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PRZEMYSŁAW SADOWSKI

The Institute of Theoretical and Applied
Informatics of the Polish Academy of Sciences,

Bałtycka 5, 44-100 Gliwice, Poland

Received 7 November 2011, Revised 21 November 2011, Accepted 5 December 2011

Abstract: This paper describes efficient methods for integration polynomial functions on elements
of the unitary group with respect to the Haar measure. Some methods for special cases are shown. Finally
examples of applications are described.
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1. Introduction

The integrals of polynomial functions over the unitary group are important in many
areas of science. Applications of such integration can be found in mathematical physics,
random matrix theory, quantum information processing and algebraic combinatorics.
The first mentions of the problem of integration of elements of unitary matrices can be
found in literature in the context of nuclear physics [1].

There exists a package that performs integration of polynomial functions over the
unitary group with respect to the Haar measure [2], however in case of polynomials
of large degree, consisting of complex monomials, the computations are very time-
consuming. In this paper we describe more efficient methods for calculating such in-
tegrals.

This paper is organised as follows. In Section 2 we recall Collins-Śniady formula [3]
for calculating monomial integrals. The main contribution of this paper is provided in
Section 3, where we described a practical algorithms for the calculation. We also provide
a number of special cases which can be used to improve the calculation efficiency for
some classes of monomial functions. Finally, in Section 4 we present some applications.
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2. Mathematical background

In this section we introduce some basic definitions that we use in this paper. We form
a definition of integral that can be computed with use of presented methods. Finally we
introduce Collins-Śniady formula.

2.1. Basic definitions

We denote by λ ` n a partition of n, i.e. a non-increasing sequence of positive
integers λ = (λ1, . . . , λk) such that

∑k
i=1 λi = n. A length of partition λ is denoted by

l(λ) and it is equal to the number of elements in sequence. Each permutation σ ∈ Sn has
unique representation as a sum of disjoint cycles. A non-increasing sequence of lengths
of cycles of permutation forms a partition of n. This partition is called cycle type ctσ of
permutation σ. An ordered concatenation of partitions λ1, λ2, which result is a partition
λ is denoted as λ = λ1 t λ2. In this paper we denote cardinality of a set A as |A| and

we also use a Kronecker delta symbol δi,j =
{

1i = j,
0i 6= j.

.

2.2. Polynomial integrals

Consider set Md of all square matrices of size d. Matrices U ∈ Md such that
U−1 = U †, where U † is a hermitian conjugate of U , are called unitary matrices and
forms a group U(d). There exists only one normalized measure which is right and left
invariant under the group operation and it is called the Haar measure here denoted as
dU [3]. In this paper we discuss integrals with respect to this special measure.

Because of the linearity of integral, the integral of polynomial function on the unitary
group with respect to the Haar measure can be decomposed as:

∫

U(d)

p(U)dU =
∑

I,I′,J,J ′
cI,I′,J,J ′

∫

U(d)

Ui1,j1 . . . Uink
,jnk

Ui1,j1 . . . Uin′
k
,jn′

k

dU, (1)

where lists of indices in integrated monomials are denoted as multiindices I =
(i1, . . . , in), I ′ = (i′1, . . . , i

′
n), J = (j1, . . . , jn′), J ′ = (j′1, . . . , j

′
n′). For this reason-

ing in this paper we consider only the integrals of monomial functions:

∫

U(d)
Ui1,j1 . . . Uin,jnUi′1,j′1 . . . Ui′

n′ ,j
′
n′

dU. (2)

Such monomial integrals are known as moments of U(d).
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2.3. Collins-Śniady formula

When lengths of multiindices I and J are equal we use following formula [3]:
∫

U(d)
Ui1,j1 . . . Uin,jnUi′1,j′1 . . . Ui′n,j′ndU = (3)

∑

σ,τ∈Sn

δi1,i′σ(1)
. . . δin,i′σ(n)

δj1,j′τ(1)
. . . δjn,j′τ(n)

Wg(τσ−1, n, d).

The formula is valid in the case when multiindices has the same length. In the opposite
case the integral is equal to 0. Function Wg used in formula (3) is called Weingarten
function and is defined as follows:

Wg(σ, n, d) =
1

(n!)2
∑

λ ` n
l (λ) ≤ d

χλ(e)2

sλ,d(1)
χλ(ctσ). (4)

The function is named after Don Weingarten, a mathematician who considered the
asymptotic behavior of the integrals of type (2) [4]. In (4) sλ,d(1) is the Schur poly-
nomial sλ at the point (1, . . . , 1︸ ︷︷ ︸

d

) and χλ is an irreducible character of the symmetric

group Sn indexed by partition λ. The Schur polynomial evaluated at (1, . . . , 1︸ ︷︷ ︸
d

) is the

dimension of irreducible representation of U(d) corresponding to the partition λ. In this
special case, its value is equal to [5]:

sλ,d(1) = sλ(1, . . . , 1︸ ︷︷ ︸
d

) =
∏

1≤i<j≤d

λi − λj + j − i

j − i
. (5)

The irreducible character of Sn indexed by partition λ, χλ(σ) is defined for σ ∈ Sn. The
value of χλ(σ) depends on a conjugacy class of a permutation σ. Each conjugacy class
contains all permutations that have the same cycle type. It is common to define χλ for
partitions, thus χλ(σ) = χλ(µ) when µ is cycle type of σ. When identity permutation
is considered the cycle type is given by a trivial partition, e = (1, . . . , 1︸ ︷︷ ︸

n

) and the value

of the irreducible character is equal to dimension of the irreducible representation of Sn

indexed by λ. In this case it is given by the formula [5]:

χλ(e) =
|λ|!∏
i,j hλ

i,j

, (6)
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where |λ| = λ1 + λ2 + · · ·λl(λ) and hλ
i,j is the hook length of the cell (i, j) in a

Ferrers diagram corresponding to partition λ. In other cases when non-trivial permu-
tation(partition) is considered the character of symmetric group, χλ(σ) = χλ(µ) can
be evaluated using Murnaghan-Nakayama rule. An efficient algorithm implementing
Murnaghan-Nakayama rule can be found in [6].

3. Efficient computation

In this section we provide an efficient algorithm for calculating integrals of the
type (2). We also present a number of special cases of integrals. In this cases a value of
an integral can be calculated with use of less time-consuming methods.

3.1. General computation formula

Since Weingarden function depends on cycle type of permutation, rather than on a
permutation itself Wg can be defined as a function of integer partition:

Wg(σ, d, n) = Wg(µ, d, n), (7)

where µ = ctσ. It is reasonable to introduce function that represents number of permuta-
tions with certain cycle type that do not vanish in summation in formula (3):

N(λ) =
∑

σ, τ ∈ Sn

ct(τσ−1) = λ

δi1,i′σ(1)
. . . δin,i′σ(n)

δj1,j′τ(1)
. . . δjn,j′τ(n)

. (8)

In other words N(λ) is size of equivalence class of λ in equivalence relation of Wg(λ′)
for λ′ ` n. In practical realisation values of N(λ) are computed simultaneously for
all partitions λ ` n by computing factors δστ for all products τσ−1 and incrementing
appropriate N(λ). With such definition formula (3) can be restated:

∫
Ui1,j1 . . . Uin,jnUi′1,j′1 . . . Ui′n,j′ndU =

∑

λ`n

N(λ)Wg(λ, n, d). (9)

The aim of presenting this form is to show, that number of invoking functionWg can be
reduced to O(Bn) instead of O(n!2), where Bn is the Bell number [7].

Now let us simplify notation of discussed formula by introducing sets of permuta-
tions that do not vanish in summation (3) SI,I′ = {σ ∈ Sn : δi1,i′σ(1)

. . . δin,i′σ(n)
= 1}

and SJ,J ′ = {τ ∈ Sn : δj1,j′τ(1)
. . . δjn,j′τ(n)

= 1} that represents permutations which
factors in formula (3) are non-zero. Now, function N defined in equation (8) is equal to

N(λ) = |{(σ, τ) ∈ SI,I′ × SJ,J ′ : ct(τσ−1) = λ}|. (10)



205

It is obvious that σ ∈ SI,I′ ⇐⇒ σ(I) = I ′ and τ ∈ SJ,J ′ ⇐⇒ τ(J) = J ′.
In formula (3) we compute all possible products τσ−1 such that σ ∈ SI,I′ and

τ ∈ SJ,J ′ . List of all such products may contain equal elements. Thus it is possible
that distinct pairs (σ, τ), (σ′, τ ′) ∈ SI,I′ × SJ,J ′ have equal product τσ−1 = τ ′σ′−1.
Since only number of particular permutations is needed computing the same permutation
more than one time is inefficient. In this section we study possibility to count number of
distinct pairs (σ, τ) ∈ SI,I′ × SJ,J ′ with equal product τσ−1.
Fact 1 If σ−1(J ′) = σ′−1(J ′) and σ 6= σ′ then for every τ ∈ SJ,J ′ there is τ 6= τ ′ ∈
SJ,J ′ that τσ−1 = τ ′σ′−1.

Proof: When σ−1(J ′) = σ′−1(J ′) then there is permutation φ that σ−1 = φσ′−1.
Then for each permutation τ ∈ SJ,J ′ permutation τφ−1 ∈ SJ,J ′ . When τ ′ = τφ−1 then
τ ′σ′−1 = τφ−1φσ−1 = τσ−1. ¤
Fact 1 implies that all permutations included in sum (10) can be obtained from some
reduced set S′I,I′ instead of SI,I′ . Set S′I,I′ can be defined as set of all permutations from
SI,I′ which inversions have unique image of J ′.
Fact 2 Number of different permutations in SI,I′ such that theirs inversions have equal
image on J ′ is equal to

c = |{σ′ ∈ SI,I′ : σ′(J ′) = σ(J ′)}| =
∏

i∈I′

∏

j∈J ′
(

∑

1≤k≤d

δI′(k),iδJ ′(k),j)!.

Proof: Let us define a set Se
I′,J ′ of all permutation that do not change multiindices

I ′ and J ′: Se
I′,J ′ = {σ ∈ Sd : σ(I ′) = I ′ ∧ σ(J ′) = J ′}. Each permutation in Se

I′,J ′
permutes positions of I ′ and J ′ where indices are equal. Thus it can be decomposed
as product of permutations of positions with equal elements. Let us divide all positions
into sets Ki,j = {k : I ′(k) = i ∧ J ′(k) = j} of positions with equal element in I ′ and
J ′. Then set Se

I′,J ′ is a set of products of disjoint permutations of positions from all sets
Ki,j independently, thus |Se

I′,J ′ | =
∏
i∈I′

∏
j∈J ′

|Ki,j |!.
For any permutations σ ∈ SI,I′ and φ ∈ Se

I′J ′ permutation φσ−1 has the same image of
J ′ as σ−1 and there exists some permutation σ′ ∈ SI′,J ′ that σ′−1 = φσ−1. Thus there
are |Se

I′J ′ | permutations in SI,I′ which inversions have the same image of J ′ that σ−1.
¤

According to fact 2 using set S′I,I′ that contains all permutations from SI,I′ with
unique image on J ′ it is possible to reduce number of computed permutations exactly c
times.

N(λ) = c|{(σ, τ) ∈ S′I,I′ × SJ,J ′ : ct(τσ−1) = λ}| (11)

Introduced reduction of computed products of permutations is optimal. In set {(σ, τ) ∈
S′I,I′ × SJ,J ′} there are no two different pairs (σ, τ), (σ′, τ ′) ∈ S′I,I′ × SJ,J ′ with equal
product τσ−1 = τ ′σ′−1.



206

Now during computation when sets S′I,I′ and SJ,J ′ are obtained it is possible to
compute products of permutations from S on J ′ and form set S′I,I′ with all permutations
with unique product of J ′. Now set S′I,I′ can be used in further computation instead of
set SI,I′ and final result must be multiplied by c. Values of N(λ) are obtained efficiently
by getting all possible pairs (σ, τ) ∈ S′I,I′ , SJ,J ′ and incrementing value of N(λ) such
that ct(τσ−1) = λ by c.

3.2. Special case 1: elements from one row

When all elements in polynomial function that is being integrated are in the same row
(or column) there is much simpler way to compute integral. The distribution of random
vector of squares of absolute values of row or a column of unitary matrix distributed
with Haar measure is uniform on a standard d-simplex [8].

∫

U(d)

d∏

j=1

|Ui0,j |2pjdU = Γ(d)
Γ(p1 + 1)× . . .× Γ(pd + 1)

Γ(p1 + . . . + pd + d)
(12)

3.3. Special case 2: diagonal matrices

A special case of block diagonal matrix is a diagonal matrix. To use features of
integrals of monomials containing elements from diagonal, we will use a fact;
Fact 3 For every integral of monomial and every permutations σ, τ ∈ Sd an equation
occurs:

∫

U(d)
Uσ(i1),τ(j1) . . . Uσ(in),τ(jn)Uσ(i′1),τ(j′1) . . . Uσ(i′n),τ(j′n)dU = (13)

∫

U(d)
Ui1,j1 . . . Uin,jnUi′1,j′1 . . . Ui′n,j′ndU.

Proof: Such permutations are equal to permutations of rows and cols in matrix, what is
invariant in integration over group.
For diagonal matrices all lists of indices are equal: I = I ′ = J = J ′. According to
definition of set T = {τ ∈ Sd : σ(J) = J ′} if J = J ′ then T is subgroup of Sd, and if J
consists of indices (1, . . . , k) and index i occurs in J exactly li times, i = 1, . . . , k, then
T is a product of groups: T = Sl1Sl2 . . . Slk , where Sli is a group of all permutations in
positions of index i for i = 1, . . . , k.
To get number of permutations of specific cycle type we will use the fact that number of
permutations of cycle type λ in group Sn is possible to get by a formula [9]:
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kλ =
n!

ip1
1 p1!i

p2
2 p2! . . . i

pm
m pm!

, (14)

where pk is the number of elements ik in λ.
As I = I ′ = J ′ all permutations σ−1 such that σ ∈ S according to definition permutes
multiindices I ′ into I and since I ′ = J ′ all such permutations have equal product on J ′.
Then reduced set of permutations S′ (defined in section 3.1.) contains only one element.
Set S′ can contain any permutation from S and since identity permutation e belongs to
set S we can define S′ = {e} in order to simplify further computation.

Now when set S′ contains only identity permutation summation over all products of
inversions of permutations from S′ and permutations from T is equivalent to summation
over set T . According to the fact that permutations from T are products of permutations
of blocks of multiindices J we can write a formula:

∫
Ui1,j1 . . . Uin,jnUi′1,j′1 . . . Ui′n,j′ndU =

l1! · . . . · lk!
∑

τ1∈Sl1
,...,τk∈Slk

Wg(τ1 · · · τk, n, d) =

l1! · . . . · lk!
∑

λ1`l1,...,λk`lk

kλ1 · · · kλk
Wg(λ1 t · · · t λk, n, d). (15)

Using formula above computation of integral is reduced to computing all partitions of
lengths of blocks in multiindices J instead of computing all possible permutations and
counting theirs cycle types.

3.4. Special case 3: general block diagonal matrices

When monomial contains elements that can be divided into blocks size l1, l2, . . . , lk
then lists of indices also can be divided into the same blocks. Thus permutations I into
I ′ and J into J ′ are products of disjoint permutations of indices in every block inde-
pendently. When blocks in permutations from S and T are the same then products of
permutations τσ−1, τ ∈ T, σ ∈ S contains the same blocks. Because of this, problem
of counting all products of permutations length d can be simplified to counting permu-
tations which lengths are equal to dimensions of blocks.

N(λ) =
∑

λ1 ` l1, . . . , λk ` lk
λ1 t λ2 t . . . t λk = λ

N1(λ1) · . . . ·Nk(λk) (16)
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After applying this formula to general computation formula (9) following equation oc-
curs:

∫
Ui1,j1 . . . Uin,jnUi′1,j′1 . . . Ui′n,j′ndU =

∑

λ`n

N(λ)Wg(λ, n, d) =

∑

λ1`l1,...,λk`lk

N1(λ1) · . . . ·Nk(λk)Wg(λ, n, d). (17)

Using formula above it is still necessary to obtain some permutations but instead of
computing permutations from group Sd it is possible to work on permutations from
smaller groups Sl1 , Sl2 , . . . , Slk .

4. Applications of the integral

One can use integration unitary in number of sciences. It is an important subject
of studies in many areas of science where polynomial functions of elements of unitary
matrices are discussed. In this section we present examples of appliances.

4.1. MIMO channels

MIMO(Multi Input Multi Output) is a technology in radio channels based on use of
multiple antennas at both the transmitter and receiver In this paper it has been studied in
context of analysis key parameters of MIMO channels.

The time-invariant channel is described by [10]:

y = Hx + w, (18)

where H is an Hermitian matrix. Matrix H has a Singular Value Decomposition (SVD):

H = U∆V ∗, (19)

where U, V are unitary matrices. The SVD decomposition of matrix H can be inter-
preted as coordinate transformations of input and output values. Such interpretation
leads to angular domain representation of signals where

xa := U∗
t x, (20)

ya := U∗
r y. (21)

Thus calculating average values of signals or H matrix includes integration unitary.
Integrates of polynomial function are also important to computing correlation be-

tween path gains Correlation coefficients between signals transmitted by jth antenna
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and kth antenna depends on expectation values of elements of matrix H [11]. Thus to
study correlation between Path Gains one need to compute estimated value of elements
of H and its products. Due to SVD of H averaging H is reduced to problem of averaging
monomials of elements of unitary matrices.

4.2. Quantum transport

In this section we consider applications of integration unitary connected with quan-
tum transport. We consider a phase-coherent conduction through a chaotic cavity and
through the interface between a normal metal and a superconductor [12]. In both dis-
cussed applications we obtain the conductance as a rational function of a unitary matrix.

First let us consider a system consisting of a chaotic cavity attached to two leads,
containing tunnel barriers. The conductance G is a function of trace of some matrix S.
Matrix S is distributed according to the circular ensemble. By using matrix decomposi-
tion of δS the problem of averaging S with Poisson kernel can be reduced to integrating
matrix U that occurs in this decomposition over the unitary group.

Very similar reasoning track can be done while analysis average conductance of
a system. Average conductance is given by a Landauer formula and using the same
decomposition it can be reduced to the problem of integration unitary. Conductance
fluctuations are considered as covariance of the conductance thus all computation can be
done very similarly.

In order to introduce another application for integration unitary we consider a junc-
tion between a normal metal and a superconductor (NS junction). Using the relationship
between the differential conductance of the NS junction [13, 14] and some transmission
and reflection matrices one can obtain the conductance formula involving some unitary
matrix function. Averages of conductance is computed in two steps and the first one is
integration over unitary matrix [12]. Since conductance fluctuations are computed as
variance of conductance, it involves first moment of conductance and is computed the
same way.

5. Summary

We described practical and efficient methods for calculating integrals of polynomial
functions of unitary matrices over the unitary group with respect to the Haar measure.
We developed a technique for general case of any polynomial function. We also pre-
sented some special cases of functions and proper methods of computing integrals of
such functions. As applications of integrating unitary matrices we introduced issues of
quantum transport and MIMO channels.
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Efektywne metody całkowania wielomianów na grupie macierzy unitarnych
względem miary Haara z zastosowaniami

Streszczenie

W pracy przedstawione zostały efektywne algorytmy całkowania funkcji wielo-
mianowych na grupie macierzy unitarnych względem miary Haara. Przywołana została
formuła Collinsa-Sniadego służąca do obliczania rozpatrywanej całki. Następnie rozpa-
trzono możliwości przyśpieszenia obliczeń prezentując efektywny algorytm. Pokazano
szczególne przypadki rodzin wielomianów, dla których wartość całki może być wy-
znaczona analitycznie. Zostały również przywołane przykłady zastosowań całkowania
wielomianów macierzy unitarnych w różnych działach nauki.


