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Abstract: We consider boolean functions invariance groups S(f) and some special kinds of boolean
functions. We construct a k valued boolean function f which represent a direct product of two permutation
groups and give an upper bound of k. Moreover we show that in some cases we can construct 2 valued
boolean function which represent this product.

1. Introduction

We consider a module M with n possible input states, each of which can assume
one of two possible states 0 or 1. Moreover module M on output can assume 0 or 1
too (we also consider a generalization of this device by putting more then two possible
output states). The starting point of this paper is [3] where basic structures and some
specific constructions of boolean functions are given. We consider a problem of place-
ment of such modules on the integrated circuit (or chip) where permutation of inputs
is allowed or when order of input values is not given, or is partially given. Following
[3] we believe that studies of the symmetry groups of boolean functions may lead to
algorithms optimization the space in VLSI technology. It help answer for question that
we can changed a place of certain module in block without changing an output value of
computed function.

The main objects of study of this paper are symmetry groups of boolean functions.
We want to provide some algorithms to describe special kinds of permutation groups.
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This paper show how we can construct a boolean function for direct product of permu-
tation groups. In the last section we show that we can give an exact construction of 2
valued boolean function when we consider some direct product of symmetric groups.

2. Preliminaries

2.1. Basic definition

A set of all boolean vectors is denoted as a {0, 1}n. Let f : Xn → Y ,
f(x1, x2, ..., xn) = y is a function with n variables (n ≥ 1).

The set S(f) of all permutation σ ∈ Sn such that

f(x1, x2, ..., xn) = f(xσ(1), xσ(2), ..., xσ(n))

for every (x1, x2, ..., xn) ∈ Xn is a subgroup of the symmetric group Sn and is called the
boolean function invariance group or symmetry group of function f . Let f is k-valued
boolean function (k ≥ 1) such that:

f : {0, 1}n → {0, 1, ..., k − 1}

A permutation group G ≤ Sn, such that G = S(f), for some k-valued boolean function
f is called a group which is representable by f (or k-representable). Then function f is
called invariant at the group G.

We consider a group G ≤ Sn. To check that a group G is representable, we must
check, how G act on the set X := {0, 1}n. We consider the action given by:

x → xσ : (x1, x2, ..., xn) → (xσ(1), xσ(2), ..., xσ(n)) (1)

An orbit of element x ∈ X is defined by:

xG = {xσ, σ ∈ G}

Let G = S(f) for some boolean function f : {0, 1}n → {0, 1, ..., k − 1}. If elements
x, y ∈ X are in the same orbit, then f(x) = f(y) and for every permutation τ 6∈ G there
must exist x ∈ X , such that x i xτ are in the different orbits and f(x) 6= f τ (x).

This situation take places, because, if there exists a permutation τ ∈ G, such that
for every x ∈ X elements x and xτ are always in the same orbit, then the group G
and G′ = 〈G, τ〉 has exactly the same orbits in X . So every function f : {0, 1}n →
{0, 1, ..., k − 1} invariant at the group G is invariant at the group G′. Now we can see
that G can not be k-representable for any k.
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2.2. Integrated circuits and optimization

Let M is a module (or a device) with n possible inputs, each of which can assume
one of two states 0 or 1. In general we consider an module with k possible outputs from
the set {0, 1, ..., k − 1} , k > 1. We can understand input values as a boolean vector
(x1, x2, ..., xn). A output of module depend in general on the order of x1, x2, ..., xn.
There exist some permutations of inputs which leave output invariant. For example if
output of module M do not depend on order of x1, x2, ..., xn then we call such a module
symmetric. In general set of all permutation which do not change output in any initial
state create a group.

Let there are two possible output states of module which we denote as 0 and 1. Op-
eration on inputs by the module M can be represent by boolean function f : {0, 1}n →
{0, 1}. If we understand inputs as a boolean vector (x1, x2, ..., xn) then f(x1, x2, ..., xn)
is an output value of M . So let boolean function f represents M . A set S(f) of all per-
mutation σ of {1, 2, ..., n} such, that for every inputs xi ∈ {0, 1}, i = 1, 2, ..., n we
have

f(x1, x2, ..., xn) = f(xσ(1), xσ(2), ..., xσ(n))

create subgroup of Sn. So the module is called symmetric if S(f) = Sn.
A starting point of this research were [3] and [4] where many basic concepts and

new techniques of study of symmetric groups of boolean function are given. One of the
problem mentioned there is the problem of placement of such a module on the integrated
circuit, where permutations of inputs are permitted, or its order is only partially-given.
We expect that research on symmetry groups of boolean function can provide algorithms
to optimizing VLSI technology. For example it can help arrange place of module on the
chip and answer where we can put this module without changing of output value.

2.3. Anonymous network

In [4] authors show that boolean function invariance groups are important to com-
puting values of functions in anonymous network. When we say anonymous network
we think about network which hold following conditions: (1) processors known topol-
ogy and size (all number of processors) of network; (2) processors do not known their
identity and identity of other processors; (3) processors are identical – use the same al-
gorithm; (4) processors are deterministic; (5) network does not need synchronization by
outside device; (6) network is labeled; (7) network connections are First In First Out –
type.

For example we want to compute value of n-ary boolean function n in the network
with n nodes. To compute this value for inputs x1, x2, ..., xn processors p1, p2, ..., pn are
initialized with inputs x1, x2, ..., xn respectively. By exchanging messages through the
links all processors must compute the same bit which we understand as f(x1, x2, ..., xn).
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There exist research ([1]) where the main purpose is define and investigate networks
which hold following condition:

f is computable ⇔ Aut(N) ⊆ S(f)

where Aut(N) is a automorphism group of this network.

2.4. Complexity of formal languages

Many of fundamental questions in complexity theory can be formulated as a problem
in formal language. By language L we mean a set of finite words over finite alphabet, for
example Σ = {0, 1}. The basic problem to investigate is to decide how much resources
like time, memory, number of processors we need to compute whether x ∈ L for any
word x over alphabet Σ. If for any n function fL is a characteristic function of language
L ⊆ {0, 1}n (i.e. for element from x ∈ L function f(x) = 1 and 0 otherwise) then
above question could be show as a problem of determine needed resources to compute
value of boolean function fL for any x and n. We define here a symmetry group S(L)
of language L as a symmetry group of fL.

Considerations of symmetry groups of boolean functions can be used to analysis
properties such languages. A results in [3] and [4] relate to palindrome languages and
regular languages (languages which could be recognized by finite automatas). We often
try to construct language for given permutation group G which L is invariant i.e.

G = S(L), where L ⊆ {0, 1}n

This problem is equivalent to construct a symmetry group S(f) of characteristic function
f for L. Moreover significant problem is to construct an algorithm which create invariant
permutation group of language L.

2.5. Circuits with n nodes

We consider a circuit αn with n nodes. We can understand it as a direct graph with
labeled nodes x1, x2, ..xn (inputs) and ∨,∧,¬ (gates). Input nodes are of in-degree
equal 0 (0 input edges) and there exists exactly one output node with out-degree equal 0
(0 output edges). Complexity c(αn) of this circuit is equal to number of all internal (non
input or output) nodes. Depth d(αn) of this circuit is equal to maximal length of path
from input node to output node.

A word x ∈ {0, 1}n is acceptable (or recognized) by the circuit αn if we can choose
labels of xi of input nodes that xi has equal value to i-th bit of word x. A language L ⊆
{0, 1}n (or its characteristic function f ) is recognized by αn if for all words x ∈ {0, 1}n

following condition is hold:

x ∈ Ln( or f(x) = 1) ⇔ αn recognized x
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For boolean function f we define a it’s complexity as a

c(f) = min{(c(αn)), αn recognize f}
For example for any symmetric boolean function f ∈ Bn we have c(f) = O(n). Knowl-
edge about symmetric groups of boolean function could be used to time or memory
optimization such circuits during the process of checking if a word x is recognized by
device. We can notice here that if we know a word x recognized by αn then work x′ is
recognized too if there exist σ ∈ S(L) that x′ = σ(x). Moreover such a research could
help to investigate techniques to new network and circuit design by using symmetry
groups S(f) of characteristic function of language L ∈ {0, 1}.

3. Upper bound for k representability of direct product of permutation group

The main point of this section is to construct boolean functions which represent some
direct products of groups. We build exact examples of boolean functions and show why
these functions represent above classes of permutation groups. This approach show us
which feature of boolean functions are important from that point of view.

We consider here permutations which preserve division of the set of all inputs of
module M . We divide inputs on m equinumerous sets Ai. Considered permutations
act in the following way: permutation of inputs inside the blocks Ai are allowed, but in
the same way in each of them. Moreover changing places of blocks are allowed. In is
possible because blocks has the same length.

From mathematical point of view we can characterize this action in the following
way: we consider a direct product of permutation groups. So, let (G,X) and (H, Y ) are
permutation groups where |X| = n, |Y | = m. We take a group (G ×H, X × Y ). An
action on the set X × Y is given by the rule

(x, y)(g,h) = (xg, yh)

where g ∈ G,h ∈ H . This action can be thought as an action on the set A =
{1, 2, ..., nm}. This set is divided into sets Ai = {(i−1)n+1, ..., in}, for i = 1, 2, ..., m.
Group G act inside each Ai in the same way, H act on the indexes of Ai.

First, we want to construct a boolean function f : {0, 1}nm → {0, 1, ..., k} which
represent G×H when we only know that G and H are k1, k2 representable respectively.
In this general case we can show only upper bound of k.

Theorem 1 Let k1 > 1, k2 > 1 are any positive integer number and |X| = n, |Y | = m.
For any permutation groups (G,X) and (H, Y ) where G is k1 representable and H is
k2 representable there exist a boolean function f with at most k1 + k2 + 2 values such,
that

S(f) = G×H
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Proof So let G = S(g), g : {0, 1}n → {0, 1, ..., k1 − 1} and H = S(h), h : {0, 1}m →
{0, 1, ..., k2 − 1}.
Algorithm of construction boolean function:
Step 1: We create operator: C : {0, 1}n → {0, 1}nm, x → xC in the following way:

input: vector x = (x1, x2, ..., xn);

from i = 1 to i < m + 1 make a copy of vector x;

output: vector xC = (x1, x2..., xn, x1, x2, ..., xn, ..., x1, x2, ..., xn) of length
nm;

Step 2: We create second operator E : {0, 1}m → {0, 1}nm, x → xE in the following
way:

input: vector x = (x1, x2, ..., xm);

from i = 1 to i < m + 1 make n copies of coordinate xi

output: vector xE = (x1, x1..., x1, x2, x2, ..., x2, ..., xm, xm, ...xm) of length nm

Step 3: We construct sets

Oc = {xi ∈ {0, 1}n, xi = 0...0
i
1 0...0︸ ︷︷ ︸
n

, g(xi) = 0, i = 1, ..., n}

Ob = {xi ∈ {0, 1}m, xi = 1...1
i
0 1...1︸ ︷︷ ︸
m

, h(xi) = 0, i = 1, ..., m}

where g, h are boolean functions which represent G and H respectively. Moreover
OcC = {xC , x ∈ Oc} and ObE = {xE , x ∈ Ob}.
Step 4: We create a boolean function f

f(x) =





g(x0) x = xC
0 , x0 ∈ {0, 1}n\Oc

h(x0) + k1 x = xE
0 , x0 ∈ {0, 1}m\Ob, x0 6= 0m, x0 6= 1m

k1 + k2 x = OcC

k1 + k2 + 1 x ∈ ObE

0 otherwise

Now we show that G×H = S(f).
(⊆) Let A1 = {1, 2, ..., n}, A2{n + 1, n + 2, ..., 2n}...Am{nm − n + 1, nm − n +
2, ..., nm}. Each permutation σ ∈ G ×H can be thought as a pair (ρ, τ) where ρ ∈ G
act inside blocks Ai (in the same way in each block) and τ ∈ H act on the indexes Ai.
If vector x ∈ {0, 1}nm is in the form x = xC

0 and x0 ∈ {0, 1}n\Oc then

f(x) = f(xC
0 ) = g(x0) = gρ(x0) = fσ(xC

0 ) = fσ(x)
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If vector x ∈ {0, 1}nm is in the form x = xE
0 and x0 ∈ {0, 1}m\Ob, x0 6= 0m, x0 6= 1m

then we have

f(x) = f(xE
0 ) = h(x0) = hτ (x0) = fσ(xE

0 ) = f(x)

If x ∈ OcC then xσ ∈ OcC because G is k1 representable group so for x = xC
0 we have

g(x0) = 0 = gρ(x0). Similarly if x ∈ ObE then xσ ∈ ObE because of representability
of group H . If vector x is "otherwise" type from the definition of function f then xσ is
the same type. Moreover we can notice that the set OcE there is m coordinates equal 1
in the each vector but in the set ObE there is (m− 1)n such coordinates in each vector.
This numbers are different when n > 2 or m > 2 because (m− 1)n = m is equivalent
to equation 1

n + 1
m = 1.

(⊇) Let σ 6∈ G×H . We have following possibilities
(a) permutation σ act only inside blocks Ai, i = 1, 2, ..., m but there exist two of them
where σ act in a different way (possibly σ(Ai) = Aj and i 6= j but this situation does
not change much) i.e. there exist m′, m′′ such, that σ act in the different way in Am′ and
Am′′ . So there exist j ∈ {1, 2, ..., n} such, that σ((m′ − 1)n + j) = (m′ − 1)n + p′,
σ((m′′ − 1)n + j) = (m′′ − 1)n + p′′ and p′ 6= p′′. In that situation we take a vector

x = xC
0 where x0 = 0...0

j
1 0...0︸ ︷︷ ︸
n

. Then f(x) 6= 0 and fσ(x) = 0.

(b) there exists positive integer i such that σ(Ai) 6= Aj , for j = 1, 2, ...,m. Then we take

a vector x = xE
0 where x0 = 1...1

i
0 1...1︸ ︷︷ ︸
m

. We have two possibilities: f(x) = h(x0) or

f(x) = k1+k2+1 so f(x) ∈ {k1, k1+1, ..., k1+k2−1}∪{k1+k2+1} but fσ(x) = 0
or fσ(x) = g(x0) so fσ(x) ∈ {0, 1, ..., k1 − 1}. Then we have fσ(x) 6= f(x).
(c) permutation σ 6∈ G×H but σ ∈ Sn × Sm. As before we can understand σ as a pair
(ρ, τ) so we have that ρ 6∈ G or τ 6∈ H .
If ρ 6∈ G there exist vector x0 ∈ {0, 1}n such, that g(x0) 6= gρ(x0). If x0 6∈ Oc and
xρ

0 6∈ Oc then

f(xC
0 ) = g(x0) 6= gρ(x) = fσ(xC

0 )

If x0 ∈ Oc or xρ
0 ∈ Oc then it is easy to see that f(xC

0 ) 6= fσ(xC
0 ).

If τ 6∈ H there exist x0 ∈ {0, 1}m such, that h(x0) 6= hτ (x0). When x0 6∈ Ob and
xτ

0 6∈ Ob then

f(xE
0 ) = f(x0) 6= hτ (x0) = fσ(xE

0 )

As before if x0 ∈ Ob or xτ
0 ∈ Ob then it is easy to see that f(xE

0 ) 6= fσ(xE
0 ) ¤
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4. Direct product of symmetric groups

The theorem from previous section show, that there exist boolean function f which
represent direct product G ×H , but it give us only upper bound on number of possible
values of f . In some cases we can construct a 2 valued boolean function which represent
direct product of groups.
Now we take a direct product of k symmetric groups

S(f) = Sn1 × Sn2 × ...× Snk

in the case when we have different length of blocks.

Theorem 2 For any positive integer n1, n2, ..., nk such that ni 6= nj , i 6= j there exist
a 2 valued boolean function f such that

S(f) = Sn1 × Sn2 × ...× Snk

Proof
Algorithm of construction boolean function:
Step 1: We take any positive integer numbers n1, n2, ..., nk such that ni 6= nj , i 6= j.
Step 2: We put A1

1 = {1, 2, ..., n1}, A1
2 = {n1 + 1, ..., 2n1}, ..., A1

n2
= {(n2 − 1)n1 +

1, ..., n1n2}. We construct a boolean function for a direct product of two symmetric
group Sn1 × Sn2 . Let’s take a boolean function

f2(x) =





1 x = x1x2...xn2
( type 1)

1 x = 0n1 ...0n1
i

1n1 0n1 ...0n1︸ ︷︷ ︸
n2

, i = 1, 2, ..., n2

0 otherwise

In (type 1) for i = 1, 2, ..., n1 we take all vectors for which there exist exactly two

numbers r, r′ ∈ {1, 2, ..., n2}, r 6= r′ such that xr and xr′ are in the form 0...0
i
1 0...0︸ ︷︷ ︸
n1

,

and 0 otherwise (all xi are the same length).
Now we show that S(f2) = Sn1 × Sn2 . It is easy to see that f2 is invariant under
operation σ. From the other hand if σ 6∈ Sn1 × Sn2 we have two possibilities: (a)
permutation σ act only inside blocks A1

i but there exists two of them where σ act in a
different way (possibly σ(A1

i ) = A1
j and i 6= j but this situation does not change much);

(b) there exists positive integer i such that σ(A1
i ) 6= A1

j , for j = 1, 2, ..., n2. In the case
(a) without loose of generality we can assume that σ act in different way in A1

1 and A1
2.

Then there exist i ∈ {1, 2, ..., n1} such that σ(i) = j and σ(n1 + i) = n1 +k and j 6= k.
Then we take a vector x = x1x2...xn2

where x1 and x2 are in the form 0...010...0 where
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only i-th coordinate is equal 1, and 0 otherwise. Then f(x) 6= fσ(x). In the case (b)
without loose of generality we can assume that i = 1. Because n1 6= n2 then we take
boolean vector x = 1n10n1 ...0n1 . Then f(x) 6= fσ(x).
Step 3: In this step we construct a boolean function which represent Sn1 × Sn2 × Sn3 .
Let A2

1 = {1, 2, ..., n1n2}, A2
2 = {n1n2 + 1, ..., 2n1n2}, ..., A2

n3
= {(n3 − 1)n1n2 +

1, ..., n1n2n3}. Let’s take a boolean function

f3(x) =





1 x = x1x2...xn2n3
( type 1)

1 x = x1x2...xn3( type 2)

1 x = 0n1n2 ...0n1n2
i

1n1n2 0n1n2 ...0n1n2︸ ︷︷ ︸
n3

, i = 1, 2, ..., n3

0 otherwise

In (type 1) for i = 1, 2, ..., n1 we take all vectors for which there exist exactly two

numbers r, r′ ∈ {1, 2, ..., n2n3}, r 6= r′ such that xr and xr′ are in the form 0...0
i
1 0...0︸ ︷︷ ︸
n1

,

and 0 otherwise (all xi are the same length). In (type 2) for i = 1, 2, ..., n2 we take all
vectors for which there exist exactly two numbers r, r′ ∈ {1, 2, ..., n3}, r 6= r′ such that

xr and xr′ are in the form 0n1 ...0n1
i

1n1 0n1 ...0n1︸ ︷︷ ︸
n2

, and 0 otherwise ( as previously all xi

are the same length).
Now we show that S(f3) = Sn1 × Sn2 × Sn3 . It is easy to see that f3 is invariant under
operation σ. From the other hand if σ 6∈ Sn1 ×Sn2 ×Sn3 we have two possibilities: (a)
there does not exist positive integer i such that σ(A2

i ) 6= A2
j , for j = 1, 2, ..., n3 (possibly

σ(A2
i ) = A2

j and i 6= j but this situation does not change much); (b) there exists positive
integer i such that σ(A2

i ) 6= A2
j , for j = 1, 2, ..., n3. In the case (a) previous step show us

that we can construct a boolean vector x such that f(x) 6= fσ(x). In the case (b) without
loose of generality we can assume that i = 1. We can see that in the definition of boolean
function we use 3 main type of vectors (three first lines). The number of coordinates
equal 1 in each of them is equal n2n3, n1n3 and n1n2 respectively. Because n1 6= n2 6=
n3 then n1n2 6= n1n3 6= n2n3. So if we take boolean vector x = 1n1n20n1n2 ...0n1n2

then f(x) 6= fσ(x).
Step k: Now we construct a boolean function which represent Sn1 × Sn2 × ...× Snk

.
Let Ak−1

1 = {1, 2, ..., n1n2...nk−1}, Ak−1
2 = {n1n2...nk−1 + 1, ..., 2n1n2...nk−1}, ...,
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Ak−1
nk

= {(nk − 1)n1n2...nk−1 + 1, ..., n1n2...nk}. Let’s take a boolean function

fk(x) =





1 x = x1x2...xαk
2
( type 1)

... ...
1 x = x1x2...xαk

j+1
( type j)

... ...

1 x = 0αk
1 ...0αk

1

i

1αk
1 0αk

1 ...0αk
1︸ ︷︷ ︸

nk

, i = 1, 2, ..., nk

0 otherwise

where αm
l = nlnl+1...nm, for l ≤ m.

In (type 1) for i = 1, 2, ..., n1 we take all vectors for which there exist exactly two

numbers r, r′ ∈ {1, 2, ..., αk
2}, r 6= r′ such that xr and xr′ are in the form 0...0

i
1 0...0︸ ︷︷ ︸
n1

,

and 0 otherwise (all xi are the same length). In (type j) for i = 1, 2, ..., nj we take all
vectors for which there exist exactly two numbers r, r′ ∈ {1, 2, ..., αk

j+1}, r 6= r′ such

that xr and xr′ are in the form 0αj−1
1 ...0αj−1

1

i

1αj−1
1 0αj−1

1 ...0αj−1
1︸ ︷︷ ︸

nj

, and 0 otherwise (as

previously all xi are the same length).
Now we show that S(fk) = Sn1 × Sn2 × ...× Snk

. It is easy to see that fk is invariant
under operation σ. From the other hand if σ 6∈ Sn1 × Sn2 × ... × Snk

we have two
possibilities: (a) there does not exist positive integer i such that σ(Ak−1

i ) 6= Ak−1
j ,

for j = 1, 2, ..., nk (possibly σ(Ak−1
i ) = Ak−1

j and i 6= j but this situation as before
does not change much); (b) there exists positive integer i such that σ(Ak−1

i ) 6= Ak−1
j ,

for j = 1, 2, ..., nk. In the case (a) previous step show us that we can construct a
boolean vector x such that f(x) 6= fσ(x). In the case (b) without loose of generality
we can assume that i = 1. As before the number of coordinates equal 1 in each type
of vector used in the definition of function fk is different. So if we take boolean vector
x = 1n1...nk−10n1...nk−1 ...0n1...nk−1 then f(x) 6= fσ(x). ¤

Next theorem present construction of 2 valued boolean function f in the case when all
lengths of blocks are equal n.

Theorem 3 For any positive integer number n there exist 2 valued boolean function f
such, that

S(f) = Sn × Sn × ...× Sn

if this product contain more then two component.
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Proof We consider a set {1, 2, ..., nk}. We put

Aj
i = {(i− 1)nj + 1, (i− 1)nj + 2, ..., inj}

for i = 1, 2, ..., nk−j and j = 0, 1, ..., k. We see that for j = 0 blocks A0
i contain only

one element and for j = k we have only one block equal all set. We can notice, that each
block Aj

i is divided into n blocks Aj−1
k where k = (i− 1)n + 1, (i− 1)n + 2, ..., in.

Algorithm of construction boolean function:
Now we construct a family of boolean vectors needed to create a boolean function (we
understand blocks Aj

i as a coordinates of boolean vector x)
Step 1: For i = 1, 2, ..., n we construct boolean vectors x of the length nk each of
which are in the following form: in exactly two blocks A1

m and A1
m′ where m,m′ =

1, 2, ..., nk−1,m 6= m′ have i-th coordinate equal 1 and 0 otherwise. Precisely in blocks
A1

m and A1
m′ coordinates (m− 1)n + i and (m′ − 1)n + i are equal 1, and 0 otherwise.

The number of such vectors is equal 1
2nk(nk−1 − 1), and each of this vector has only 2

coordinates equal 1.
Step j: (j < k): For i = 1, 2, ..., n we construct boolean vectors x of the length nk

each of which are in the following form: in exactly two blocks Aj
m and Aj

m′ where
m,m′ = 1, 2, ..., nk−j ,m 6= m′ blocks Aj−1

(m−1)n+i and Aj−1
(m′−1)n+i are equal 1, and 0

otherwise. The number of such vectors is equal 1
2nk−j+1(nk−j − 1), and each of this

vector has 2nj−1 coordinates equal 1.
Step k: For i = 1, 2, ..., n we construct boolean vectors x of the length nk each of
which are constructed in the following form: exactly two blocks Ak−1

m and Ak−1
m′ where

m,m′ = 1, 2, ..., n, m 6= m′ (in this one block Ak
1) are equal 1, and 0 otherwise. The

number of such vectors is equal n, and each of this vector has 2nk−1 coordinates equal 1.
Now we create a boolean function f by putting 1 for all vectors constructed above, and
0 otherwise. We consider two cases:
Case (I): n > 2. It is easy to see that Sn× ...×Sn ⊆ S(f). Now we show that inclusion
⊇ is hold. We proof this by induction on j. So:
Step 1: let j = 1 and σ 6∈ Sn × ...× Sn

(a) Let permutation σ act only inside blocks A1
i but there exist two of them where σ act

in a different way (possibly σ(A1
i ) = A1

j and i 6= j but this situation does not change
much). Then there exist m,m′ ∈ {1, 2, ..., nk−1}, m 6= m′ such, that σ act in a different
way in A1

m and A1
m′ . So there exist l ∈ {1, 2, ..., n} that σ((m−1)n+l) = (m−1)n+p

and σ((m′ − 1)n + l) = (m′ − 1)n + p′, p, p′ ∈ {1, 2, ..., n}, p 6= p′. Then we take a
boolean vector x such, that in blocks A1

m and A1
m′ l-th coordinate (from the beginning

of the block) is equal 1, and 0 otherwise. Then we have f(x) 6= fσ(x).
(b) Let there exists positive integer i such that σ(A1

i ) 6= A1
j , for j = 1, 2, ..., nk−1.

Without loose of generality we can assume that i = 1. Then inside the block A1
1 there

exist coordinate, for example l ∈ {1, 2, ..., n} such, that σ(l) ∈ A1
m′ ,m′ 6= 1. More-
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over there exist coordinate l′ inside A1
1 such, that σ(l′) ∈ A1

m′′ , m′′ 6= m′. Now we
have three possibilities: (b1) m′ = (s′ − 1)n + p′,m′′ = (s′′ − 1)n + p′′, p′ 6= p′′.
Then we consider a vector x which has blocks A1

1 and A1
n+1 all equal 1, 0 otherwise.

Then xσ has at least one coordinate equal 1 in A1
m′ and A1

m′′ so fσ(x) = 0; (b2)
m′ = (s′ − 1)n + p, m′′ = (s′′ − 1)n + p, p 6= 1. Then we consider two vectors
x1 which has blocks A1

1 and A1
n+1 all equal 1, 0 otherwise, and x2 which has blocks A1

1

and A1
2n+1 all equal 1, 0 otherwise. Then we see that fσ(x1) = 0 or fσ(x2) = 0; (b3)

m′ = (s′ − 1)n + 1 and m′′ = (s′′ − 1)n + 1. If m′′ 6= 1 then we take two boolean
vectors: x1 which has A1

1 and A1
m′ all equal 1, 0 otherwise and x2 which has A1

1 and
A1

m′′ all equal 1, 0 otherwise. If fσ(x1) = 0 then it is the end of this case. If fσ(x1) = 1
then there exist r′ and r′′ from the block A1

m′ such, that σ((m′ − 1)n + r′) ∈ A1
m′ and

σ((m′ − 1)n + r′′) ∈ A1
m′′ (that mean some element from A1

m′ stay inside this block,
and some element go to block A1

m′′). Then xσ
2 give us a vector with 1 and 0 inside A1

m′
so fσ(x2) = 0. If m′′ = 1 then for σ there exist l in some block m such, that σ(l) ∈ A1

1.
Then we take a boolean vector x with blocks A1

1 equal 1 and A1
m equal 0. Then vector

xσ give us a vector with 0 and 1 inside block A1
1 so fσ(x) = 0.

Step j: (1 < j < k) Because σ 6∈ Sn × ... × Sn and from previous steps we know that
there exist only two cases.
(a) If σ act only inside blocks Aj

i but there exist two of them where σ act in a dif-
ferent way (possibly σ(Aj

i ) = Aj
s and i 6= s but this situation does not change

much). Then there exist m,m′ ∈ {1, 2, ..., nk−j},m 6= m′ such, that σ act in dif-
ferent way inside Aj

m and Aj
m′ . From previous steps we know that we have follow-

ing situation: there exist l ∈ {1, 2, ..., n} such that σ(Aj−1
(m−1)n+l) = Aj−1

(m−1)n+l′ and

σ(Aj−1
(m−1)n+l) = Aj−1

(m′−1)n+l′′ and l′ 6= l′′. Then we take a vector x which in block

Aj
m has block Aj−1

(m′−1)n+l equal 1 and in Aj
m′ has block Aj−1

(m′−1)n+l equal 1. Then
f(x) 6= fσ(x).
(b) Let there exists positive integer i such that σ(Aj

i ) 6= Aj
s, for s = 1, 2, ..., nk−j . With-

out loose of generality we can assume that i = 1. Inside block Aj
1 there exist coordinates

l and l′ (l 6= l′) such, that σ(l) ∈ Aj
m′ ,m′ 6= 1 and σ(l′) ∈ Aj

m′′ ,m′′ 6= m′. As before
we must consider all cases (in step 1 we denote its by b1,b2,b3). This considerations are
similar so we present here only a case b3 because it is a bit more difficult. If (m′′ 6= 1)
then we take a vector x1 with blocks Aj

1 and Aj
m′ equal 1. The vector x2 has Aj

1 and Aj
m′′

equal 1. If fσ(x1) = 0 then this is the end of this case. If fσ(x1) = 1 then there exist
r′, r′′ inside Aj

m′ such, that σ((m′− 1)nj + r′) ∈ Aj
m′ and σ((m′− 1)nj + r′′) ∈ Aj

m′′ .
Then xσ

2 give us a vector with 1 and 0 inside Aj
m′ so fσ(x2) = 0.

Step k: Here we have only one block Ak
1 = {1, 2, ..., nk} which is divided into

Ak−1
1 , ..., Ak−1

n . Because σ 6∈ Sn × ... × Sn we have to consider one case: there exists
positive integer i such that σ(Ak−1

i ) 6= Ak−1
s , for s = 1, 2, ..., n. Without loose of gen-
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erality we can assume that i = 1. After considerations similar to case (b) in previous
steps we conclude that σ 6∈ S(f).
Case (II): n = 2, k > 2. Construction of boolean function f is the same as before
in steps 1, 2, ..., k − 1. Now we present step k in this construction: We have blocks
Ak−1

1 = {1, 2, ..., nk−1}, Ak−1
2 = {nk−1 + 1, nk−1 + 2, ..., nk}. We put one of them all

equal 1 (of course here we have two cases which we consider), but inside second block
we put only coordinate i (from beginning of that block) equal 1 and 0 otherwise, for
i = 1, 2, ..., nk−1. For that kind of vectors we put 1 as a value of boolean function f and
0 otherwise.
Steps of proof are the same from 1 to k − 1. There is a difference only in step k: let
σ 6∈ S2 × ... × S2 and σ is not reject in previous steps. So σ(Ak−1

1 ) 6= Ak−1
1 and

σ(Ak−1
1 ) 6= Ak−1

2 . Then there exist l ∈ Ak−1
1 such that σ(l) = l′ ∈ Ak−1

2 . We take a
boolean vector x with all block Ak−1

1 equal 1 and inside Ak−1
2 coordinate l′ is equal 1. If

fσ(x) = 0 then this is the end of this case. If fσ(x) = 1 then we have two possibilities:
(a) there exist exactly one element l inside Ak−1

1 such that σ(l) ∈ Ak−1
2 and there exist

exactly one element l′ inside Ak−1
2 such that σ(l′) ∈ Ak−1

1 . Then we take vector x which
has block Ak−1

1 all equal 1 and inside Ak−1
2 on the l′ coordinate has 0. Then xσ give us

a vector with exactly one 0 and 1 otherwise in block Ak−1
1 so fσ(x) = 0.

(b) there exist exactly one element l inside Ak−1
1 such that σ(l) ∈ Ak−1

1 and there ex-
ist exactly one element l′ inside Ak−1

2 such that σ(l′) ∈ Ak−1
2 . When we consider the

same boolean vector as in (a) we see that xσ give as a vector with exactly one 0 and 1
otherwise in block Ak−1

2 so fσ(x) = 0. ¤

5. Final remarks

The results of this paper show, that we can create specific algorithms of constructions
of boolean functions which represents direct product of symmetric groups. In the section
3 we present an upper bound for k representability of direct product of permutation
groups. We show, how we can construct boolean function with k1+k2+2 different values
which represent direct product of two groups (k1 and k2 representable respectively). In
section 4 we present two major cases of direct product of symmetric groups: (a) when
we have finite numbers of symmetric groups, each of which act on the set with different
number of components; (b) when we consider a direct product of finite number of copies
of the same symmetric group. This considerations could be useful when we try to solve
the problem of placement of modules on the integrated circuit, where permutation of
inputs is allowed or when order of input values is only partially given.
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Reprezentacja produktu prostego grup permutacji za pomocą grup symetrii
funkcji boolowskich

Streszczenie

Rozważamy moduł M o n stanach wejściowych x1, x2, ..., xn, z których każdy
może przyjmować jeden z dwóch możliwych stanów 0 lub 1. Ponadto na wyjściu
rozważany moduł przyjmuje także tylko te same dwa stany 0 lub 1 (uogólnieniem ta-
kich modułów są urządzenia przyjmujące na wyjściu k różnych wartości dla k > 2,
o których także piszemy w jednym z rozdziałów tej pracy). Wyjście modułu w ogól-
ności zależy od uporządkowania danych wejściowych x1, x2, ..., xn. Istnieją pewne
permutacje danych wejściowych które pozostawiają stan wyjściowy niezmieniony. Na
przykład jeśli wyjście modułu M w ogóle nie zależy od uporządkowania danych wejś-
ciowych to taki moduł nazywamy symetrycznym. Każdy taki moduł może być jedno-
znacznie powiązany z opisującą go funkcją boolowską. Mając daną taką funkcję
możemy skonstruować grupę permutacji (grupę symetrii) odpowiadającą tej funkcji. Dla
funkcji boolowskiej f : {0, 1}n → {0, 1, ..., k − 1} grupę taką definiujemy jako zbiór
wszystkich permutacji σ należących do grupy symetrycznej zbioru n elementowego
które spełniają warunek

f(x1, x2, ..., xn) = f(xσ(1), xσ(2), ..., xσ(n))

dla dowolnego wektora boolowskiego (x1, x2, ..., xn). Punktem wyjścia do naszych
rozważań były prace P. Clote, E. Kranakis, Boolean function invariance groups, and par-
allel complexity., J. Comput., Vol. 20, No. 3, 1991, 553-590. oraz P. Clote, E. Kranakis,
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Boolean function and Computation Models, Springer, Berlin, 2002. W pracach tych
pojawiły się pewne specjalne konstrukcje funkcji boolowskich oraz grup symetrii tych
funkcji. Rozważany problem ma bezpośrednie odniesienie do ułożenia takich modułów
w układzie scalonym, w którym permutacje danych wejściowych są dozwolone, lub gdy
porządek wejść jest zadany tylko częściowo. Główne rezultaty uzyskane w tej pracy
dotyczą iloczynów prostych grup permutacji, a w szczególności iloczynów prostych
grup symetrycznych. Przedstawiono tu konkretne algorytmy tworzenia funkcji boolows-
kich w przypadkach gdy rozważamy iloczyny dowolnej (skończonej) liczby grup sym-
etrycznych. Rozważania zostały podzielone na kilka odrębnych przypadków. W sytu-
acji ogólnej, gdy rozważamy iloczyn prosty dowolnych grup permutacji podajemy
ograniczenie górne dla k reprezentowalności poprzez funkcję boolowską. Podobnie jak
autorzy P. Clote, E. Kranakis uważamy, że rozważania dotyczące grup symetrii funkcji
boolowskich doprowadzą do algorytmów optymalizujących przestrzeń w projektowaniu
układów VLSI. W szczególności mogą one odpowiedzieć na pytanie, kiedy możemy
zamienić miejscami poszczególne moduły lub bloki modułów nie zmieniając przy tym
uzyskiwanej funkcji na wyjściu.


