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Abstract: The influence of the co-operation frequency of threads in a parallel heuristic algorithm
to solve the vehicle routing problem with time windows on the accuracy of solutions is investigated.
The accuracy of solutions is defined as their proximity to the best known solutions of Gehring and
Homberger’s benchmarking tests. Two adaptive co-operation schemes are proposed and experimentally
evaluated.
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1. Introduction

The vehicle routing problem with time windows (VRPTW) is an NP-hard discrete
optimization problem. It consists in finding a schedule for a fleet of homogenous vehi-
cles servicing a set of geographically scattered customers. The fleet is composed of the
vehicles with equal capacities which cannot be exceeded. All customers must be visited
during the time windows to ensure the feasibility of the routing plan. The VRPTW is
considered as a hierarchical optimization problem. The first objective is to minimize the
total fleet size and the second one is to minimize the total traveled distance.

The practical applications of the VRPTW include the bus route planning, post and
parcels delivering, food delivering, cash delivering to banks and ATM terminals and
many more. A number of algorithms including exact and heuristic methods were intro-
duced for the VRPTW. Due to the large complexity of the VRPTW and its wide practical
applicability the heuristic and metaheuristic methods capable of producing high-quality
feasible solutions in reasonable time are of main importance.



192

The exact algorithms incorporating, among others, dynamic programming, branch-
and-bound algorithms and greedy approaches, were proposed by Bard et al. [1], Irnich
and Villeneuve [14], Jepsen et al. [15], Kellehauge et al. [16] and Chabrier [5]. It is worth
noting that only nine instances out of 300 belonging to the Gehring and Homberger’s
benchmark [13] have been solved to optimality [22].

The heuristic algorithms can be divided into the improvement and the construc-
tion methods. In the construction heuristic algorithms the customers are iteratively
inserted into a partial solution without violating the time windows and capacity con-
straints to build a feasible solution. Several construction heuristics were proposed by
Solomon [30], Potvin and Rousseau [25] and recently by Pang [24]. The improvement
heuristics modify an initial solution and explore the search space S by performing a
number of local search moves in order to decrease the fleet size and the total distance.
The examples of such heuristics can be found in Thompson et al. [32], Russell [28] and
Potvin and Rousseau [26].

The metaheuristic algorithms incorporate mechanisms to explore the search space
and to exploit the most promising regions of the search space. The metaheuristics al-
low infeasible intermediate solutions and the solutions deteriorating during the search
process in order to escape the local minima. A number of sequential and parallel algo-
rithms were introduced during the recent years. The simulated annealing was success-
fully applied by Zhong and Pan [34], Debudaj-Grabysz and Czech [8] and Skinderow-
icz [29]. The tabu searches were proposed by Cordeau et al. [7] and Sin et al. [11].
The ant colony approaches can be found in Xuan et al. [31] and Qi and Sun [27].
The genetic algorithms were successfully applied by Cheng and Wang [6], Kamkar et
al. [17] and Ursani et al. [33]. The evolution strategies were proposed by Gehring and
Homberger [10,12], Mester et al. [20] and Kanoh et al. [18]. The sequential and paral-
lel memetic algorithms (MAs) combining the evolutionary algorithms for more distant
search with the local optimization algorithms for local exploitation were described by
Berger and Barkaoui [2], Labadi et al. [19] and Nagata and Briysy [22].

In this work we analyze a parallel heuristic algorithm to minimize the number of
routes in the VRPTW. The algorithm is based on the improved sequential heuristics
proposed by Nagata and Briysy [21]. The objective of the work is to investigate the
influence of the threads co-operation frequency on the accuracy of solutions. The adap-
tive co-operation frequency adjustment schemes are proposed. The work extends our
previous research [23] and Blocho and Czech’s improvements of the sequential algo-
rithm [3].

This paper is composed of six sections. Section 2 formulates the VRPTW. The
parallel heuristic algorithm and the co-operation of threads are discussed in Section 3.
Section 4 describes the co-operation schemes. The experimental results are discussed in
Section 5. Section 6 concludes the paper.
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2. Problem formulation

Let G = (V, E) be a directed graph with a set V' of NV + 1 vertices representing the
customers and the depot, together with a set of edges E. The vertex vy represents the
depot which is the start and the finish point of each route. The travel costs between each
pair of travel points are given as ¢; j, where i # j, 14, j € {0, 1, ..., N}. The non-negative
demands d;, i € {1,2,..., N}, are known for each customer. Each customer and the
depot define their time windows [e;, [;], i € {0, 1, ..., N'}, during which the service must
be started. The customers have their own service times s;, i € {1,2,..., N}. There is
a set of vehicles of size K with a constant capacity () providing the service. The route
is defined as a set of customers serviced by a single vehicle (vg,v1, ..., Up41), Where
Vg = Un+1. The total amount of goods delivered to the customers within a single route
cannot exceed the maximal vehicle capacity, and the service of a customer should be
started before the time window elapses.

The primary objective of the VRPTW is to minimize the total fleet size, i.e. the
number of vehicles K servicing the customers. The secondary objective is to minimize
the total travel distance, or the travel cost in general, covered by the vehicles.

3. Parallel heuristic algorithm

The parallel algorithm consists of p threads denoted as I, P, ..., P,—1. The initial
solution o0y, is constructed (Fig. 1, line 2) for each thread in the team. The number of
routes in a feasible solution is reduced by one at a time until either A}he maximal execution
time is exceeded or the minimal number of routes K,,;, = [#1 is obtained (line
29). A random route is selected and the V' customers removed from the route are inserted
into the ejection pool (EP) (lines 4-5). The penalty counters p[i], where i € {1,2,..., N},
indicating the re-insertion difficulty are reset (line 6).

The customers residing in the EP must be reinserted into the partial solution without
violating the time windows and the capacity constraints. A single customer v is taken
from the EP in each iteration (line 8), and a set of feasible insertion positions N (v, o)
is constructed. If the set is not empty then a random insertion position forming a new
solution ¢ is selected (line 10). Otherwise, the next attempt to re-insert v is performed
with the Squeeze method allowing for the temporary infeasible solutions (line 12). The
infeasible solutions are sorted according to the value of the penalty function F),(o) [21]
and the solution with the minimal value is selected. A number of local search moves
are performed in order to restore the feasibility of the solution. If the squeezing fails
then the penalty counter p[v] of the customer v is increased (line 15) and the ejections
of other customers from the partial solution are tested (up to the limit k4, [3]) to form
the set of partial solutions with the ejected customers N.(v, o). The sum of the penalty
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1: parfor P;,i =0,1,....,p — 1 do

2 Create an initial solution ;,;+;

3 while not solutionReady do

4 Select and remove a random route from o;

5: Initialize EP with a random permutation of V' removed customers;
6 Initialize the penalty counters p[i] := 1,7 € {1,2,..., N};

7 while EP # () and not isTerminated do
8 Select and remove customer v from the EP;
9 if N(v,0) # () then

10: o := ¢’ selected randomly from N (v, 0);

11: else

12: o = Squeeze(v,0);

13: end if

14: if v is not in o then

15: plv] := p[v] + 1; {increasing the penalty counter}
16: Select o’ € N¢(v, ) such that Py, is minimal,
17: o:=0';

18: Insert the ejected customers {v((,i)t, s véﬁ%} into EP;
19: o = Perturb(o);

20: end if

21: isTerminated = CheckTerminationConditions(o);

22: end while

23: if EP # () then

24: Restore o to the previous feasible solution;

25: end if

26: if canCooperate then

27: Call Co-operation procedure;

28: end if

29: solutionReady := ChecklfSolutionlsReady(c);

30: end while
31: end parfor

Fig. 1. A parallel heuristic route minimization algorithm

counters of the ejected customers Py, is calculated and taken into account while choos-
ing the optimal insertion-ejections positions and selecting a new partial solution ¢’ from
Nc(v,0) (line 16). The Py, value should be minimized for ejecting the customers
which are relatively easy to re-insert to the partial solution. The removed customers are
inserted into the EP and the partial solution is perturbed with a number of feasible local
search moves (line 19) to avoid getting stuck in a local minimum. The main loop of the
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algorithm (lines 7-22) executes until either the customers are re-inserted into the partial
solution or the termination condition is met (line 21) [23].
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Fig. 2. Co-operation scheme

Threads co-operate periodically to exchange the best solutions found up-to-date (line
27). The solutions are assessed according to their costs. The solutions with the smaller
number of routes K are preferred. If the number of routes is equal then the solution with
the shorter total travel distance is considered better. The co-operation scheme among the
threads is given in Fig. 2. The co-operation starts from thread Fy. Thread P; receives the
solution o from thread Py and compares the costs of solution o1 with the received one.
The solution with the smaller cost is chosen and replaces the current solution of thread
Py. Thread P; sends the updated solution to thread P. Similarly, thread P,_; compares
the solution 0}, with 0,2 received from thread P,_». Finally, the best solution is
held by thread P,_;. It may be noticed that during the co-operation the best solution
propagates towards thread P,_1. If the best solution is found by thread F then all the
threads get 0g. The probability of such situation depends on the number of co-operating
threads.

The number of steps that are executed in parallel by the working threads before
the co-operation must be determined sensitively. If the threads co-operate frequently
then the search is guided towards the optima, however the parallel overhead becomes
significant. Additionally, the set of solutions may become saturated with the individuals
of similar characteristics, which in turn leads to getting stuck in the local minimum. The
rare co-operation in case of problems containing relatively small number of customers
reduces the parallel overhead and keeps the search diversified.
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4. Adaptive schemes of co-operation

Four threads co-operation schemes are considered. In the frequent co-operation
the threads exchange the best solutions every N/10 steps, whereas in the rare co-
operation every IN/4 steps, where N is the problem size, i.e. the number of customers
to be serviced. The frequency of co-operation is constant during the algorithm’s execu-
tion.

In case of the adaptive co-operation, the frequency f is defined as a ratio of N
and the constant initial co-operation factor ¢; = 4 at the beginning of the algorithm’s
execution. After f steps the frequency is divided by ¢; = 2 until it reaches a defined
minimal number of parallel steps between the co-operation, i.e. fy,;n = 20.

In the time-adaptive co-operation the initial frequency f is set analogously to the
adaptive co-operation scheme. After f steps it is divided by a ratio of the last average
threads execution time ¢ and the previous average time fpreu, if fpm, # 0. The frequency
f is updated until it reaches f,ip.

5. Experimental results

The parallel heuristic algorithm was implemented in C++ language using the
OpenMP interface and was tested on selected Gehring and Homberger’s benchmark-
ing tests. The set contains 300 problem instances in total with various sizes and struc-
tures [13]. The code was compiled using Intel C++ Compiler 10.1.015 with —fast
and —openmp flags. The computations were carried out on a single node of Galera su-
percomputer at the Academic Computer Center in Gdarisk [9]. The computations were
performed on the nodes with 16 GB RAM (2 GB/core) equipped with Intel Xeon Quad
Core (2.33 GHz) processors (8 cores/node) with 12 MB of level 3 cache.

All the Gehring and Homberger’s instances are split into different problem classes,
containing customers grouped into clusters (C-class), dispersed randomly on the map
(R-class), and containing both clustered and randomized customers (RC-class). Among
these classes, there are tests with smaller vehicle capacities and considerably short time
windows (C1, R1, RC1), and the problems with larger vehicle capacities and longer
scheduling horizon (C2, R2, RC2). A larger number of vehicles will service the cus-
tomers in the first subclass.

The computations were performed on the R1_10_10, R2_4_2, C1_2_7, C2_4_8,
RC1_6_3, RC2_8_8 tests to investigate the influence of the threads co-operation fre-
quency on the instances from each class and of each size. A number of improvements
have been proposed in [23] and [3] concerning the neighborhood size, solutions per-
turbation, additional termination conditions and more. The parameters used during the
experiments are described and discussed in [23].
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Fig. 3. Total travel distance 1" and average execution time ¢ (in seconds) vs. number of threads p for tests
C1_2 7 (a,b),C2_4_8(c,d)and R1_10_10 (e, f)

The experimental results are given in Fig. 3 and Fig. 4. For each instance 500 ex-
periments were performed to investigate the average traveled distance 7" and the average
execution time ¢ of the algorithm (given in seconds). The fleet sizes in the presented
solutions are equal to the world’s best results reported in [13].

It can be seen that increasing the number of co-operating threads for the instance with
a small number of customers C1_2_7 (Fig. 3(a, b)) may lead to decreasing the accuracy
of solutions if they co-operate frequently. The threads are guided to the local minima in
the search space S which are difficult to avoid if the customers are grouped into clusters.
If the threads co-operate frequently then the execution time increases and the threads
work on a set of similar (close to locally optimal) solutions which are hard to improve
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Fig. 4. Total travel distance 7" and average execution time ¢ (in seconds) vs. number of threads p for tests
R2_4_2 (a, b), RC1_6_3 (c, d) and RC2_8_8 (e, f)

further. The experiments for a larger test C2_4_8 (Fig. 3(c, d)) show that the frequent co-
operation results in a significant decrease of the traveled distance. In the time-adaptive
scheme the co-operation frequency depends on the current state of search. If the threads
get stuck then the co-operation becomes frequent and the probability of leaving a locally
optimal region of the search space increases. In case of the instances with randomly
scattered customers (R1_10_10 and R2_4_2, Fig. 3(e, f) and Fig. 4(a, b)) the larger co-
operation frequencies lead to the solutions of better accuracy. The search space in case of
R1_10_10 test is very large, thus the guided threads tend to explore different regions of
space S. Tests from the RC-class have the characteristics of instances containing clusters
of customers and random travel points. It can be seen that the frequent co-operations
give the better results for both RC1_6_3 (Fig. 4(c, d)) and RC2_8_8 (Fig. 3(e, 1)) tests.
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During the co-operation the solutions are propagated in the team and the threads work on
improving the solution characteristics and leaving the local optima if necessary which is
especially important for the semi-clustered instances. A route servicing the customers
from e.g. two neighboring clusters may be faster changed into a route servicing the
customers belonging to a single cluster.

Increasing the number of working threads should either result in decreasing the exe-
cution time of the parallel algorithm or in increasing the accuracy of solutions obtained
in a comparable (ideally constant) time. However, the parallel overhead may become
significant and lead to the unacceptable increase of the execution time in case of fre-
quent threads co-operation. It is worth noting that the proposed adaptive co-operation
schemes significantly reduce the overhead imposed by the threads communication and
synchronization for larger problem instances. The time-adaptive scheme introduces ad-
ditional overhead of e.g. calculating the average threads execution time which turned
to be expensive for relatively small tests (containing 200 and 400 customers). The ex-
periments show that increasing the co-operation frequency results in enhancing the ac-
curacy of the solutions in most cases. The accuracy of the solutions found using the
adaptive co-operation schemes is similar to the accuracy obtained using the frequent
co-operation. The adaptive co-operations outperformed the frequent co-operation for
C1_2_7and R2_4_2 tests.

6. Conclusions

The available processors may be either used to speed up the computations or to
improve the accuracy of solutions found by a parallel algorithm. In the presented par-
allel heuristic algorithm threads co-operate periodically to guide the search towards the
solutions of higher accuracy. The experimental results showed that increasing the co-
operation frequency leads to obtaining the solutions of higher accuracy in most cases.
However, the larger frequency for easier tests (e.g. C1_2_7) may lead to the saturation of
the family of solutions with the locally optimal individuals. Our experiments show that it
is advantageous to reduce the co-operation frequency for the instances that converge rel-
atively fast to the solutions with a number of routes close to the optimum. The proposed
adaptive schemes reduce the parallel overhead and allow finding the solutions of the
accuracy comparable to accuracy of solutions obtained using the frequent co-operation
scheme in shorter time.

A two-stage approach of solving the VRPTW makes it possible to design and com-
bine the algorithms for both stages independently. Increasing the accuracy of feasible
solutions with minimal number of routes in the first phase becomes important for the
second stage heuristics (e.g. a memetic algorithm), which work on a population of indi-
viduals. Our ongoing research is focused on incorporating the edge-assembly crossover



200

operator to the parallel route minimization algorithm as proposed in [4] and combine it
with our parallel memetic algorithm to minimize the traveled distance [23].
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Adaptacyjne schematy kooperacji watkéw w réwnoleglym heurystycznym
algorytmie dla problemu trasowania pojazdow z oknami czasowymi

Streszczenie

Wyznaczanie tras dla pojazdéw z oknami czasowymi (ang. vehicle routing problem

with time windows) jest problemem optymalizacji dyskretnej nalezacym do klasy pro-
bleméw NP-trudnych. Istnieja metody heurystyczne rozwiazywania problemu, pozwala-
jace wyznaczy¢ w rozsadnym czasie rozwigzania nieoptymalne o koszcie bliskim kosz-
towi rozwigzania optymalnego, takie jak symulowane wyzarzanie, przeszukiwanie tabu,
algorytmy genetyczne czy algorytmy memetyczne. W przypadku algorytméw dwustop-
niowych, w pierwszej fazie minimalizowana jest liczba tras, a w fazie drugiej catkowita
przebyta odlegtos¢. Flota skiada si¢ z pojazdéw o jednakowej, zdefiniowanej pojem-
nosci, ktéra nie moze zostac przekroczona, a obstuga klientéw musi rozpoczac si¢ w cza-
sie trwania ich okien czasowych.
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W artykule dokonano analizy wptywu czgstotliwosci kooperacji watkéw na doktad-
no$¢ rozwiazan problemu trasowania pojazdéw z oknami czasowymi, uzyskanych za po-
moca réwnolegtego algorytmu heurystycznego. Zostaly przedstawione wyniki ekspery-
mentéw dla testow wzorcowych o réznej liczbie klientéw, nalezacych do kazdej z klas
testow opracowanych przez Gehringa i Hombergera. W artykule zostaty zaproponowane
dwa adaptacyjne schematy kooperacji, w ktérych czestotliwo$¢ komunikacji migdzy
watkami zalezna jest od aktualnej fazy przeszukiwania przestrzeni rozwigzan S.



