume that following relationship takes place: 

zAPww =− 21                                                             (3) 
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A  is a linear integral operator with integration domain W . If we approximate 
bodies with elastic half-spaces , then kernels are defined with Boussinesque-Cerrutti 
formulas for unit load acting upon the elastic half-space.  Then (1) takes form: 

)()(),( tsfAPtsw zz ∆−+= .                                                 (4) 

If we substitute the above expression of ),( tsw  in (2), we will get the 

relationship, which ),( tsPz  must be satisfied. This relationship is equal to linear 

operator equation relative to ),( tsPz : 

))((),( zzz PEDPhyxP −=  , 

)(),()( tyxfAPPD zzz ∆−+= ,                                (5) 
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where: Wyx ∈, , ),( yxE  - arbitrary positive function. 

The contact pressure determination came to finding  ),,( tyxPz  function, defined 

on set ],0[ T×Ω , which satisfies (5) and initial conditions: 0)0,,( =yxPz  for all 

Ω∈),( yx ; 0)0( =∆ . 

To get the approximate solution of (5) let’s proceed to it’s discrete analogue. 
Let’s divide  the loading process ],0[ T  into l  intervals ),(),,( 2110 tttt , …, ),( 1 ll tt − . 

The assumed contact areaΩ  is covered with grid which consists of N  similar quadric 

elements iΩ ( Ni ,1= ) with sides parallel toOx, Oy axes. The normal contact pressure 

)( mi tp  and also the corresponding elastic displacements on every boundary element 

iΩ  in time mt  are constant within the element and equal to values in ),( ii yx  - iΩ  

elements center.  
Based on the discretization made and taking into the account that the normal 

problem solution under continuous loading doesn’t depend on loading history, for 
contact pressure definition in time mt  we arrive to the next system of equations : 

))(()( mimi thtp γ= , 

))()(()()(
1

, mi

N

k
mkkiimimi tgtpaEtpt +−= ∑

=
γ ,                              (7) 

)(),()( mziimi tyxftg ∆−= , 

where: Ni ,1= , lm ,1= , 0>iE , kda   are the coefficients of flexibility matrix, defined 

according to A kernel formulas. If ji =  and quadric boundary element iΩ  with side 

h : 

)21ln(4 1, += ca ii  

If  ji ≠  then the distributed load on element iΩ  is replaced with resultant force 

acting on the element’s center:  
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where: Nji ,1, = , )( imesw Ω= , 22 )()( jijiij yyxx −+−=ρ , 
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For solving the system of equation (7) we can apply nonlinear analogue of Seidel 
method for linear equations system. Let’s assume that on ( 1−m ) step the contact 

pressures are known and equal to )( 1−mk tp , ),1( Nk = , and iii aE ,/1= ( Ni ,1= ), then 

on m  step contact pressures )( mk tp  can be found using the following iterative process: 
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As a criterion of stopping the iteration process on each load step is suitable to use 
rms difference  
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The given algorithm of solving the normal contact problem was realized as a 
software in C++ Buider 6.0 programming environment.  

For a numerical simulation the wheel S1002 and rail UIC60 profiles from 
Manchester Contact Benchmark were used. Those profiles are depicted on fig.2. The 
other inputs are: Wheel rolling radius=460 mm,  Gauge width=1435 mm,  Flange-back 
spacing=1360, Vertical load=100 kN, Young’s modulus E  = 2.1×1011 Па, Poisson 
ratio ν =0.28. 

 

 

Fig. 2. Wheel and rail profiles [Iwnicki 2006] 

The initial contact points locations were defined using algorithm introduced in 
[Kostyukevich 1991]. 

The simulation results are shown on fig.3. The wheel and rail profiles without 
rail bending are drawn with a solid green line, and the one with rail bending with a 
dashed gray  line.. It must be admitted that the changing in position of wheel profile is 
connected with the lateral rolling motion of the wheelset. The points of initial contact 
with and without bending are marked with maroon circles. 

As it can be seen from the figure, a rail bending has a significant impact upon the 
size and a shape of a contact patch. In Case 1 (without rail bending) the maximum 
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pressure is 1175 MPa, the contact patch area - 185 mm2. In Case 2 (with rail bending) 
the maximum pressure is 1330 MPa, , the contact patch area - 127 mm2. Hence, the 
difference between the contact patches’ area exceeds 30%. 

 

 

Fig.3. The normal problem solution results (1 –without rail bending, 2 – with one) 

CONCLUSIONS 

The mathematical model of normal contact between the wheel and the rail is 
developed. It is shown that the solution of the normal contact problem without rail 
lateral bending may lead to significant (over 30%) errors in contact area detection. 
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ВЛИЯНИЕ БОКОВОГО ОТЖАТИЯ РЕЛЬСА НА НАПРЯЖЕННО – 
ДЕФОРМИРОВАННОЕ СОСТОЯНИЕ В КОНТАКТЕ «КОЛЕСО - РЕЛЬС» 

Александр Голубенко, Александр Костюкевич,  
Илья Цыгановский, Владимир Ноженко 

Аннотация. Целью данной статьи являтся оценка бокового отжатия рельса на процесс взаимодействия 
колеса с рельсом. Сначала боковое отжатие рельса моделируется с помощью метода конечных 
элементов, а затем решается нормальная контактная задача с учетом полученных результатов и без; 
приведены результаты численного моделирования. 

Ключевые слова: боковое отжатие рельса, контакт «колесо - рельс», нормальная задача 

 


