Theoretical and Applied Informatics
ISSN 18965334
Vol.24 (2012), no. 2
pp. 119-133
DOI: 10.2478/v10179-012-0006-3

Representation of direct product of permutation groups as symmetry
groups of boolean functions

PAWEE JASIONOWSKI

Faculty of Applied Mathematics
Silesian University of Technology
ul. Kaszubska 23, 44-100 Gliwice, Poland
e-mail: pawel.jasionowski@polsl.pl

Received 18 April 2012, Revised 4 June 2012, Accepted 22 June 2012.

Abstract: We consider boolean functions invariance groups S(f) and some special kinds of boolean
functions. We construct a k valued boolean function f which represent a direct product of two permutation
groups and give an upper bound of k. Moreover we show that in some cases we can construct 2 valued
boolean function which represent this product.

1. Introduction

We consider a module M with n possible input states, each of which can assume
one of two possible states 0 or 1. Moreover module M on output can assume 0 or 1
too (we also consider a generalization of this device by putting more then two possible
output states). The starting point of this paper is [3] where basic structures and some
specific constructions of boolean functions are given. We consider a problem of place-
ment of such modules on the integrated circuit (or chip) where permutation of inputs
is allowed or when order of input values is not given, or is partially given. Following
[3] we believe that studies of the symmetry groups of boolean functions may lead to
algorithms optimization the space in VLSI technology. It help answer for question that
we can changed a place of certain module in block without changing an output value of
computed function.

The main objects of study of this paper are symmetry groups of boolean functions.
We want to provide some algorithms to describe special kinds of permutation groups.

120

This paper show how we can construct a boolean function for direct product of permu-
tation groups. In the last section we show that we can give an exact construction of 2
valued boolean function when we consider some direct product of symmetric groups.

2. Preliminaries

2.1. Basic definition

A set of all boolean vectors is denoted as a {0,1}". Let f : X" — Y,
f(x1,xa,...,x,) = yis a function with n variables (n > 1).
The set S(f) of all permutation o € S,, such that

f([L'l,xg, ,[En) - f(xU(l)a Lg(2)) -+ xo‘(n))

forevery (1, 22, ..., z,) € X™ is a subgroup of the symmetric group S, and is called the
boolean function invariance group or symmetry group of function f. Let f is k-valued
boolean function (k > 1) such that:

f:{0,1}" - {0,1,....k — 1}

A permutation group G < S,,, such that G = S(f), for some k-valued boolean function
f is called a group which is representable by f (or k-representable). Then function f is
called invariant at the group G.

We consider a group G < S;,. To check that a group G is representable, we must
check, how G act on the set X := {0, 1}". We consider the action given by:

r— a7 (x1,x2, 7xn) - (xa(l)v Lo(2)) "'7x0(n)) (1
An orbit of element x € X is defined by:
2% = {20 € G}

Let G = S(f) for some boolean function f : {0,1}" — {0,1,...,k — 1}. If elements
x,y € X are in the same orbit, then f(x) = f(y) and for every permutation 7 ¢ G there
must exist z € X, such that x i 7 are in the different orbits and f(z) # f7(x).

This situation take places, because, if there exists a permutation 7 € G, such that
for every z € X elements x and x” are always in the same orbit, then the group G
and G’ = (G,) has exactly the same orbits in X. So every function f : {0,1}" —
{0,1,...,k — 1} invariant at the group G is invariant at the group G’. Now we can see
that G can not be k-representable for any k.

121

2.2. Integrated circuits and optimization

Let M is a module (or a device) with n possible inputs, each of which can assume
one of two states 0 or 1. In general we consider an module with & possible outputs from
the set {0,1,...,k — 1} , £ > 1. We can understand input values as a boolean vector
(z1,22,...,T5). A output of module depend in general on the order of x1,xo, ..., Tp.
There exist some permutations of inputs which leave output invariant. For example if
output of module M do not depend on order of x1, x9, ..., T, then we call such a module
symmetric. In general set of all permutation which do not change output in any initial
state create a group.

Let there are two possible output states of module which we denote as 0 and 1. Op-
eration on inputs by the module M can be represent by boolean function f : {0,1}" —
{0, 1}. If we understand inputs as a boolean vector (x1, z2, ..., T,) then f(z1, za, ..., Ty)
is an output value of M. So let boolean function f represents M. A set S(f) of all per-
mutation o of {1,2,...,n} such, that for every inputs z; € {0,1},i = 1,2,...,n we
have

f(x1, 22,0, 20) = f(To(1)) To2)s - To(n))

create subgroup of S,,. So the module is called symmetric if S(f) = S,.

A starting point of this research were [3] and [4] where many basic concepts and
new techniques of study of symmetric groups of boolean function are given. One of the
problem mentioned there is the problem of placement of such a module on the integrated
circuit, where permutations of inputs are permitted, or its order is only partially-given.
We expect that research on symmetry groups of boolean function can provide algorithms
to optimizing VLSI technology. For example it can help arrange place of module on the
chip and answer where we can put this module without changing of output value.

2.3. Anonymous network

In [4] authors show that boolean function invariance groups are important to com-
puting values of functions in anonymous network. When we say anonymous network
we think about network which hold following conditions: (1) processors known topol-
ogy and size (all number of processors) of network; (2) processors do not known their
identity and identity of other processors; (3) processors are identical — use the same al-
gorithm; (4) processors are deterministic; (5) network does not need synchronization by
outside device; (6) network is labeled; (7) network connections are First In First Out —
type.

For example we want to compute value of n-ary boolean function 7 in the network
with n nodes. To compute this value for inputs x1, xo, ..., T,, Processors pi, pa, ..., P, are
initialized with inputs x1, x2, ..., T, respectively. By exchanging messages through the
links all processors must compute the same bit which we understand as f(z1, 2, ..., p).

122

There exist research ([1]) where the main purpose is define and investigate networks
which hold following condition:

f is computable < Aut(N) C S(f)

where Aut(N) is a automorphism group of this network.

2.4. Complexity of formal languages

Many of fundamental questions in complexity theory can be formulated as a problem
in formal language. By language L we mean a set of finite words over finite alphabet, for
example ¥ = {0, 1}. The basic problem to investigate is to decide how much resources
like time, memory, number of processors we need to compute whether x € L for any
word x over alphabet 3. If for any n function fy, is a characteristic function of language
L C {0,1}" (i.e. for element from = € L function f(z) = 1 and 0 otherwise) then
above question could be show as a problem of determine needed resources to compute
value of boolean function f7, for any = and n. We define here a symmetry group S(L)
of language L as a symmetry group of fr..

Considerations of symmetry groups of boolean functions can be used to analysis
properties such languages. A results in [3] and [4] relate to palindrome languages and
regular languages (languages which could be recognized by finite automatas). We often
try to construct language for given permutation group GG which L is invariant i.e.

G = S(L), where L C {0,1}"

This problem is equivalent to construct a symmetry group S(f) of characteristic function
f for L. Moreover significant problem is to construct an algorithm which create invariant
permutation group of language L.

2.5. Circuits with n nodes

We consider a circuit o, with n nodes. We can understand it as a direct graph with
labeled nodes x1,x9,..x, (inputs) and V, A, - (gates). Input nodes are of in-degree
equal 0 (0 input edges) and there exists exactly one output node with out-degree equal 0
(0 output edges). Complexity c¢(cv,) of this circuit is equal to number of all internal (non
input or output) nodes. Depth d(c,) of this circuit is equal to maximal length of path
from input node to output node.

A word z € {0,1}" is acceptable (or recognized) by the circuit v, if we can choose
labels of x; of input nodes that z; has equal value to ¢-th bit of word . A language L C
{0, 1}" (or its characteristic function f) is recognized by «v, if for all words = € {0,1}"
following condition is hold:

x € Ly(or f(z) =1) & a recognized x

123

For boolean function f we define a it’s complexity as a

c(f) = min{(c(an)), ay recognize f}

For example for any symmetric boolean function f € B,, we have ¢(f) = O(n). Knowl-
edge about symmetric groups of boolean function could be used to time or memory
optimization such circuits during the process of checking if a word z is recognized by
device. We can notice here that if we know a word x recognized by «, then work 2’ is
recognized too if there exist o € S(L) that 2’ = o(z). Moreover such a research could
help to investigate techniques to new network and circuit design by using symmetry
groups S(f) of characteristic function of language L € {0, 1}.

3. Upper bound for % representability of direct product of permutation group

The main point of this section is to construct boolean functions which represent some
direct products of groups. We build exact examples of boolean functions and show why
these functions represent above classes of permutation groups. This approach show us
which feature of boolean functions are important from that point of view.

We consider here permutations which preserve division of the set of all inputs of
module M. We divide inputs on m equinumerous sets A;. Considered permutations
act in the following way: permutation of inputs inside the blocks A; are allowed, but in
the same way in each of them. Moreover changing places of blocks are allowed. In is
possible because blocks has the same length.

From mathematical point of view we can characterize this action in the following
way: we consider a direct product of permutation groups. So, let (G, X) and (H,Y) are
permutation groups where | X| = n, |Y'| = m. We take a group (G x H, X x Y). An
action on the set X X Y is given by the rule

(2,9) M = (29,y")

where ¢ € G,h € H. This action can be thought as an action on the set A =
{1,2,...,nm}. This setis divided into sets A; = {(i—1)n+1,...,in}, fori = 1,2,...,m.
Group G act inside each A; in the same way, H act on the indexes of A;.

First, we want to construct a boolean function f : {0,1}" — {0,1,...,k} which
represent G x H when we only know that G and H are k1, ks representable respectively.
In this general case we can show only upper bound of k.

Theorem 1 Let k1 > 1, ko > 1 are any positive integer number and | X| = n,|Y| = m.
For any permutation groups (G, X) and (H,Y') where G is k1 representable and H is
ko representable there exist a boolean function f with at most k1 + ko + 2 values such,
that

S(f)=GxH

124

Proof SoletG = S(g),¢g:{0,1}" — {0,1,...,ky —1}and H = S(h), h : {0,1}"" —
{0,1,.... ko — 1}.
Algorithm of construction boolean function:
Step 1: We create operator: ¢ : {0,1}" — {0,1}"™, 2 — 2 in the following way:
input: vector x = (1, x2, ..., Tn);
from ¢ = 1 to ¢ < m + 1 make a copy of vector z;

output: vector z¢ = (21,...,Tpn, T1, 22, ..., Tn, ..., T1, T2, ..., T,) Of length

nm;
Step 2: We create second operator © : {0,1}™ — {0,1}"",z — z¥ in the following
way:

input: vector £ = (21,22, ..., Tp);

from i = 1 to ¢ < m + 1 make n copies of coordinate z;

output: vector z” = (21, 1..., 21, T2, T2, ..., T2, ..., T, Ton, ... T) Of length nm

Step 3: We construct sets

={z; " :Z)=0,1=1,..
Oc={z; € {0,1}",2;, =0...010...0,9(z;) =0,i = 1,...,n}

n

b=z, N e = 11011 h(z) = 0.i =1, ...
Ob = {z; € {0,1}"", z; 01..1,h(z;) =0,i=1,..,m}

where g, h are boolean functions which represent G and H respectively. Moreover
Oc® = {2%,z € Oc} and ObF = {zF x € Ob}.
Step 4: We create a boolean function f

9(z) z =5, 2y € {0,1}"\Oc

h(zo) + k1 z =z, x0 € {0,1}"\Ob, zo # 0™,z # 1™
flz) =< ki+ko z=0c’

ki+k+1 s obvF

0 otherwise

Now we show that G x H = S(f).

(C) Let Ay = {1,2,..,n},Ae{n + 1,n+2,....2n}...Ap{nm —n+ 1L,nm —n +
2,...,nm}. Each permutation 0 € G x H can be thought as a pair (p, 7) where p € G
act inside blocks A; (in the same way in each block) and 7 € H act on the indexes A;.
If vector z € {0, 1}"™ is in the form z = z§ and z, € {0, 1}"\Oc then

f@) = f(af) = glzo) = ¢°(z0) = f7(2§) = £ (2)

125

If vector z € {0, 1}"™ is in the form z = z¥ and z, € {0,1}™\Ob, zy # 0™,z # 1™
then we have

f(z) = f(af) = hizo) = h (o) = f7(zf) = f(2)

If z € Oc® then z° € Oc® because G is k; representable group so for z = gg} we have
g(zy) = 0 = g”(xy). Similarly if z € Ob” then 2° € Ob” because of representability
of group H. If vector z is "otherwise" type from the definition of function f then z¢ is
the same type. Moreover we can notice that the set Oc” there is m coordinates equal 1
in the each vector but in the set Ob” there is (m — 1)n such coordinates in each vector.
This numbers are different when n > 2 or m > 2 because (m — 1)n = m is equivalent
to equation % + % =1

(D) Let 0 € G x H. We have following possibilities

(a) permutation ¢ act only inside blocks A;, ¢ = 1,2, ..., m but there exist two of them
where ¢ act in a different way (possibly o(A4;) = A; and ¢ # j but this situation does
not change much) i.e. there exist m/, m” such, that o act in the different way in A,,, and
Apr. So there exist j € {1,2,...,n} such, that o((m' — 1)n + j) = (m' — 1)n + 7/,
a((m” —1)n+j) = (m"”" —1)n+ p” and p’ # p”. In that situation we take a vector

x = gg where z; = 0...0 i 0...0. Then f(z) # 0 and f?(z) = 0.

n
(b) there exists positive integer ¢ such that o (A;) # A;, for j = 1,2, ..., m. Then we take

? . eqe .
a vector z = z{’ where x; = 1...101...1. We have two possibilities: f(z) = h(z,) or

f(@) =ki+ko+1s0 f(@) S {/ﬂ, ki4+1,... k1+ko— 1}U{k‘1 +/€2+1} but fa(g) =0
or f7(z) = g(zg) so f7(z) € {0,1, ..., k1 — 1}. Then we have f7(z) # f(x).

(c) permutation 0 ¢ G X H buto € S, X Sp,. As before we can understand ¢ as a pair
(p,7)sowehavethat p & GorT & H.

If p & G there exist vector z, € {0,1}" such, that g(z,) # ¢°(zg). If z5 & Oc and
zf & Oc then

£(z§) = g(zg) # ¢°(z) = £7(2f)

If z, € Ocor zf) € Oc then it is easy to see that f(z§) # f7(z§).
If 7 ¢ H there exist z, € {0,1}" such, that h(zy) # h"(zy). When z, ¢ Ob and
zf & Ob then

F@h) = flzo) # W (zo) = f(af)

As before if 2, € Ob or 7 € Ob then it is easy to see that f(zF) # f7(zF) O

126

4. Direct product of symmetric groups

The theorem from previous section show, that there exist boolean function f which
represent direct product G x H, but it give us only upper bound on number of possible
values of f. In some cases we can construct a 2 valued boolean function which represent
direct product of groups.

Now we take a direct product of k£ symmetric groups

S(f) = Sn, X Spy X ... X Sy,
in the case when we have different length of blocks.

Theorem 2 For any positive integer ny,na, ..., Ny, such that n; # nj, © # j there exist
a 2 valued boolean function f such that

S(f) = Sny X Spy X ... X Sy,

Proof

Algorithm of construction boolean function:

Step 1: We take any positive integer numbers 71, ng, ..., nj, such that n; # n;, i # j.
Step 2: We put A} = {1,2,....,m}, A} = {n1 + 1,...,2n1}, ..., AL, = {(ng — 1)my +
1,...,nina}. We construct a boolean function for a direct product of two symmetric
group Sy, X Sp,. Let’s take a boolean function

1 T = £1Q2...gn2(type 1)
(A
fo(z) =4 1 z=0"..0" 1i1 0™..0M i=1,2,..,n9
n2
0 otherwise

In (type 1) for ¢ = 1,2,...,n; we take all vectors for which there exist exactly two

numbers 7,7’ € {1,2,...,n2},r # 7’ such that x, and z, are in the form 0...0 1 0...0,
—_———

n1
and 0 otherwise (all x; are the same length).

Now we show that S(f2) = S, x Sp,. Itis easy to see that fo is invariant under
operation o. From the other hand if o ¢ S,, x S,, we have two possibilities: (a)
permutation ¢ act only inside blocks Az1 but there exists two of them where ¢ act in a
different way (possibly o (A}) = Ajl- and ¢ # j but this situation does not change much);
(b) there exists positive integer i such that o(A}) # AL, for j = 1,2, ...,no. In the case
(a) without loose of generality we can assume that o act in different way in Al and Al.
Then there existi € {1,2,...,n;} such that 0(i) = j and o(ny +7) = ny +kand j # k.
Then we take a vector x = xyx,...x,,, where x; and x5 are in the form 0...010...0 where

127

only i-th coordinate is equal 1, and 0 otherwise. Then f(z) # f?(z). In the case (b)
without loose of generality we can assume that ¢ = 1. Because n1 # no then we take
boolean vector x = 1™0™...0". Then f(z) # f7(z).

Step 3: In this step we construct a boolean function which represent S,,; X Sy, X Sp,.
Let A2 = {1,2, ...,nlng},A% = {nin2 + 1,...,2n1ns}, '“7A727,3 = {(n3 — D)ning +
1,...,ninans}. Let’s take a boolean function

1 x=x29..7,,,,(type 1)
1 z=uz122...20,(type 2)
fs@) = 1 g=qure gunegmegune gunz 19 n,

~"
n3

0 otherwise

In (type 1) for i« = 1,2,...,n; we take all vectors for which there exist exactly two

(]
numbers r, 7" € {1,2,...,nan3},r # 7’ such that x,. and z, are in the form 0...0 1 0...0,
—

ni
and 0 otherwise (all x; are the same length). In (type 2) for i = 1,2, ..., ny we take all
vectors for which there exist exactly two numbers r, 7’ € {1,2,...,n3},r # r’ such that

(A
z, and x,s are in the form 0™'...0™ 1™ 0™'...0™, and 0 otherwise (as previously all z;

n2
are the same length).

Now we show that S(f3) = Sy, X Sp, X Sp,. Itis easy to see that f3 is invariant under
operation o. From the other hand if o & S,,, X Sp, X Sy, we have two possibilities: (a)
there does not exist positive integer 4 such that o (A7) # A3, forj = 1,2, ..., n3 (possibly
o(A?) = A? and ¢ # j but this situation does not change much); (b) there exists positive
integer i such that o(A?) # A?, forj = 1,2,...,n3. Inthe case (a) previous step show us
that we can construct a boolean vector z such that f(z) # f(x). In the case (b) without
loose of generality we can assume that 7 = 1. We can see that in the definition of boolean
function we use 3 main type of vectors (three first lines). The number of coordinates
equal 1 in each of them is equal nong, ning and nine respectively. Because ny # no #
ng then nine # ning # nang. So if we take boolean vector z = 1™ "2Qmn2 (N2
then f(z) # f7().

Step k: Now we construct a boolean function which represent .S,,; x S, X ... X Sy, .
Let A]f_l = {1, 2, ...,nlng...nk,l}, Ag_l = {nlng...nk,l +1,..., 2n1n2...nk,1}, .

128

Aﬁgl = {(ng — I)ning...ng—1 + 1, ...,nyna...nt }. Let’s take a boolean function
1 z= xle...gag(type 1)

1 z= $1$2---$a§+1(type j)
fr(z) =

7
— Oik Oék Oék Oék Oik o
1 2=0%..0%1%0%..0M,i=1,2,.. nk

~
Nk

0 otherwise

where o] = nni41...n,, for I < m.
In (type 1) for i = 1,2,...,n; we take all vectors for which there exist exactly two

numbers 7,7’ € {1,2,...,a5},r # r’ such that x, and x, are in the form 0...0 1 0...0,

ni
and 0 otherwise (all x; are the same length). In (type j) for i = 1,2,...,n; we take all

vectors for which there exist exactly two numbers 7,7’ € {1,2, ..., a;? 1}, # ' such

i
J—1 a1

) i1 i1
that x, and x,~ are in the form 0“1 ...091 11

j—1)
0“1 ...0%t , and O otherwise (as

n.
previously all x; are the same length). ’

Now we show that S(fi) = Sy, X Sp, X ... X Sy, . Itis easy to see that fj, is invariant
under operation o. From the other hand if 0 & S,,, x Sy, X ... x Sy, we have two
possibilities: (a) there does not exist positive integer i such that o(AF~1) # A?il,
for j = 1,2,...,ng (possibly U(Af_l) = Ag?_l and ¢ # j but this situation as before
does not change much); (b) there exists positive integer 4 such that o(AF ™) # A;‘f’_l,
for j = 1,2,...,n;. In the case (a) previous step show us that we can construct a
boolean vector z such that f(x) # f?(z). In the case (b) without loose of generality
we can assume that ¢ = 1. As before the number of coordinates equal 1 in each type
of vector used in the definition of function f, is different. So if we take boolean vector
x = 1" k-1 k=1 () "k-1 then f(x) # f7(x). O

Next theorem present construction of 2 valued boolean function f in the case when all
lengths of blocks are equal n.

Theorem 3 For any positive integer number n there exist 2 valued boolean function f
such, that

S(f) = Sp X Sp X ... x Sy

if this product contain more then two component.

129

Proof We consider a set {1,2, ..., n*}. We put
Al ={(i—1)n? +1,(i — 1)n? +2,...,in' }

fori =1,2,...,n" 7 and j = 0,1, ..., k. We see that for j = 0 blocks Ag contain only
one element and for j = k we have only one block equal all set. We can notice, that each
block A7 is divided into n blocks A7 " where k = (i — 1)n + 1, (i —)n + 2, ...,n.
Algorithm of construction boolean function:

Now we construct a family of boolean vectors needed to create a boolean function (we
understand blocks Ag as a coordinates of boolean vector x)

Step 1: For i = 1,2,...,n we construct boolean vectors z of the length n* each of
which are in the following form: in exactly two blocks Al and A}n, where m, m’ =
1,2,...,n*1 m # m/ have i-th coordinate equal 1 and 0 otherwise. Precisely in blocks
A}, and Al coordinates (m — 1)n + i and (m’ — 1)n + i are equal 1, and 0 otherwise.
The number of such vectors is equal %nk(nk_l — 1), and each of this vector has only 2
coordinates equal 1.

Step j: (j < k): Fori = 1,2,...,n we construct boolean vectors z of the length nk
each of which are in the following form: in exactly two blocks A7, and A7 , where

iy i—1 j—1
m,m’ =1,2,...,n¥9 m # m’ blocks Afm_l)nﬁ and Agm'—l)n—i-z‘

otherwise. The number of such vectors is equal $n*~9™1(n*=J — 1), and each of this
vector has 2n/~! coordinates equal 1.

Step k: For i = 1,2,...,n we construct boolean vectors z of the length n* each of
which are constructed in the following form: exactly two blocks A*~! and Afn_,l where
m,m’ = 1,2,...,n,m # m’ (in this one block A%) are equal 1, and 0 otherwise. The
number of such vectors is equal 7, and each of this vector has 2n*~! coordinates equal 1.
Now we create a boolean function f by putting 1 for all vectors constructed above, and
0 otherwise. We consider two cases:

Case (I): n > 2. Itis easy to see that S, x ... x S, C S(f). Now we show that inclusion
D is hold. We proof this by induction on j. So:

Stepl:letj=1lando € S, X ... x S,

(a) Let permutation o act only inside blocks A} but there exist two of them where o act
in a different way (possibly o(A}) = Ajl and ¢ # j but this situation does not change
much). Then there exist m, m’ € {1,2,...,n*~1},m # m/ such, that o act in a different
way in AL and Al . Sothere exist! € {1,2,...,n} thato((m—1)n+1) = (m—1)n+p
ando((m' = 1)n+1) = (m' —)n+p,p,p €{1,2,...,n},p # p'. Then we take a
boolean vector z such, that in blocks Al and A%n/ [-th coordinate (from the beginning
of the block) is equal 1, and 0 otherwise. Then we have f(z) # f7(z).

(b) Let there exists positive integer i such that o(A}) # Al for j = 1,2, kL
Without loose of generality we can assume that 7 = 1. Then inside the block Al there
exist coordinate, for example | € {1,2,...,n} such, that o(l) € Al ,,m’ # 1. More-

are equal 1, and 0

130

over there exist coordinate !’ inside A} such, that o(I') € Al ,,m” # m’. Now we
have three possibilities: (b1) m' = (&' — 1)n +p/,m” = (8" — 1)n +p",p" # p".
Then we consider a vector x which has blocks A} and AL 11 all equal 1, 0 otherwise.
Then 27 has at least one coordinate equal 1 in A}n, and A}n,, so f7(z) = 0; (b2)
m' = (s —1)n+pm” = (s —1)n+p,p # 1. Then we consider two vectors
x; which has blocks A} and A}, all equal 1, 0 otherwise, and z;, which has blocks A}
and A}, all equal 1, 0 otherwise. Then we see that f7(z;) = 0 or f(z,) = 0; (b3)
m = (' —1)n+1land m” = (8" — 1)n + 1. If m” # 1 then we take two boolean
vectors: z; which has A} and A}, all equal 1, 0 otherwise and z, which has A} and
Al all equal 1, 0 otherwise. If f"(xl) = 0 then it is the end of this case. If f"(:cl) =1
then there exist " and r” from the block A}n, such, that o((m' — 1)n +1') € A1 , and
o((m' —1)n+ ") € AL, (that mean some element from Al , stay inside this block
and some element go to block A}n,,). Then 2§ give us a vector with 1 and 0 inside A}n,
s0 f7(xy) = 0. If m” = 1 then for o there exist [in some block 7 such, that o(I) € Al
Then we take a boolean vector with blocks A} equal 1 and AL equal 0. Then vector
27 give us a vector with 0 and 1 inside block Ai so f7(x) = 0.

Step j: (1 < j < k) Because o € S, X ... X S, and from previous steps we know that
there exist only two cases. ‘

(a) If o act only inside blocks Ag but there exist two of them where ¢ act in a dif-
ferent way (possibly O'(Ag) = Al and i =% s but this situation does not change
much). Then there exist m,m’ € {1,2,...,n*77},m # m/ such, that o act in dif-
ferent way inside Al, and Afn,. From previous steps we know that we have follow-
ing situation: there exist [€ {1,2,...,n} such that O’(A{ !)n—i—l)

o(All) = Al r and I’ # [”. Then we take a vector x which in block

(m—1)n+l ' (
A, has block A7} s €qual 1 and in AJ has block A7~

(m'—1)
flz) # 17 (). . A
(b) Let there exists positive integer i such that o(A]) # AL, fors = 1,2, ..., n*=J. With-
out loose of generality we can assume that ¢ = 1. Inside block A{ there exist coordinates
land I’ (I # U') such, that (1) € Afn,,m’ # lando(l') € Af;l,,,m” # m/. As before
we must consider all cases (in step 1 we denote its by b1,b2,b3). This considerations are
similar so we present here only a case b3 because it is a bit more difficult. If (m” # 1)
then we take a vector z; with blocks A7 and A7 , equal 1. The vector z, has A} and A7 ,
equal L. If f7(z;) = O then this i 1s the end of this case. If f"(:cl) = 1 then there exist
7/, " inside A’ , such, that o((m’ — 1)n? +1') € A7, and o((m' — 1)n? +1") € A/ .
Then z§ give us a vector with 1 and 0 inside AZn, so f7(z4) = 0.
Step k: Here we have only one block A¥ = {1,2,...,n¥} which is divided into
A’ffl, ..., AE=1 Because 0 ¢ S,, x ... X S,, we have to consider one case: there exists
positive integer 4 such that J(Af_l) # AF=1 for s = 1,2, ...,n. Without loose of gen-

1
= A{ —1)ntr and

(m, Dt equal 1. Then

131

erality we can assume that ¢ = 1. After considerations similar to case (b) in previous
steps we conclude that o & S(f).

Case (I): n = 2,k > 2. Construction of boolean function f is the same as before
in steps 1,2, ...,k — 1. Now we present step k in this construction: We have blocks
A’ffl ={1,2,...,nF1}, Agfl = {nF1 4+ 1,nF"1 12 ... nF)}. We put one of them all
equal 1 (of course here we have two cases which we consider), but inside second block
we put only coordinate 7 (from beginning of that block) equal 1 and O otherwise, for
i =1,2,...,n*"1. For that kind of vectors we put 1 as a value of boolean function f and
0 otherwise.

Steps of proof are the same from 1 to £ — 1. There is a difference only in step k: let
o & Sy x ... x Sy and o is not reject in previous steps. So J(Alf_l) #* A’f_l and
o(A¥1) £ A5 Then there exist I € A}~ such that o() = I’ € AS~!. We take a
boolean vector x with all block A’f‘l equal 1 and inside Alg_l coordinate I’ is equal 1. If
f?(x) = 0 then this is the end of this case. If f?(z) = 1 then we have two possibilities:
(a) there exist exactly one element [inside A¥~1 such that o(1) € A5~1 and there exist
exactly one element I’ inside A¥~! such that (') € A¥~!. Then we take vector z which
has block A¥~! all equal 1 and inside A5~" on the I’ coordinate has 0. Then z” give us
a vector with exactly one 0 and 1 otherwise in block Alf_l so f7(z) =0.

(b) there exist exactly one element [inside A¥~! such that o(I) € A¥~! and there ex-
ist exactly one element !’ inside Ag_l such that o (') € A’Q“_l. When we consider the
same boolean vector as in (a) we see that £ give as a vector with exactly one 0 and 1
otherwise in block A5~ so f7(z) = 0. O

5. Final remarks

The results of this paper show, that we can create specific algorithms of constructions
of boolean functions which represents direct product of symmetric groups. In the section
3 we present an upper bound for k representability of direct product of permutation
groups. We show, how we can construct boolean function with k1 +k2+2 different values
which represent direct product of two groups (k1 and ko representable respectively). In
section 4 we present two major cases of direct product of symmetric groups: (a) when
we have finite numbers of symmetric groups, each of which act on the set with different
number of components; (b) when we consider a direct product of finite number of copies
of the same symmetric group. This considerations could be useful when we try to solve
the problem of placement of modules on the integrated circuit, where permutation of
inputs is allowed or when order of input values is only partially given.

132

References

1. L. Beame, H. Bodlaender: Distributed computing and transitive networks, 6th Annual
Symposium of Theoretical Aspects of Computer Science, 1989.

2. N.L. Biggs, A.T. White: Permutation groups and combinatorial structures, London Math.
Soc., Lecture Notes Series 33, Cambridge Univ. Press. Cambridge, 1979.

3. P. Clote, E. Kranakis: Boolean function invariance groups, and parallel complexity, J.
Comput., Vol. 20, No. 3, 1991, 553-590.

4. P. Clote, E. Kranakis: Boolean function and Computation Models, Springer, Berlin, 2002.

5. M. Grech, A. Kisielewicz: Direct product of automorphism groups of colored graphs,
Discrete Math., 283, 2004, 81-86.

6. M. Harrison: On the classification of Boolean functions by the general linear and affine
groups, J. Soc. Indust. Apply Math, 12, 1964, 285-299.

7. A. Kisielewicz: Symmetry groups of Boolean functions and constructions of permutation
groups, Journal of Algebra., 199 , 1998, 379-403.

Reprezentacja produktu prostego grup permutacji za pomoca grup symetrii
funkcji boolowskich

Streszczenie

Rozwazamy modut M o n stanach wejSciowych x1, xo, ..., z,, Z ktérych kazdy
moze przyjmowac jeden z dwéch mozliwych stanéw 0 lub 1. Ponadto na wyjsciu
rozwazany modut przyjmuje takze tylko te same dwa stany O lub 1 (uogélnieniem ta-
kich modutéw sa urzadzenia przyjmujace na wyjsciu k réznych wartosci dla k£ > 2,
o ktérych takze piszemy w jednym z rozdzialéw tej pracy). Wyjscie modutu w ogél-
nosci zalezy od uporzadkowania danych wejsciowych x1, xo, ..., x,. Istnieja pewne
permutacje danych wejsciowych ktére pozostawiajg stan wyjsSciowy niezmieniony. Na
przyktad jesli wyjscie modutu M w ogdle nie zalezy od uporzadkowania danych wejs-
ciowych to taki modut nazywamy symetrycznym. Kazdy taki modut moze by¢ jedno-
znacznie powiazany z opisujacg go funkcja boolowska. Majac dang taka funkcje
mozemy skonstruowaé grupe permutacji (grupg symetrii) odpowiadajaca tej funkcji. Dla
funkcji boolowskiej f : {0,1}" — {0,1, ...,k — 1} grupe taka definiujemy jako zbiér
wszystkich permutacji ¢ nalezacych do grupy symetrycznej zbioru n elementowego
ktére spetniaja warunek

f(.%'l, Ly euny .%'n) = f(xg(l), xU(z), ceey .%'J(n))

dla dowolnego wektora boolowskiego (1,2, ...,). Punktem wyjscia do naszych
rozwazan byly prace P. Clote, E. Kranakis, Boolean function invariance groups, and par-
allel complexity., J. Comput., Vol. 20, No. 3, 1991, 553-590. oraz P. Clote, E. Kranakis,

133

Boolean function and Computation Models, Springer, Berlin, 2002. W pracach tych
pojawily si¢ pewne specjalne konstrukcje funkcji boolowskich oraz grup symetrii tych
funkcji. Rozwazany problem ma bezposrednie odniesienie do ulozenia takich modutéw
w uktadzie scalonym, w ktérym permutacje danych wejSciowych sq dozwolone, lub gdy
porzadek wejs¢ jest zadany tylko czeSciowo. Giowne rezultaty uzyskane w tej pracy
dotycza iloczynéw prostych grup permutacji, a w szczegdlnosci iloczynéw prostych
grup symetrycznych. Przedstawiono tu konkretne algorytmy tworzenia funkcji boolows-
kich w przypadkach gdy rozwazamy iloczyny dowolnej (skoficzonej) liczby grup sym-
etrycznych. Rozwazania zostaly podzielone na kilka odrebnych przypadkéw. W sytu-
acji ogoélnej, gdy rozwazamy iloczyn prosty dowolnych grup permutacji podajemy
ograniczenie gérne dla k reprezentowalnosci poprzez funkcje boolowska. Podobnie jak
autorzy P. Clote, E. Kranakis uwazamy, ze rozwazania dotyczace grup symetrii funkcji
boolowskich doprowadza do algorytméw optymalizujacych przestrzei w projektowaniu
uktadéw VLSI. W szczeg6lnosci moga one odpowiedzie¢ na pytanie, kiedy mozemy
zamieni¢ miejscami poszczegdlne moduly lub bloki modutéw nie zmieniajac przy tym
uzyskiwanej funkcji na wyjsciu.

