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ROCK FAILURE ANALYSIS OF THE BROKEN ZONE AROUND A CIRCULAR OPENING

ANALIZA PĘKNIĘCIA SKAŁY W STREFIE NARUSZONEJ WOKÓŁ OTWORU KOLISTEGO

In this paper, considering the non-linear Hoek-Brown failure criterion, a new theoretical model is 
presented to predict the stress components and estimate the plastic zone radius around a circular tunnel. 
The tunnel is excavated in an elasto-plastic rock mass subjected to plane hydrostatic and axial in situ 
stresses. Effects of the axial in situ stress on the plastic zone radius and stress components are studied. 
Based on the combination of plane hydrostatic and axial in situ stresses with the equilibrium equation 
and a suitable failure criterion (Hoek & Brown failure criterion), several cases are considered. For each 
case, the stress components, the plastic zone radius and the necessary conditions for its occurrence are 
determined. The results obtained by the present method are compared with those using Mohr-Coulomb 
criterion and with the experimental data, illustrating the validity of the present model in predicting the 
failure zone radius.
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W artykule zaprezentowano opracowany w oparciu o nieliniowy warunek wytrzymałości Hoeka- 
Browna nowy model teoretyczny przeznaczony do prognozowania składowych naprężeń i estymowania 
promienia strefy plastycznej wokół tunelu o przekroju kołowym. Tunel wydrążony został w sprężysto-
-plastycznej skale pozostającej pod wpływem płaskich stanów naprężenia (naprężeń hydrostatycznych) 
oraz naprężeń osiowych zarejestrowanych in situ. Przeanalizowano skutki oddziaływania naprężeń osio-
wych in situ na promień strefy plastycznej oraz na składowe naprężenia. Zakładając połączenie płaskich 
stanów naprężenia, naprężeń osiowych działających in situ z warunkiem równowagi i odpowiednim 
warunkiem wytrzymałości (warunek wytrzymałości Hoeka-Browna), przeanalizowano kilka wyodręb-
nionych przypadków. Dla każdego z rozważanych przypadków określono składowe naprężenia, promień 
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strefy plastycznej oraz warunki niezbędne do jej wystąpienia. Wyniki uzyskane przy użyciu prezentowanej 
metody porównano z wynikami otrzymanymi w oparciu o warunek wytrzymałości Mohra-Coulomba oraz 
z danymi eksperymentalnymi, dowodząc zasadności stosowania obecnego modelu do prognozowania 
promienia strefy spękań.

Słowa kluczowe: rozwiązanie analityczne, kryterium wytrzymałości Mohra-Coulomba, promień strefy 
plastycznej, naprężenie osiowe działające in situ

1. Introduction

Prediction of the plastic zone radius and stress components around a circular tunnel excavated 
in a rock mass is an important problem in a wide variety of mining, tunneling and geotechnical 
engineering projects. 

 In the several past decades, an extensive amount of work has been done about the analysis 
of stresses and displacements around a circular tunnel considering various rock mass behaviors 
and failure criteria (Brown et al., 1983; Reed, 1986; Detournay, 1986; Wang, 1996; Lee & Pi-
etruszczak, 2008; Carranza-Torres & Fairhurst, 1999; Carranza-Torres, 2004). Sharan presented 
a closed form and a simple exact solution for the stress and displacement analyses of rock mass 
surrounding the circular opening subjected to the hydrostatic in situ stresses (Sharan, 2003, 2005, 
2008). He assumed an elastic-brittle-plastic behavior of the rock mass under plane strain condition. 
Park and Kim predicted the displacement around a circular opening in an elastic-brittle-plastic 
rock mass implementing an unassociated flow rule and validated the model with the data of the 
soft and hard rocks (Park & Kim, 2006). Guan et al., based on M-C failure criterion, investigated 
the influence of considering or not considering the unloading processing of ground on the stress 
distribution around tunnels (Guan et al., 2007). Wang et al. analyzed a circular tunnel in a strain 
softening rock mass using a numerical approach for both of M-C and H-B criteria (Wang et al., 
2009). Some researches such as Salustowicz; Borecki and Chudek; and recently Chudek; Duży; 
Kłeczek; Majcherczyk; Tajduś and Wichur; Wichur have used the continuity of radial displace-
ment approach to estimate the interface boundary between the elastic and plastic regions around 
underground openings (Salustowicz, 1965; Borecki & Chudek, 1972; Chudek, 1986; Duży, 2007; 
Kłeczek, 1994; Majcherczyk, 1995; Tajduś & Wichur, 2009; Wichur, 2009). 

Most of the previous researches only considered the hydrostatic in situ stress conditions, but 
did not take into account the effect of axial in situ stress. Zhong Lu et al. presented an analytical 
solution for the elastic-plastic stress and plastic radius around a circular tunnel subjected to an 
axial in situ stress based on M-C failure criterion and showed that the plastic zone radius and 
stress component around a circular tunnel depend on the axial stress, Pz (Zhong Lu et al., 2010). 
The axial in situ stress Pz along the axis of the tunnel can not be considered arbitrary, because of 
the plane strain assumption. Instead, Pz = 2µP since the axial normal strain εz is assumed zero. 
As 0 < µ < 0.5, Pz is always less than P. In fact, the horizontal in situ stresses are sensitive to the 
direction. The difference between the maximum and minimum horizontal stress at the same depth 
can be large, and depends on the local geological condition (Zhong Lu et al., 2010).

On the other hand, it is obvious that the considered failure criterion in the simulation of the 
rock behavior plays an important role. In this paper, implementing the non-linear failure criterion 
(Hoek-Brown), the plastic zone radius and stress component around a circular tunnel subjected 
to a plane hydrostatic and an axial in situ stresses are determined. The results are compared with 
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those of linear failure criterion (Mohr-coulomb) and with the experimental data available in the 
literature (Technical Deputy..., 2002). This comparison demonstrates the validity of the proposed 
method and illustrates the accuracy of the results obtained by using the present model.

2. Elastic and plastic zones around a circular tunnel

Based on the theory of plasticity, the radial stress, σr, and the tangential stress, σθ, in the rock 
mass around a circular tunnel subjected to the plane hydrostatic in situ stress, P, and the axial 
stress Pz, depend only on the value of P but not on the value of Pz. Furthermore, the axial stress 
component, σz, is equal to Pz and does not relates to r (Fig. 1). The elastic and plastic zones around 
the tunnel are considered to be continuous and it is assumed that there is continuity between the 
elastic and plastic stresses for the interface between them (at the interface the elastic and plastic 
stresses are equal) (Guan et al., 2007). It should be noted that in this paper, the concept of axial 
stress Pz is the same as that given in reference (Zhong Lu et al., 2010).

Fig. 1. Circular tunnel with its components

In the quasi-plane strain problems, the radial stress, σr, is the minor principal stress, whether 
the major principal stress can be considered as the tangential stress, σθ, or the axial stress, σz. 
Assuming the various values of P and Pz (which will be discussed in section 4), several different 
cases can be considered in the plastic zone:

Case 1: σθ > σz, for all points around the tunnel (Fig. 2-a).

Case 2: σθ = σz for R0 ≤ r ≤ R1, and σθ > σz for R1 ≤ r ≤ Rp, in which R0 is the radius of tunnel 
and R1 and Rp are the radii of plastic zone (Fig. 2-b).

Case 3: σθ = σz, for all points around the tunnel (Fig. 2-c).

Case 4: σθ = σz for R0 ≤ r ≤ R1, and σz > σθ for R1 ≤ r ≤ Rp (Fig. 2ِ-d).

Case 5: σz > σθ, in all points around the tunnel (Fig. 2-e).
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3. Failure Analysis

3.1. Case 1

The equilibrium equation in polar coordinates (Brady & Brown, 2004) can be written as:

 
0rrd

dr r

�� �� �
� �  (1)

On the other hand, the Hoek-Brown failure criterion is (Hoek & Brown, 1980):

 

1
2 2

1 3 3( )c cm s� � � � �� � �  (2)

where σ1 is the major principal stress at failure, σ3 is the minor principal stress at failure, σc is 
the uni-axial compressive strength of the intact rock material, m and s are the material constants 
which depend on the properties of the rock and on the extent to which it has been broken before 
being subject to the stresses (s = 1 for intact rock and s < 1 for previously broken rock).

Fig. 2. Different failure zones around a circular tunnel
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It was mentioned that for the quasi-plane strain problems, σr, is always the miner principal 
stress, so σ3 = σr. In addition in cases 1, 2, and 3 σθ ≥ σz , so σ1 = σθ, while in cases 4 and 5, 
σz ≥ σθ and σ1 = σz.

Rewriting the Hoek-Brown failure criterion for case 1 (Fig. 2-a) results in:

 

1

2 2( )r r c cm s�� � � � �� � �  (3)

Substituting Eq. (3) into Eq. (1) gives

 

1
2 21

( ) 0r
r c c

d
m s

dr r

�
� � �� � �  (4)

This equation can be solved using the separation of variables method (Keryszig, 2006). 
Rearranging Eq. (4) leads to the following differential equation

 

1
2 2( )

r

r c c

d dr

r
m s

�

� � �

�

�

 (5)

Integrating the two sides of Eq. (5) results in:

 

1
2 2

1

2
[( ) ]r c c

c

m s Ln r C
m

� � �
�

� � �  (6)

where C1 is a constant parameter and can be determined from the boundary condition in R0, 
where σr = 0, therefore,

 

1

2

1

2
o

s
C Ln R

m
� �  (7)

σr can be simplified in the following form in which the constants of C1, C2 and C3 are defined 
in Eqs. (7), (9), and (10) respectively.

 σr = C3(Ln r + C1)2 + C2  (8)

 2
cS

C
m

�
� �  (9)

 3
4

cm
C

�
�  (10)

Substituting Eq. (8) into Eq. (3) gives

 σθ = C3(Ln r + C1)2 + 2C3(Ln r + C1) + C2 (11)
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The axial stress σz can be determined by using the stress-strain relationship (generalized 
Hook’s law (Popov, 1990)) as 

 σz = µ(σθ + σr) + Pz – 2μP (12)

where µ is the Poisson’s ratio. Substituting Eqs. (8) and (11) into Eq. (12) leads to

 
2

3 1 3 1 22 ( ) ( ) 2z zC Ln r C C Ln r C C P P� � �� �� � � � � � �	 
  (13)

The stresses in the elastic zone (Rp ≤ r ≤ ∞) can be given directly by the theory of elasticity 
(Popov, 1990; Timoshenko, 2010; Saad, 2009) as

 
4

2

I

r

C
P

r
� � �  (14)

 
4

2

IC
P

r
�� � �  (15)

 σz = Pz (16)

The constant parameter, C4
I in Eqs. (14) and (15) and the plastic zone radius, Rp, can be 

obtained using the continuity condition of stresses at the elastic-plastic interface (r = Rp) as:

 at r = Rp ,  σr |Plastic = σr |Elastic (17-a)

 at r = Rp ,  σθ |Plastic = σθ |Elastic (17-b)

Substituting Eqs. (8) and (11) as the plastic stress components and Eqs. (14) and (15) as the 
elastic stress components in Eq. (17) gives

 
2

3 1 2( )pC LnR C C P� � � � 2
4 /I

pC R  (18)

 
2

4 /I
pC R2

3 1 3 1 2( ) 2 ( )p pC Ln R C C LnR C C P� � � � � �  (19)

Solving Eqs. (18) and (19) simultaneously for the unknowns Rp and C4
I (see Appendix A) 

gives

 

2
1

3

1 1
exp[ ]

2 4
p

P C
R C

C

�
� � � � �  (20)
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3.2. Case 2

As shown in Fig. 2-b, in the plastic zone I (R0 ≤ r ≤ R1), σθ = σz, while in the plastic zone 
II (R1 ≤ r ≤ Rp), σθ > σz. The results for the radial and tangential stress components, σr and σθ, in 
plastic zones I and II, are almost the same as given in Eqs. (8) and (11), respectively. In addition, 
the axial stress component, σz, in the plastic zone I is equal to σθ and in the plastic zone II can 
be determined from Eq. (13). The stress component in the elastic zone III, are similar as given 
in Eqs. (14) to (16). It should be noted that the constant C4

I should be replaced with the new 
unknown constant C4

II.
Using the continuity condition of stresses at the interface between zones I and II (r = R1) and 

at the interface between zones II and III (r = Rp), the radius R1 of the plastic zone I, the radius 
Rp of the plastic zone II, and the unknown constant C4

II can be calculated.
The continuity condition of σz between the plastic zones I and II should be established as:

 at r = R1 ,  σz |Zone I = σz |Zone II  (22)

In the plastic zone I, σz is equal to σθ (which is given by Eq. (11)). In the plastic zone II, σz 
can be calculated from Eq. (13). Replacing r in Eqs. (11) and (13) with R1 and substituting them 
into Eq. (22) leads to:

 

2

2

3 1 1 3 1 1 2

3 1 1 3 1 1 2

( ) 2 ( )

2 [ ( ) ( ) ] 2z

C LnR C C LnR C C

C LnR C C LnR C C P P� �

� � � �

� � � � � � �

�
 (23)

Solving Eq. (23) for R1, (see Appendix B) gives

 

1
2 2

2 2 1 3
1 1

1

( 4 )
exp[ ]

2

m m m m
R C

m
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� �  (24)

where

 m1 = 2C3µ – C3 (25)

 m2 = 2C3µ – 2C3  (26)

 m3 = 2C2µ + Pz – 2µP – C2 (27)

The continuity condition for σr and σθ between the plastic zones II and III should be estab-
lished as

 at r = Rp ,  σr |Zone II = σr |Elastic (28-a)

 at r = Rp ,  σθ |Zone II = σθ |Elastic (28-b)

Since the stress components for the plastic zone II and the elastic zone are similar to those 
of case 1, the equations for Rp and C4

II will be the same too i.e. 
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2
1

3

1 1
exp[ ]

2 4
p

P C
R C

C

�
� � � � �  (29)

 
2 2

4 3 1 2[ ( ) ]
II

p pC R P C Ln R C C� � � �  (30)

3.3. Case 3

Fig. 1-b and Fig. 1-c illustrate that case 3 is the same as case 2, where R1 = Rp. Therefore, 
in case 3, σr and σθ for the plastic zone can be determined from Eqs. (8) and (11), respectively. 
On the other hand, σz is equal to σθ which can be obtained from Eq. (11). It is obvious that the 
elastic stress components and the plastic zone radius, Rp, are the same as those of case 2.

3.4. Case 4

For case 4, the plastic zone I (R0 ≤ r ≤ R1), σθ is equal to σz, so both of them can be consid-
ered as the major principal stress. In other words, the failure criterion can be rewritten as Eq. (3). 
Therefore, in zone I, the stresses can be obtained as explained in section 3.1 and are the same as 
those given by Eqs. (8) and (11).

In the plastic zone II (R1 ≤ r ≤ Rp), σz is greater than σθ, so σz is the major principal stress 
and the H-B failure criterion will be changed to the following equation

 

1
2 2( )z r r c cm s� � � � �� � �  (31)

It should be noted that the equilibrium equation is still Eq. (1). The radial, tangential and 
axial plastic strain components can be obtained from the following equation by replacing the 
subscript i with r, θ and z, respectively (Zhong Lu et al., 2010).

 
p

i
i

f
d d� �

�



�



 (32)

where λ is the proportional coefficient and f is the associated flow rule which can be written as

 

1
2 2( )z r r c cf m s� � � � �
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� �	 


 (33)

Substituting Eq. (33) into Eq. (32) results in:
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p

z
z

f
d d d� � �

�



� �



 (36)

The plastic strain can be obtained (by integrating Eqs. (34), (35) and (36)) as

 

p
r� �

1
2 21 ( )c r c cm m s� � � � �

�� �
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� �	 


1

2
�  (37)

 εθ
p = 0 (38)

 εz
p = λ (39)

The total strain equals to the sum of the elastic and plastic strain components, which can 
be derived as

 

e p e
r r r r� � � �� � � �

1
2 21 ( )c r c cm m s� � � � �

�� �
� �� �
� �	 


1

2
�  (40)

 
pe

��� ��� ��  (41)

 0������ ����� e
z

p
z

e
zz  (42)

in which ε0 is a non-zero constant in a quasi-plane strain problem and is equal to (Pz – 2µP)/E 
(E is young modulus of the rock mass).

The elastic strain components can be determined from Hook’s law as:

 
( )

1e
r r z

E
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 (43)

 
( )

1e
r z

E
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 (44)

 
( )

1e
z z r

E
�� � � � �� �� � �	 
 (45)

Solving Eq. (42) for λ results in:

 λ = ε0 – εz
e (46)

The compatibility equation of strains is (Timoshenko, 2010):

 
rd

dr r

� �� � ��
�

 (47)
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Substituting Eqs. (40), (41), (42) and (46) into Eq. (47) lead to
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e
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r c r c c z

d
m m s
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�
�

�
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1

2
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Derivation of Eq. (44) with respect to r gives

 

1
e

r zd d d d

dr E dr E dr dr
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�

�
�
�
 (49)

Substituting Eqs. (43), (44), (45) and (49) into Eq. (48) lead to
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�
�
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2
 (50)

Derivation of Eq. (31) with respect to r gives

 

1
2 21 ( )z r

c r c c

d d
m m s
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�� �
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1

2
 (51)

In addition, solving Eq. (1) for σθ results in:

 
r

r

d
r

dr
�

�
� �� �  (52)

Derivation of Eq. (52) with respect to r gives

 

2

2
2 r rd d d

r
dr dr dr
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� �  (53)

Substituting Eqs. (31), (51), (52) and (53) into Eq. (50) lead to a second order differential 
equation for σr as
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2
2

2
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r
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�� �  (54)

where g(σr) is defined as:
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The radial stress, σr, can be determined by solving Eq. (54). Finally, the tangential and axial 
stress components, σθ and σz, can be obtained by substituting σr into Eq. (52) and Eq. (31), re-
spectively. Eq. (54) is a second order differential equation, so requires two boundary conditions 
for its solution. Furthermore, the plastic zone radii, R1 and Rp are the two additional unknown 
parameters.

The stress components in the elastic zone III, are similar to those given by Eqs. (14)-(16). 
It should be noted that the constant C4

I should be replaced with the new unknown constant C4
IV. 

In order to determine the five unknown parameters, R1, Rp, C4
IV and the two constant parameters 

(results from the solution of the differential equation given by Eq. (54)), five boundary conditions 
are required. These boundary conditions can be obtained from

 at r = R1 ,  σr |Zone I = σr |Zone II (56-a)

 at r = R1 ,  σθ |Zone I = σθ |Zone II (56-b)

 at r = Rp ,  σr |Zone II = σr |Elastic (56-c)

 at r = Rp ,  σθ |Zone II = σθ |Elastic (56-d)

 at r = Rp ,  σz |Zone II = σz |Elastic (56-e)

The closed form solution of Eq. (54) seems to be very difficult therefore; in this paper an 
appropriate numerical approach is used (see Appendix C). The results for the Eqs. (54), (52) and 
(31) are expected to be in the following form

 2r

b
a

r
� � �  (57)

 2

b
a

r
�� � �  (58)

 
2

2 2z c c

b b
a m a s

r r
� � �

� �� �
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�
�
�

�
�
�

1

2

 (59)

where a and b are constants.

3.5. Case 5

Fig. 2-d and Fig. 2-e illustrate that case 5 is the same as case 4, where R1 = R0. Therefore, in 
case 5, σr, σθ and σz for the plastic zone can be determined from Eqs. (57), (58) and (59), respec-
tively. On the other hand, the elastic stress components are similar to those given by Eqs. (14) 
to (16), except that the unknown constant C4

I which should be replaced with the new unknown 
constant C4

V.
The four undetermined parameters are: Rp, C4

V and the two constants result from the solution 
of Eq. (54). The required boundary conditions can be listed as
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 at r = R0 ,  σr |Plastic = 0 (60-a)

 at r = Rp ,  σr |Plastic = σr |Elastic (60-b)

 at r = Rp ,  σθ |Plastic = σθ |Elastic (60-c)

 at r = Rp ,  σz |Plastic = σz |Elastic (60-d)

4. The necessary conditions for occurrence of different cases

Based on different combination of P and Pz, one of the cases 1 to 5 can be occurred. The 
conditions that P and Pz should satisfy for the occurrence of cases 1-5 are discussed in this sec-
tion.

Comparison between Fig. 2a and Fig. 2b shows that case 1 is the same as case 2, if R1 = R0. 
On the other hand, It is obvious that always R1 ≥ R0. Let Pz1 be a specific value of Pz, so that at 
this value, R1 equals to R0. Substituting R1 = R0 in Eq. (24) (For more details, see Appendix D) 
results in: 

 1
2 (1 )

z c
P P s� � �� � �

1

2 (61)

Eqs. (25), (26) and (27) illustrate that only m3 relates to P and Pz. For a constant value 
of P, the parameter m3 increases with the increase of Pz. On the other hand, Eq. (24) shows that 
the value of R1 increases with the increase of m3. So, R1 increases with the increase of Pz. The 
minimum value of R1 is R0, where in this condition, Pz = Pz1. Therefore, if Pz ≤ Pz1, case 1 oc-
curs and if Pz ≥ Pz1 , case 2.

Fig. 2-b, Fig. 2-c and Fig. 2-d show that both of cases 2 and 4 are the same as case 3, if 
R1 = Rp. On the other hand, It is obvious that always R1 ≤ Rp. Let Pz2 be a specific value of Pz, 
so that at this value, R1 equals to Rp. Substituting R1 = Rp in Eqs. (24) and equating it with Eq. 
(29) (for more details, see Appendix D) results in: 
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2 2
2 1 1 1 1 1 2
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2 2
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2
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1
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 (62)

Therefore, the condition of occurrence of case 2 changes to Pz1 ≤ Pz ≤ Pz2; if Pz = Pz2, case 3 
occurs and if Pz ≥ Pz2 case 4.

Let Pz3 be a specific value of Pz, so that at this value, Rp approaches to infinity. In this 
condition, the H-B failure criterion of case 4 can be rewritten as

 

1
2 2

3 ( )z c cP P mP s� �� � �  (63)

Finally, the maximum strength of the surrounding rock will be at a value of Pz = Pz3.
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5. Results and Discussions

In this section, the results for the plastic zone radius, the radial, tangential and axial stress 
components, obtained from the present theory have been compared with those obtained by using 
M-C failure criterion. The plastic zone radii, based on two different failure criteria, M-C and 
H-B, have also been compared with the available experimental data.

For all cases, the properties of the rock mass are the same (Table 1). The in situ stress is 
taken as P = 30 MPa and the radius of tunnel, R0, has been assumed to be 3 meters.

TABLE 1

Properties of the rock sample

σc (MPa) E (GPa) µ m S C (MPa) φ (Degree)
80 8.944 0.25 2.012 0.0039 4.21 32.07

The values of Pz1, Pz2 and Pz3, obtained here have been compared with the results using the 
Mohr-Coulomb failure criterion (Zhong Lu et al., 2010) (Table 2). 

TABLE 2

The results of Pz1, Pz2 and Pz3 (MPa) for P = 30 MPa

M-C Criterion (Wang et al., 2009) H-B Criterion 
Pz1 Pz2 Pz3 Pz1 Pz2 Pz3
26.4 49.5 111.4 18.7 50.1 99.7

5.1. Results for Case 1

It is assumed that Pz = 15 MPa, which is less than Pz1 (for failure criteria). Fig. 3 shows the 
radial, tangential and axial stress components, obtained from the H-B and M-C criteria. Fig. 3 
illustrates that the radial stress, σr, obtained from the two theories are very close to each other. 
In addition, for all stress components, as r increases, the difference between the Mohr-Coulomb 
and Hoek-Brown results decreases. The plastic zone radii, obtained from M-C and H-B failure 
criteria, are 4.55 and 4.65 meters, respectively.

Eq. (20) illustrates that plastic zone radius, Rp, only relates to P, not to Pz. Fig. 4 shows the 
values of Rp, with respect to P, for case 1 using M-C and H-B failure criteria. It is assumed that 
the value of Pz is equal to 15MPa. The results show that the plastic zone radii predicted by H-B 
criterion is a few more than those of M-C criterion. 

5.2. Results for Case 2

In this case, Pz = 40 MPa and Pz1 ≤ Pz ≤ Pz2, (for both failure criteria). Fig. 5 shows the 
radial, tangential and axial stress components, obtained by using the H-B and M-C criteria. In 
section 3.2, it was mentioned that in plastic zones I and II, the radial and tangential stress com-
ponents, σr and σθ, can be obtained from Eqs. (8), (11) respectively. In addition, the axial stress 
component, σz, in the plastic zone I is equal to σθ and in the plastic zone II can be determined 
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Fig. 3. Distribution of stress components for case 1, P = 30 MPa, Pz = 15 MPa, 
a) Radial stress, b) Tangential stress, c) Axial stress

Fig. 4. Variation of Rp with constant Pz(Pz = 15 MPa) and various P

from Eq. (13). In other words, in the plastic zone, σr and σθ are formulated by one function while 
σz is formulated by two functions. The radii of the plastic zone I, obtained from M-C and H-B 
failure criteria, are 4.05 and 4.13 meters, respectively, while the radii of the plastic zone II are 
the same as those of case 1.
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Figs. 6 and 7 show the obtained radius of the plastic zone I, R1, for case 2 using the M-C 
and H-B failure criteria, respectively.

Fig. 5. Distribution of stress components for case 2, P = 30 MPa, Pz = 40 MPa, 
a) Radial stress, b) Tangential stress, c) Axial stress

Fig. 6. Variation of R1 for a constant Pz(Pz = 40 MPa) and various values of P
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5.3. Results of Case 3

It was mentioned (in sections 3.3 and 4) that in case 3, Pz = Pz2 and R1 = Rp. In other words, 
replacing Pz with Pz2 leads to R1 = Rp.

In this case, the stress components can be obtained by replacing Pz (in case 2) with Pz2. 
Fig. 8 shows the axial stress component, σz, based on H-B failure criterion (it has been obtained 
from case 2 by replacing Pz with Pz2). Comparing Fig. 8 with Fig. 5-c illustrates that Fig. 8 is 
the same as Fig 5-c, if R1 converges to Rp.

Fig. 7. Variation of R1 for constant P(P = 30 MPa) and various values of Pz

Fig. 8. Variation of σz /P with respect to r for case 3, P = 30 MPa, Pz = Pz2
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5.4. Results of Case 4

In this case, Pz = 70 MPa and Pz2 ≤ Pz ≤ Pz3, (obtained from both failure criteria). The 
radial, tangential and axial stress components, obtained from H-B and M-C criteria, have been 
shown in Fig. 9. In this case (unlike case 2), all of the stress components, σr, σθ and σz have two 
functions in the plastic zone.

In case 4, the plastic zone radii, R1 and Rp are calculated numerically.

Fig. 9. Distribution of stress components for case 4, P = 30 MPa, Pz = 70 MPa, 
a) Radial stress, b) Tangential stress, c) Axial stress

5.5. Comparison of the theoretical plastic zone radius 
with the experimental data

The plastic zone radius, obtained from M-C and H-B failure criteria, have been compared 
with the plastic zone radius obtained with experimental data obtained by observational methods 
in Emamzade Hashem tunnel of Iran (Technical Deputy..., 2002). The properties of the rock mass 
in the different sections of tunnel are shown in Table 3. The tunnel radius, R0, is about 5.8 m and 
the in situ stress, P is equal to 10 MPa.
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TABLE 3

Properties of rock mass in the different sections of Emamzade Hashem tunnel (Technical Deputy..., 2002)

Sample No. σc (MPa) E (GPa) µ m S C (MPa) φ (Degree) Rp (m)
1 40 1.5 0.25 0.606 0.0017 0.825 29.2 13.9
2 40 1.5 0.26 0.800 0.003 0.735 35.3 11.3
3 38 1.5 0.27 0.523 0.002 0.683 29.94 13.1
4 40 1.5 0.26 0.736 0.0026 0.726 34.27 11.7
5 41 1.5 0.27 0.860 0.0034 0.796 35.59 11.5
6 41 1.5 0.25 1.065 0.0042 0.865 37.16 11.2
7 42 1.5 0.24 1.443 0.0052 0.982 39.47 11.0
8 41 1.5 0.24 1.209 0.0047 0.936 37.61 11.3

Fig. 10 compares the theoretical results, based on two different failure criteria, and the re-
sults obtained from the experimental data. Except the sample number 3, in all other samples the 
experimental results are greater than those of obtained by M-C and H-B criteria. Fig. 10 shows 
that the Hoek-Brown failure criterion can predict the plastic zone radius with slightly better ac-
curacy compared to the Mohr-Coulomb failure criterion. Implementing the least squares error 
method, it can be concluded that the error in Rp using H-B criterion is about 14.3%, while that 
of using M-C Criterion is about 16.1%.

Fig. 10. Comparing the plastic zone radius (using M-C and H-B failure criteria, and experimental data)
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6. Conclusion

In this study, using the non-linear Hoek-Brown failure criterion, a new analytical method is 
proposed for estimating the stress components and plastic zone radius around a circular tunnel 
subjected to a plane hydrostatic and an axial in situ stresses. The radial stress, σr, obtained based 
on M-C and H-B criteria are in good agreement with each other, but the other stress components, 
σθ and σz, (obtained also by using M-C and H-B criteria) have a meaningful difference in the vicin-
ity of the tunnel boundary. For all the stress components, with the increasing in r, the difference 
between the M-C and H-B results decreases. In the plastic zone, all of stress components, σr, σθ 
and σz, determined based on M-C failure criterion are more than those of determined based on 
H-B failure criterion. Considering a non-linear failure criterion (Hoek-Brown), affects slightly 
on the determined plastic zone radius, in such way as that the plastic zone radii predicted by 
H-B criterion are a little more than those predicted by using the M-C criterion. The difference 
between the corresponding plastic radii obtained by using Mohr-Coulomb and Hoek-Brown 
failure criteria increases with the increasing in P/Pz ratio. Both of M-C and H-B failure criteria 
underestimate the plastic zone radius. However, the error in Rp using H-B criterion is a little less 
than that obtained by using the M-C criterion.
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APPENDIX A

Solving Eqs. (18) and (19) in order to find Rp and C4
I;

 
2 2

3 1 2 4( ) /I
p pC LnR C C P C R� � � �  (A-1)

 
2 2

3 1 3 1 2 4( ) 2 ( ) I
p p PC LnR C C LnR C C P C R� � � � � � /  (A-2)

Adding Eqs. (A-1) and (A-2) gives:

 
2

3 1 3 1 22 ( ) 2 ( ) 2 2p pC LnR C C Ln R C C P� � � � �  (A-3)

Assuming Ln Rp + C1 = t, Eq. (A-3) can be convert to Eq. (A-4):

 

2 2

3

0
P C

t t
C

�
� � �  (A-4)

Solving Eq. (A-4) for t results in:
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3

1 1
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P C
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C
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It is obvious that:

 

1/2

1 0

2
0p p

s
LnR C LnR LnR

m
� � � � �  (A-6)

So:

 

2
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1 1

2 4
p
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t LnR C

C
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Solving Eq. (A-7) for Rp leads to:

 

2
1
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1 1
exp

2 4
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P C
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 (A-8)

Substituting Eq. (A-8) into Eq. (A-1), C4
I can be obtained as:

 
2 2

4 3 1 2[ ( ) ]I
p pC R P C Ln R C C� � � �  (A-9)

APPENDIX B

Solving Eq. (23) for the radius of the plastic zone I, R1;

 

2

2

3 1 1 3 1 1 2

3 1 1 3 1 1 2

( ) 2 ( )

2 [ ( ) ( ) ] 2z

C LnR C C LnR C C

C LnR C C LnR C C P P� �
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�
 (B-1)

Assuming Ln R1 + C1 = t, Eq. (B-1) converts to:

 
2 2

3 3 2 3 3 22 2 [ ] 2zC t C t C C t C t C P P� �� � � � � � �  (B-2)

Eq. (B-2) can be written as:

 m1t 2 + m2t + m3 = 0 (B-3)

where:

 m1 = 2C3µ – C3 (B-4)

 m2 = 2C3µ – 2C3  (B-5)

 m3 = 2C2µ + Pz – 2µP – C2  (B-6)

Solving Eq. (B-3) for t gives:
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Since t ≥ 0 and m1 ≤ 0 (see Eq. (B-4)):
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So:

 

1
2 2

2 2 1 3
1 1

1

( 4 )
exp[ ]

2

m m m m
R C

m

� � �
� �  (B-9)

APPENDIX C

Solving Eq. (54) with considering boundary conditions (Eq. (56));

 
( )

2
2

2
3r r

r

d d
r r g

drdr

� �
�� �  (C-1)

In order to solve Eq. (C-1), the Euler’s method is used (Keryszig, 2006). Between R1 and 
Rp, several points are defined (in this work 18 points were defined). The initial guesses for R1 
and Rp are considered. From Eqs. (56-a) and (56-b) the values of σr and σθ in r = R1 are deter-

mined. Substituting σr and σθ for r = R1 into Eq. (52), rd

dr

�  in r = R1 is obtained. By considering 

σr and rd

dr

�  in r = R1, the value of σr for the other points is calculated. Substituting the value 

of σr, obtained for the last point (at r = Rp) into Eqs. (31) and (52), gives σθ and σz. Substituting 
the obtained values of σr, σθ and σz for r = Rp into Eqs. (56-c) and (56-d), C4

IV and the new value 
of Rp are calculated. On the other hand, the new value of Rp can be calculated by substituting 
the obtained values of σr, σθ and σz for r = Rp into Eq. (56-e). If the two new values of Rp are 
equal together, the initial guesses for R1 and Rp are correct. Else, the new initial guesses must be 
considered and the approach repeated.

APPENDIX D

Determination of Pz1, Pz2 and Pz3;

Calculation of Pz1;
Replacing R1 in Eq. (24) with R0 gives:
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So:
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Rewriting Eq. (D-2) gives:

 ( )

1
2 2
2 1 3 1 0 1 2( 4 ) 2m m m m LnR C m� � � � �  (D-3)

Or:

 ( )
22
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  (D-4)

Eq. (D-4) can be simplified as:

 ( ) ( )
22 2 2

2 1 3 1 0 1 2 1 2 0 1( 4 ) 4 4m m m m LnR C m m m LnR C� � � � � �  (D-5)

Solving Eq. (D-5) for m3 results in:

 ( ) ( )
2

3 1 0 1 2 0 1m m LnR C m LnR C� � � � �  (D-6)

Combination Eqs. (D-6) and (27) gives:

 ( ) ( )
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Which can be rearrenged as:
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 (D-7)

Substituting C1, C2, m1 and m2 from Eqs. (7), (9), (25) and (26), respectively leads to:

 1
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Calculation of Pz2;
Substituting R1 and Rp from Eqs. (24) and (29), respectively gives:
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Or:
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Eq. (D-10) can be rewritten as:
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Or:
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Solving Eq. (D-12) for m3 results in:
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Combination Eqs. (D-13) and (27) gives:
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Rewriting Eq. (D-14) results:
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