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MODELING ATMOSPHERE COMPOSITION AND DETERMINING EXPLOSIBILITY 
IN A SEALED COAL MINE VOLUME

MODELOWANIE SKŁADU POWIETRZA I OKREŚLANIE NIEBEZPIECZEŃSTWA WYBUCHU 
W ZAMKNIĘTEJ PRZESTRZENI W OBRĘBIE KOPALNI WĘGLA

Explosions originated from or around the sealed areas in underground coal mines present a serious 
safety threat. The explosibility of the mine atmosphere depends on the composition of oxygen, combu-
stible and inert gases. In additional, the composition in the inaccessible sealed areas change with time 
under various factors, such as gases emissions, air leakage, inert gases injected, etc. In order to improve 
mine safety, in this paper, a mathematical model based on the control volume approach to simulate the 
atmosphere compositions is developed, and the expanded Coward explosibility triangle diagram is used 
to assess the mine gas explosion risk. A computer program is developed to carry out the required com-
putations and to display the results. In addition, the USBM explosibility diagram is also included in the 
program to serve as a double check. 

Keywords: mine sealed atmosphere; mine gas explosibility; simulation model; dynamic atmosphere 
changes

Wybuchy powstające wewnątrz lub wokół zamkniętych (odizolowanych) regionów w podziemnych 
kopalniach węgla stanowią poważne zagrożenie. Możliwość wystąpienia wybuchu powietrza kopalnianego 
uzależniona jest od proporcji zawartego w nim tlenu, gazów palnych i gazów obojętnych. Ponadto, skład 
atmosfery wewnątrz zamkniętych odizolowanych przestrzeni ulega zmianom w czasie pod wpływem 
różnorakich czynników: wydzielanie gazów, przecieki powietrza, doprowadzanie gazów obojętnych. Dla 
poprawy bezpieczeństwa pracy w kopalni opracowano model matematyczny bazujący na metodzie objętości 
kontrolnej dla symulacji składu powietrza. Rozszerzony wykres Cowarda wskazujący skłonność do wybu-
chu wykorzystany został do oszacowania ryzyka wystąpienia wybuchu gazów kopalnianych. Opracowano 
program komputerowy który wykonuje niezbędne obliczenia i wyświetla wyniki. Ponadto, dla dodatko-
wego potwierdzenia wyników wykorzystano wykres USBM obrazujący niebezpieczeństwo wybuchu. 

Słowa kluczowe: powietrze w odizolowanej części kopalni, niebezpieczeństwo wybuchu gazów kopal-
niach, model symulacyjny, dynamiczne zmiany składu powietrza
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1. Introduction

Underground coal mines normally choose to seal old mined areas so that ventilation to these 
areas is no longer needed. Sealing is also a common way to extinguish large mine fires. In normal 
condition, once a mined area is sealed the methane concentration would increase (Szlazak & 
Kubaczka, 2012). The atmosphere in the sealed area will go through a critical period in which 
methane concentration would be between the lower and upper explosive limits. Injection of inert 
gas (N2 or CO2) is often employed to shorten this critical period. For effectively managing the 
atmosphere in the sealed areas, it is very important to know its gas composition, changing pat-
terns and explosibility in advance. In other words, the explosion or fire risk assessment should be 
considered in an integrated manner (Cioca & Moraru, 2012). It should be noted that the change 
of gas composition in a sealed volume is controlled by many independent variables such as 
inflows of methane and other combustible gases, air leakage in and out through the mine seals, 
inert gases injected into the sealed volume, and change in atmospheric pressure. A simulation 
tool to determine the gas composition and subsequently its explosibility considering all these 
independent variables would be very useful tool for managing the sealed mine atmosphere.

A number of methods have been proposed for assessing the explosibility of the air-gas mix-
ture. Kukuczka analyzed compositions of the coal mine gas and created a model to determine the 
explosibility through a mathematical transformation to convert intricate combustible contents into 
a single gas (Kukuczka, 1982). Jacobs and Porter (1998) proposed their algorithms to generate 
a control chat depicting the changes in percent of combustibles and the lower and upper explosive 
limits of the current atmosphere. It also provided a prediction option for the user to look into 
the potential changes in the atmosphere over a period of time. The USBM explosibility diagram 
is a method widely used in the U.S. mining industry (Ray et al., 2004). This method uses the 
effective combustibles (converted from the methane, hydrogen, and carbon monoxide) and the 
effective inert (converted from the carbon dioxide and nitrogen) in the atmosphere to assess the 
explosibility of the mine atmosphere. 

This paper presents a mathematical model based on the control volume approach to simu-
late the time-dependent atmosphere composition in a sealed mine area. The expanded Coward 
explosive triangle method to determine the explosibility of the mine atmosphere considering all 
combustible mine gases is also presented. The program to facilitate the application of the gas 
composition simulation model and to determine the explosibility is demonstrated.

2. Time-dependent Composition change model 
for sealed atmosphere

2.1. The Control Volume Approach

According to the law of mass conservation, the mass may be neither created nor destroyed. 
With respect to a constant sealed volume, the law of conservation of mass can be simply de-
scribed as:

 

Rate of mass 
effl  ux from 

sealed volume

Rate of mass 
effl  ux into 

sealed volume

Rate of accumulaƟ on 
of mass within 
sealed volume

– + = 0  (1)
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Considering a general control volume1 located in a fluid flow field as shown in Figure 1, 
for the small element of area dA on the control surface, assuming the velocity vector is v and θ 
is the angle between the velocity vector and the outward directed unit normal vector, n to dA. 
From vector algebra, the rate of mass efflux can be rewritten as (Welty et al., 2001:

 ( )  cosdA v dA   v n v n  (2)

Physically, this dot product represents the amount of mass flowing through a unit cross-
sectional area per unit time. If integrating this quantity over the entire control surface, the net 
outward flow of mass across the control surface, or the net mass efflux from the control volume 
can be expressed as:

 . .
( )

C S
dA  v n  (3)

On the other hand, the rate of accumulation of mass within the control volume may be 
expressed as:

 .
 

C V
dV

t


   (4)

The integral expression for the mass balance over a general control volume becomes:

 . . .
( )    0

C S C V
dA dV

t
 

  
 v n  (5)

1 A control volume: A definite volume specified in space. Matter in a control volume can change with time as matter 
enters and leaves its control surface.

Fig. 1. Fluid flow through a control volume
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2.2. Step-wise dynamic simulation model

The “Gob Assistant Program” (Foster-Miller, 1988) may have been the first effort to 
understand the sealed atmosphere quantitatively and to calculate leakage quantity in and out. 
Later, Zipf and Mohamed (2010) carry on the ideas and develop their model that can handle 
up to four different gas species, which are Q2, N2, CO2 and CH4. Such developed mathematical 
model is based on the approach using the rate of change method. However, the drawbacks are: 
a) the time rate of change is often expressed as a ratio between a change in one variable relative 
to a corresponding change in another with focusing one speci  fic location. It is not sufficient to 
reflect the atmosphere’s overall changing features; b) the leakge coefficient used fails to consider 
the effects of the number of mine seals used at the same time. However, with the help of the 
Atkinson’s question, a more clear relationship equation can be derived; c) The actual barometric 
pressure data should be summarized and included; d) Due to the complicated gas compositions 
in the sealed area, more gas species should be considered. 

A mathematical model is developed to simulate the composition change in a sealed mine 
area. Common combustible gases emitting from surround strata or generating from coal mine 
fires or explosions. Generally, three general categories of gases make up the atmosphere mixture 
in a sealed mine area. They are: (1) atmospheric gases, (2) products of low temperature oxidation, 
combustion or explosion (Timko and Derick, 2006), and (3) the gas emitted from the coal seam 
such as CH4 and CO2. The byproduct gases of gas explosion and coal oxidation in the sealed 
volume are CO2, CO, and CxHy as shown in the following chemical reaction equations. 

Coal oxidation:

 aCoal + bO2 = cCO + dCO2 + eH2O + f CxHy (6)

In Eq. 2, a, b, c, d, e and f are stoichiometric coefficients. Field experiences show CxHy is 
generally the alkane (CnH2n+2), alkene (CnH2n) or alkyne (CnH2n-2) series of hydrocarbon gases. 
In coal mine fires or explosions, acetylene (C2H2), ethylene (C2H4) and ethane (C2H6) are often 
found in the underground air. Hence, the scales of the new model is capable of nine gas species, 
which are CH4, CO, N2, C2H2, C2H4, C2H6, CO2, H2 and O2. Figure 2 shows the airflow exchanges 
between the sealed volume and its surroundings. In the sealed volume (V), the atmosphere is 
consisted of the nine gases mentioned above. The volume occupied by each gas is denoted by 
subscripts with corresponding chemical formula. The total pressure in the sealed volume (Pt) 
is the sum of the partial pressures of the individual gases. The barometric pressure outside the 
sealed volume is shown as Pv. Apparently, if Pt < Pv, the outside air flows through the mine seals 
into the sealed volume and this process is called air-inflowing. Conversely, if Pt > Pv, air in the 
sealed volume flows out and it is called gas-outflowing. In addition, this model also considers 
the inflow of combustible gas, mainly CH4 from surrounding strata to the sealed volume. The 
effects of injecting inert gas into the sealed volume to prevent potential gas explosion can be 
also simulated.

Therefore, the concentration and partial pressure of each gas in the sealed volume would 
change with time and the changes are controlled by the inflows and outflows as well as by the 
atmospheric pressure. 

Unlike the previous mentioned models, the new mathematical model is derived based on 
the control volume approach but also follows the law of mass conservation and the ideal gas law. 
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The model can be considered as a fine and improved model, and still following some assump-
tions made in pervious works:

1) The volume of the sealed mine area (V) is constant.
2) The gas composition throughout the sealed volume is homogeneous. 
3) Any added gases, such as emitted combustible gases, injected inert gas or the air leaked 

into the sealed volume will be mixed instantaneously.
4) The gas composition of the outgassing flow is identical to that of the sealed atmosphere.
5) The inert Ar concentration in the sealed volume is negligible and assumed zero.
6) The temperature in the sealed area remains to be constant.
7) The mass and the pressure can be connected with using the ideal gas law, for each gas in 

the sealed volume, the following equation is established:

 gPV mR T  (7)

In this equation P is the partial pressure of a given gas; V is the sealed volume; m is the total 
mass of the gas; Rg is the specific gas constant; and T is the absolute temperature.

When the total gas pressure in the sealed area is lower than the atmospheric pressure outside, 
Pt(t) < Pv(t), it is a air-inflowing condition. The normal mine air flows into the sealed volume.
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Fig. 2. Volume of the sealed atmosphere and its leakage depending on the differential pressure 
(After Zipf & Mohamed, 2010)
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When the total gas pressure in the sealed area is higher than the atmospheric pressure outside, 
Pt(t) > Pv(t), it is a gas-outflowing condition. The gases flow out of the sealed volume.
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The variables and constants in equations are defined as follows: The subscript “i” represents 
each of the nine gases in the sealed volume. They are listed as i = 1…9 for CH4, N2, O2, CO, CO2, 
H2, C2H2, C2H4 and C2H6, respectively. Term mi is the total mass of gas i in the volume and is 
a function of time. Term m· i is the rate of mass change of gas i in the volume. In an air-inflowing 
process, they are defined as:

 m· 1 = ρ1QCH4 (10)

 m· 2 = 0.75ρairQL + ρ2QN4 (11)

 m· 3 = 0.25ρairQL (12)

 m· 4 = m· 5 = m· 6 = m· 7 = m· 8 = m· 9 = 0 (13)

In the gas-outflowing process, they are defined as:

 m· 1 = ρ1QCH4 (14)

 m· 2 = ρ2QN2 (15)

 m· 3 = m· 4 = m· 5 = m· 6 = m· 7 = m· 8 = m· 9 = 0 (16)

Where QCH4 is the CH4 volumetric inflow rate and QN2 is the N2 volumetric inflow rate 
injected into the sealed volume. They are assumed to be 100% pure. ρair  is the air density.
 Ri — specific gas constant of gas i.
 ρi — density of gas i at standard pressure and temperature.
 Pi — partial pressure of gas i at a given time.
 M — total mass of the gases in the sealed volume at a given time.
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 Pt — total pressure or the sum of the partial pressures of all individual gases at a given 
time. 

 PV — barometric pressure outside of the sealed area. It could change significantly over 
time

 T — absolute temperature.
 V — volume of the sealed atmosphere. 
 QL — volumetric leakage rate in or out of the sealed volume through the mine seals at 

a given time. It should be noted that QL is significantly affected by the number 
of and the quality of the mine seals built around the sealed area. Generally, the 
more mine seals are used; the more leakage flow is induced since these seals act 
as a parallel system. On the other hand, the quality of mine seals is also important. 
Mine seals with poor quality offer less resistance to the leaking flow.

 n — number of the seals used.
 m· mix — mass leakage rate from the sealed volume at a given time.
 ρmix — density of gas mixture leaking through the mine seals at standard pressure and 

temperature at a given time.

3. Expanded Explosibility Triangle

In the original Coward explosive triangle (Coward 1952) , There are only three combustible 
gases (i.e., CH4, CO and H2) considered. The explosibility of the mixture depends on the percent 
of the combustible gases and oxygen. Figure 3 shows the CO explosive triangles. A total of four 
zones can be found, which are non-explosive zone, not-explosive zone, explosive zone and im-
possible mixture zone, respectively. However, the gas- mixture can be changed from one zone 
to the other once boundary conditions change.

Fig. 3. CO explosive triangle
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Like discussed, various hydrocarbon gases may exist in the sealed volume and their con-
centration may be even higher than those of CO and H2. Hence, three more hydrocarbon gases, 
acetylene (C2H2), ethylene (C2H4) and ethane (C2H6), are added to the original Coward method 
so that the expanded explosibility triangle can be obtained. The flammability limits for the all 
combustible gases are also listed in Table 1. 

TABLE 1

Vertices of explosive triangles (percentages)

Gas
Flammable Limits Nose Limits Nitrogen to be added to make mixture 

extinctive: (N + m3 of nitrogen per m3 
of combustible gas)Lower Upper Gas Oxygen

Methane (CH4) 5.00 14.00 5.90 12.20 6.07
Hydrogen (H2) 4.00 74.20 4.30 5.10 4.13
Carbon monoxide (CO) 12.50 74.20 13.8 6.10 16.59
Ethylene (C2H4) 2.75 28.60 2.89 6.06 15.60
Ethane (C2H6) 3.00 12.50 3.12 8.41 12.80
Acetylene (C2H2) 2.50 80.00 2.67 5.07 28.91

For these three more combustible gases, the procedure to generate the resultant Coward 
triangle is described as follows (After McPherson, 1993):

Determine the total combustibles percentage. If the volume percentages of the three com-
bustible gases are C1, C2 … and C6, respectively. The total combustibles percentage is:

 CT = C1+C2+ ...+C6 (17)

• Determine the gas flammability. The Le Chatelier’s principle in the form of Equation 18 
is used to determine upper, lower and nose flammability of mixed gases. To apply this 
equation for the lower explosibility limit of the mixture (Lmix), the lower limits of the 
three gases are substituted in the places of L1, L2, … and L6. The same can be done for 
the upper and nose limits.

 
61 2

1 2 6
...T

mix

PP P P
L L L L

     (18)

• Determine the required excess nitrogen. An effective way to render an air-gas mixture into 
a non-explosive one is to inject an excessive volume of nitrogen (Nex) into the mixture as 
shown in Eq. 19. In this equation, Ln is the nose flammability of the mixed gases, N+ is 
the volumes of excess nitrogen to be added in order to make flammable gases extinctive 
(Inert ratio). Table 1 also presents the excess nitrogen if the combustible content consisted 
of one gas only.

 
1 1 2 2 6 6{ }n

ex
T

L
N N P N P N P

P
       (19)

• Determine the oxygen percentage at the nose limit (On). 

 On = 0.2093(100 – Nex – Ln) (20)
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Using the data obtained from these equations, the explosibility triangle for the air-gas mix-
ture can be constructed, and the state point (i.e., concentrations of oxygen and total combustible 
gases) can be plotted on the same diagram. The relative position between the explosibility triangle 
and the state point shows the explosibility status of the air-gas mixture at current state and the 
potential when condition changes.

In order to ensure the reliability of the judgments made using the expanded Coward ex-
plosibility triangle, the USBM explosibility diagram is used as a supplemental method to double 
check the results. The monitored atmospheric composition data in an underground coal mine fire 
event after the mine was sealed were used to demonstrate these two methods. In this case, a very 
large amount of nitrogen was used to inert the mine fire and to prevent the mine atmosphere 
from becoming explosive. Table 2 shows the raw data from the mine atmosphere monitoring 
system. Figure 4 shows the histories of state points of the mine atmosphere and the explosibility 
triangles using the expanded Coward method and USBM explosibility diagram method. It can be 
seen that the gas-mixture is explosive at beginning but the final state point (red point) was out of 
the explosibility triangle and could be considered as non-explosive at that time. In this case, the 
oxygen concentration and the nitrogen concentration play important roles for the determination 
of explosibility. In two separate time periods, the nitrogen concentration often was comparatively 
low while the oxygen concentration was comparatively high and the gas-mixture in the sealed 
mine was judged to be explosive.

In addition, the judgments by the two methods are also listed in the table 2. The result from 
the expanded Coward method agrees with that from USBM method. However, it should be noted 
that there are two conflicting cases in the table. The explosibility is determined as explosive by 
the expanded Coward method but non-explosive by the USBM diagram but close to the boundary 
line of the explosibility triangle. The reason is that more combustible gases are included in the 
expand Coward triangle, thus, the explosive zone is larger than the USBM diagram.

TABLE 2

Composition data recorded during a real mine fire 

Nu. Time 
(hours)

O2
%

N2
%

CO2
%

CH4
%

CO 
ppm

H2 
ppm

C2H2 
ppm

C2H4 
ppm

C2H6 
ppm

Explosibility
By Expanded 

Coward
By USBM 
Method

1 2 3 4 5 6 7 8 9 10 11 12 13
1 0 16.96 75.03 1.67 4.98 2261 1741 NDA 62 500 Yes Yes
2 2 17.05 74.96 1.59 5.06 2162 1602 NDA 61 500 Yes Yes
3 4 17.77 70.54 0.56 10.07 1013 743 NDA 22 300 Yes Yes
4 6 17.90 70.48 0.49 10.11 864 642 NDA 19 300 Yes Yes
5 9 18.23 70.92 0.39 9.47 681 516 NDA 16 200 Yes Yes
6 11 18.47 71.19 0.31 9.07 408 344 NDA 11 200 Yes Yes
7 17 13.97 78.42 3.82 2.36 3175 1255 NDA 60 600 No No
8 23 14.26 77.75 3.46 3.09 3111 1121 NDA 47 800 No No
9 29 14.44 77.14 3.16 3.70 4329 1047 NDA 43 900 No No
10 35 13.96 76.64 3.26 4.53 4695 1114 NDA 45 1000 No No
11 39 13.90 76.57 3.25 4.68 4683 1075 NDA 47 1000 Yes No
12 41 13.71 76.48 3.37 4.84 4603 1044 NDA 44 1100 Yes No
13 45 17.67 71.35 0.70 9.30 741 218 NDA 9 300 Yes Yes
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1 2 3 4 5 6 7 8 9 10 11 12 13
14 49 18.59 72.32 0.38 7.78 445 117 NDA 4 200 Yes Yes
15 57 18.81 72.10 0.24 7.92 259 63 NDA NDA 300 Yes Yes
16 61 18.87 71.89 0.19 8.12 199 50 NDA NDA 300 Yes Yes
17 65 18.92 71.79 0.17 8.21 139 45 NDA NDA 400 Yes Yes
18 71 18.82 71.47 0.16 8.63 145 53 NDA NDA 300 Yes Yes
19 79 12.19 78.08 5.33 2.62 6697 1266 NDA 46 500 No No
20 81 12.27 78.00 5.28 2.69 6623 1163 NDA 44 600 No No
21 85 11.95 77.64 5.31 3.24 6761 1844 NDA 44 600 No No

b) Results from USBM explosibility diagram

Fig. 4. Determining mine atmospheric explosibility using two methods for a real sealed mine fire

a) Results from expanded Coward explosibility triangle
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4. Program development

An integrated Visual Basic program has been developed to implement both the mine atmos-
phere composition model and tracking the explosibility based on the expanded Coward triangle 
method. In the program, the main input data are the volume of and the initial condition in the 
sealed volume, the CH4 inflow rate and N2 injection rate, and barometric pressure, duration of 
simulation. The program automatically determines the time step length based on the specified 
simulation duration and performs the required computation at each of the time steps. At a given 
time, the program will calculate new partial pressure as well as the volumetric percentage for 
each gas in the sealed volume at a given time. Using the volumetric concentrations of the inert 
and combustible gases in the sealed atmosphere, the explosibility triangle and the state point of 
the air-gas mixture are determined. The resulting explosibility triangle and the state point of the 
mine atmosphere will be graphically displayed. The program also allows the user to input air 
sample data over a time period so the actual development trend can be reviewed. By analyzing 
such trend, the user can gain a better understanding of the explosibility of the mine atmosphere 
in the sealed area as well as the consequences of any actions taken on the sealed area. 

Figure 5 is the screenshot for this program. A single sample point of the concentrations of 
the mine atmosphere can be manually entered or a series of sample points can be copied into 
the program. 

Fig. 5. Data input screen for the program
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5. Cases Demonstrations

Case 1:

In this case, an old coal mine area is simply sealed without any inertization. The simulation 
is performed to find how long the critical period would be. The parameters used in this case are 
the same as the ones published in Zipf and Mohamed’ s works. (Zipf & Mohamed, 2010), as 
following statements.

The sealed volume is 1,000,000 m3 and three mine seals were used for the sealing. The 
initial conditions are: CH4: 0%; N2: 79% and O2: 21% and the methane volumetric inflow rate 
in the sealed area is 0.25 m3/s. In this case, the equivalent mass inflow rate is 0.167 Kg/s. The 
design barometric pressure change is 6,000 Pa decreasing over 5 days. The mine temperature is 
assumed as 10°C.

Figure 6 shows development trends of the gases in the sealed area. Due to continuous CH4 
inflow from surrounding strata, all gas concentrations decrease except CH4, the increasing and 
high CH4 concentration would cause the sealed area inert itself. In additional, both the results 
calculated by the Zipf and Mohamed’s model and the new mathematical model presented in 
this paper are shown in this figure. The curved lines without markers are the calculation results 
calculated by the Zipf and Mohamed’s model, while the ones with markers indicate that they are 
calculated by the new mathematical model. It can be seen that the change rate of the Zipf and 
Mohamed’s model for each gas species is a little bit faster than that of the new model, which means 
the sealed mine area becomes self-inertization is sooner based on their results. For an instance, 
Zipf and Mohamed present a CH4 concentration of 20% can be reached in about 9.3 days, but 
11.2 days are needed with following the new one.

In order to check its explosibility, the expanded Coward triangles and the states point with 
a time step of 2.4 hours are determined and plotted in Figure 6 based on the mew model’s cal-

Fig. 6. CH4, N2, and O2 change over time in the sealed volume



37

culation results. The smallest explosibility triangle is that for the initial condition. As methane is 
continuously emitted into the sealed volume, the explosibility triangle expands. The red triangle 
is that at the end of simulation duration. Figure 7 also shows that the state point moves from left 
into the explosive zone on the second day after the area is sealed and moves out of it on the right 
on the seventh day. In other words, the critical time to manage the atmosphere in the sealed area 
lasted 6 days. The red dot is the final state point of the simulation. 

Fig. 7. Time-series plots of the explosibility triangles and the mixture points

Case 2:

In this case, inertization effort has been made to shorten the critical time period for manag-
ing the atmosphere in a sealed coal mine area. The developed model has been applied in a real 
coal mine. Due to the coal spontaneous combustion, elevated CO concentration event is found 
in a mine gob area. In order to control the suspicious “oxidation” event, mine operators carried 
out CO2/N2 injection to control the spontaneous combustion. The total volume of the gob area 
is 800,000 m3 and the environment temperature is 23°C. CO2 was injected via the gob well at 
the rate of 40 m3/min while N2 was injected via the bleeder shaft at the rate of 45 m3/min. Both 
the measured concentrations and the simulation model results (marked as “Sim.” in Figure 8.) 
for all gas species in the gob area are plotted and compared with each other in the following 
Figure 8. 

It can be seen from Figure 8 that the injection of CO2/N2 has strong impacts on the gas 
compositions in the sealed area. Simulation results show that N2 keeps high percentage concen-
tration while CH4 and CO2 concentrations both have a certain amount of increasing, but other 
gases decrease. Comparing with field measurement data, the simulation results agree very well 
with them for each of gas species except H2 and CO since there are small differences (in terms 
of ppm) between the simulation results and the actual data. The reasons are a small scale spon-
taneous combustion may still happen in the underground, and the “piston effect” caused by the 
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injected inert gases results in the heterogeneous mixing process. However, it should be noted 
that the all simulation results can well show the change trend of each gas species over a time 
period. Then, the expanded Coward explosibility diagram to track the explosive trends is also 
plotted in Figure 9.

By observing Figure 9, the initial mine atmosphere state point locates near the left edge of 
the explosive triangle which means that the gas-mixture is explosive at the beginning. As the 
CO2/N2 continuous injection, the state point moves out of the explosive zone and comes into 
the not-explosive zone gradually, and the finial state points locates in the non-explosive zone. 
In other words, the gas-mixture becomes more and more safe. In order to validate the as-
sessment using the expanded Coward method, the result is also checked again by the USBM 
explosibility diagram, and the results calculated by both of two methods agree very well with 
each other. 

(c) H2 and CO

Fig. 8. Comparisons of simulation results and field measurement data

a) N2 and O2 (b) CH4, CO2 and C2H6
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6. Conclusions

A mathematical model to simulate the time-dependent composition change in the sealed 
volume has been developed based on the control volume approach. It well handles the atmos-
phere’s overall changing features and could provide a reliable prediction with considering various 
influential factors It provides a useful tool for us to understand the behavior of the sealed volume. 
The expanded Coward method with considering more hydrocarbon gases is used to determine 
the explosibility of the sealed atmosphere. It should be noted that the expanded Coward method 
can be used to assess explosibility of mine air in any areas of an underground mine. A computer 
program to incorporate the atmosphere composition model and the expanded Coward method has 
been developed. It could serve as a good tool for managing the atmosphere in sealed mine areas.
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