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Abstract: In the article we study a model of TCP connection with Active Queue Management 
in an intermediate IP router. We use the fl uid fl ow approximation technique to model the interactions 
between the set of TCP fl ows and AQM algoithms. Computations for fl uid fl ow approximation model 
are performed in the CUDA environment.
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1. Introduction

Design of technology for TCP/IP networks is one of the most important topics in 
the fi eld of telecommunications networks. The main problem is still the modeling of 
congestion control mechanisms. The development of new active queue management 
(AQM) routers allows to increase the performance of Internet applications.

A number of analytical models of AQM in IP routers in open-loop scenario
– because of the diffi culty in analyzing AQM mathematically – was already pre 
sented, [13], [6]. In this article we try to use the nonlinear dynamic model of TCP 
[10], [19] to analyze the AQM systems. This model enables application of control 
rules to address the basic feedback nature of AQM.

We use the fl uid fl ow modeling methodology based on mean value analysis. This 
analytical method of modeling has a great potential in analyzing and understanding 
various network congestion control algorithms [15]. The models based on fl uid fl ow 
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approximation are able to capture the dynamics of TCP fl ows [21] and allow to 
analyze networks with a large number of fl ows. Here, we use this method to compare 
routers having different active queue management principles and transmitting TCP/
UDP fl ows. The model allows to study not only the steady-state behavior of the 
network, but also the transient behavior when a set of TCP fl ows start or fi nish 
transmission. We concentrate on transient average router queue length for different 
AQM strategies. In this paper we presents results of calculations obtained using the 
GPU environment. The computation time in the CUDA environment are compared 
with the time of calculation in standard CPU. For large matrix multiplication we 
propose to use the CUBLAS module (Basic Linear Algebra Subprograms) prepared 
by NVIDIA.

The rest of this article is organized as follows: section 2 describes the fl uid fl ow 
model of AQM router supporting TCP/UDP fl ows, section 3 presents the obtained 
results. The conclusions are drawn in section 4.

2. Fluid-fl ow model for the network case

This section presents a fl uid fl ow model the AQM router supporting TCP/UDP 
fl ows.

The model presented in [15] demonstrates TCP protocol dynamics. This model 
ignores the TCP timeout mechanisms and allows to obtain the average value of 
key network variables. This model is based on the following nonlinear differential 
equations [9]:

 
dWi(t)

dt
=

1
Ri(t)

− Wi(t)Wi(t−R(t))
2Ri(t−Ri(t))

p(t−Ri(t))  (1)

 
dq(t)
dt

=
n∑

i=1

Wi(t)
Ri(t)

− C  (2)

where:
– Wi = expected TCP sending window size (packets) for i-fl ow,
– q = expected queue length (packets),
– R = round-trip time = q/C + Tp (secs),
– C = link capacity (packets/sec),
– Tp = propagation delay (secs),
– N = number of TCP sessions,
– p = packet drop probability.
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The maximum values of q and W (queue length and congestion window size) 
depend on the buffer capacity and maximum window size. The dropping probability 
p depends on the queue algorithm. We do not distinguish explicitely TCP and UDP 
connections, saying only that UDP connections infl uence the capacity C of the output 
link.

For the RED algorithm, dropping probability pRED is growing linearly from 
0 to pmax:

 pRED = pmax
x−Minth

Maxth −Minth
 (3)

For the CHOKe algorithm, the probability pCHOKE depends on the number of 
packets of the i-stream relative to the total buffer occupancy. For simplicity, the model 
assumes that the number of packets belonging to a single stream in the queue is the 
same for all streams, hence the probability of packet loss is inversely proportional to 
the number of the streams,

 pCHOKe =
1
N

 (4)

An extension of the fl uid fl ow aproximation model allows to calculate the 
transmission parameters for the network of transmission nodes [11]. The extended 
model assumes that the network V consists of K routers. The queues are represented 
by vectors Q and X. The probability of packet dropping is represented by vector P (x). 
Matrix A represents the structure of the network V. The rows of the matrix correspond 
to the fl ows in the network. The columns of the matrix represent individual nodes. If 
the fl ow i travels through a node k, the element aik is set to 1, otherwise it is set to 0.

Matrices A and P (x) are used to create a new matrix AP [15]. The rows of matrix 
AP are obtained by multiplying rows od matrix A with the proper item of vector P. 
This matrix is used to obtain the complete loss probability for packets on the path (for 
all fl ows). The row of the matrix AP describes the drop probability for all routers on 
path. The total packet drop probability is a combination of the individual probabilities 
for the routers along the path from the source to the destination. An easier solution 
is to calculate the probability of correct packet transmission from the source to the 
target. Hence, the dynamics of the TCP window for the network of nodes can be 
represented as:

 
dWi(t)

dt
=

1
Ri(t)

− Wi(t)Wi(t−R(t))
2Ri(t−Ri(t))

(1−
K∏

n=0

(1−AP (x)i))  (5)
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3. Results

The computations were made with the use of PyLab (Python numeric computation 
environment) [18], a combination of Python, NumPy, SciPy, Matplotlib, and IPython. 
The graphs shown below present transient system behavior, the time axis is drawn 
in seconds. The access to Nvidia’s CUDA parallel computation API [22] is obtained 
using PyCUDA.

The parameters of AQM buffer:

– M inth = 10,
– M axth = 15,
– buffer size (measured in packets) = 20,
– weight parameter α = 0.007.

The parameters of TCP connection:

– transmission capacity of AQM router: C = 0.075,
– propagation delay for i-th fl ow: Tpi = 2,
– initial congestion window size for i-th fl ow (measured in packets): Wi = 1.

The obtained mean queue lengths for TCP connections are presented in table 1.

Algorithm Nb of streams Nb of packets

CHOKE 1 7.98664081264

CHOKE 2 8.63146812018

CHOKE 5 10.0998514529

CHOKE 10 11.0167546717

CHOKE 11 11.7731309893

RED 1 8.57089136683

RED 2 9.05376778822

RED 5 10.3805817389

RED 10 11.1549893996

RED 11 11.7731309893

Table 1. The obtained mean queue lengths Q(t)
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Figure 1 shows the queue behavior in case of one TCP fl ow and the CHOKe [8] 
queue. The size of congestion window increases until the buffer reaches Minth. The 
algorithm draws “CHOKe victim” always with success, hence the probability of packet 
loss is equal to the one. Packets are dropped, the size of congestion window decreases 
causing a slow decrease of the queue length – this pattern is repeated periodically. The 
similar situation exists for the two streams (fi gures 3, 4). The probability of removing 
a packet is equal to 1

2
. Probability of removing the packet by RED mechanism is in 

both cases much smaller. Comparing the behavior of the CHOKe algorithm to the 
RED, it is clear that CHOKe algorithm is better in the case of aggressive (stealing 
most of the bandwidth) streams.

Fig. 1. CHOKe queue 1 TCP/UDP fl ow

In fl uid fl ow aproximation, we calculate the dynamic of the window dWi  / dt  
for all TCP/UDP streams and then we calculate the queue occupacy. In the CUDA 
environment we can perform these calculations in parallel. A simple program using 
pucuda is presented below:
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Fig. 2. RED queue 1 TCP/UDP fl ow

#Import modules

import pycuda.driver as cuda 
import pycuda.autoinit
from pycuda.compiler
import SourceModule import numpy

#preparing matrix 4x4 of random numbers:
a = numpy.random.randn(8,8)
a = a.astype(numpy.fl oat32)
#Memory allocation in GPU
a_gpu = cuda.mem_alloc(a.nbytes)
#transfer to GPU
cuda.memcpy_htod(a_gpu, a)

# Simple program written in nvcc
gpu_rozkaz=’’’
 global  
void doublify(fl oat *a)
{
int idx = threadIdx.x + threadIdx.y*4;
a[idx] *= 2;
}
’’’
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Fig. 3. CHOKe queue 2 TCP/UDP fl ows

#program execution
mod = SourceModule(gpu_rozkaz)
func = mod.get_function(“doublify”)
func(a_gpu, block=(4,4,1))

#data transfer from gpu to cpu
a_doubled = numpy.empty_like(a)
cuda.memcpy_dtoh(a_doubled, a_gpu)
print a_doubled
print a

Listing 1. Simple program using pycuda

The execution of the calculations consists of four steps:

– input data preparation (array of 32-bit fl oat),
– transport data to GPU,
– calculation in GPU,
– downloading data from GPU to CPU.

In the fl uid aproximation we prepare arrays of Wi (t), Wi (t − R(t), Ri, Ri (t − R(t)), 
we send this arrays to GPU and make calculations. Then we download the array of 
the new Wi (t).
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Fig. 4. RED queue, 2 TCP/UDP fl ows

Figure 5 shows the comparison of calculation time in GPU and CPU environments 
depending on the number of streams. This time is strongly indetermined. Our 
experiments were repeated one hundred times, and the graph shows the mean values. 
At the beginning of the computation in GPU, the time is relatively large. This is 
related to the time required to initialize the GPU. In a later stage, the time slightly 
depends on the number of processed fl ows.

Fig. 5. Calculation time in GPU and CPU environments

The fl uid fl ow approximation for a large number of nodes involves the 
multiplication of large matrices. These calculations can also be performed in a GPU 
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environment. Figure 6 shows times of matrices multiplication (depending on matrices 
size). The computation time increases very slowly with the increase of the size of the 
matrix. This calculation was performed using a *single* block of threads, therefore 
we can multiplicate only matrices of size 22x22.

Fig. 6. Times of matrices multiplication in GPU environment

Additional Python bindings to simplify matrix multiplication operations can be 
found in the program pycublas [23]. CUBLAS is an implementation of BLAS (Basic 
Linear Algebra Subprograms) on top of the NVIDIA CUDATM runtime. It allows the 
access to the computational resources of NVIDIA GPUs. The library is self-contained 
at the API level, that is, no direct interaction with the CUDA driver is necessary. 
CUBLAS attaches to a single GPU and does not auto-parallelize across multiple GPUs.

PyCUBLAS multiplies matrices smaller than 65536-by-65536 [23]. The matrix 
multiplication using pycublas is very simple, as presented below:

import numpy
from pycublas import CUBLASMatrix

A = CUBLASMatrix(numpy.mat([[1,2,3],[4,5,6]],numpy.
fl oat32))
B = CUBLASMatrix(numpy.mat([[2,3],[4,5],[6,7]],numpy.
fl oat32))
C = A*B

Listing 2. Matrix multiplication using pycublas
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Fig. 7. Times of matrices multiplication

All CUBLAS alloc and free calls are mapped to the CUBLAS Matrix object’s 
life in Python, hence the memory management is limited to fi lling the card. For 
matrices multiplication of size (4160x4160) Cublas is 43x faster in comparison to the 
calculation using the library “numpy”. Figure 7 shows times of matrices multiplication 
(using CUBLAS) depends on matrices size.

4. Conclusions

The results presented above confi rm the superiority  of of the CHOKe algorithm 
over standard RED algorithm in presence of aggressive streams but the use of CHOKE 
is insignifi cant in the case of a large number of streams  with the similar intensity. 
In this article we also present how to perform calculations in GPU environment: we 
used GPU block of thread we calculated dynamic of conguestion window for all 
streams in one step and we used a *single* block of threads, therefore we were able 
to perform the model for 600 streams. The use pyCUBLAS was proposed for matrix 
multiplication used in extended network model.
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Aproksymacja płynna algorytmów AQM – wspomagana przez GPU

Streszczenie

Artykuł opisuje zastosowanie aproksymacji płynnej do modelowania interakcji 
pomiędzy zbiorem strumieni TCP, a mechanizmami aktywnego zarządzania buforami 
(AQM). Obliczenia zostały przeprowadzone w środowisku GPU. Wyniki przedsta-
wione w artykule potwierdzają przewagę algorytmu CHOKe nad standardowym algo-
rytmem AQM: mechanizmem RED.


