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Using RANSAC for 3D point cloud segmentation
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Abstract: The article presents a method for 3D point cloud segmentation. The point cloud comes 
from a FARO LS scanner – the device creates a dense point cloud, where 3D points are organized in 
the 2D table. The input data set consists of millions of 3D points – it makes widely known RANSAC 
algorithms unusable. We add some modifi cations to use RANSAC for such big data sets. 
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1. Introduction

There are many algorithms proposed for 3D segmentation. The proposed 
algorithms differ due to the input data. Most of the solutions are dedicated to 3D 
mesh segmentation (eg. [14, 16, 19]). Our 3D data is represented as a (grid) point 
cloud, and the solutions for 3D mesh segmentation cannot be used for our purposes.

There are two main types of segmentation algorithms for 3D data [11, 20]: edge-
based [7, 10, 13, 15] and region-based [8, 9, 17]. The third group consists of hybrid 
methods. Our RANSAC algorithm is an example of region-based methods.

We use a 3D point cloud given by FARO LS scanner (see fi g. 1-3). The input data 
is a huge grid point – the table consists of almost 9000x4000 3D points (about thirty 
six millions points).

Our input data represents human made interiors (we may assume the segments are 
simply shapes, especially planes [18]). The found shapes may be used to:

– building of semantic map,
– fi nding of badly represented areas used for adaptive scanning,
– fi nding of correspondence between scans (using similar shapes).
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Fig. 1. Scan made by FARO LS laser 3D scanner – the dining room in Caro Villa. 
Light intensity represents refl ection of infrared light. 

(The view was generated by JRC 3D Reconstructor®.)

 

Fig. 2. 3D visualisation of the same scan – outside of the dining room in Caro Villa. 
(The view was generated by JRC 3D Reconstructor®.)
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Fig. 3. 3D visualisation of the same scan – inside of the dining room in Caro Villa. 
(The view was generated by JRC 3D Reconstructor®.)

There are two known methods that base on RANSAC algorithm for segmentation 
of 3D shapes: the fi rst [8, 17] is used to fi nd parts of buildings (roofs and facades 
– only planes) in LIDaR 3D data; the second [9] fi nds planes, spheres, cylinders, 
cones and tori (objects with three to seven parameters; for natural human perception 
environment as a set of primitives [11]). In our method we are looking for quadrics of 
all types. The method is also adapted to characteristics of the input data – the volume 
of data (about thirty fi ve millions of points) is too big for RANSAC, so RANSAC 
algorithm is used only for parts (“windows”) of the incoming data.

2. Related Work

In the previous work on 3D data segmentation using RANSAC [21] an input data 
comes from Minolta Vi-9i laser scanner. The input data consists of a smaller number 
of points – it makes possible using RANSAC algorithm with the whole input data 
set. The new version of the algorithm uses 3D point clouds generated by the FARO 
LS laser scanner. The data sets are much bigger (millions of points in comparison to 
thousands of points) and points are stored in the 2D table. The size of analysed point 
clouds makes previous version of the algorithm unusable. 

The previous work uses only quadrics, while the new work prefers planes, still 
using quadrics.



108

2.1. Comparing RANSAC to other algorithms serving a similar purpose

The purpose of the present work is to identify, in a given set of 3D points, its 
subsets, which can be reasonably well approximated by quadric surfaces. This task 
belongs to a class of problems well known to data processing: the identifi cation of 
structured subsets in sets of observation vectors.

In general terms, this class of problems can be described in the following terms:

• given is a set S={p[i]}, i=1...k of data vectors (points in Rn);

• some of the vectors may belong to one or more geometric structures defi ned by 
an equation F[j](p)=0, where F[j] is a function with adjustable parameters; those 
points comply with the equation with a certain degree of error, either because 
of measurement imprecision or because the physical reality they represent is 
not perfect;

• given is a procedure G (a fi tting algorithm) which can identify the parameters 
of F from a small set of points, provided that they all belong to F;

• also given is an error measure quantifying the degree of non-compliance of 
a point with a structure;

• the task is to identify all structures which are represented by a suffi cient number 
of points, determine their parameters and the corresponding point subsets (the 
support sets or inlier sets of the structures; points not belonging to a given 
structure – which may or may not belong to another one – are referred to as 
outliers).

Among the algorithms that exist for this type of problems, we considered the Hough 
transform [2, 8, 3, 4] and RANSAC [5].

The Hough transform and its generalizations detect structures in point clouds 
by allowing each point to „vote” for all potential structures that pass through it. At 
the heart of the method is an accumulator table, which is an array with as many 
dimensions as there are parameters describing the structures.
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Where: Q, P, and R are parameters. Q is 3x3 matrix, P is 3-dimensional row vector, 
R is a scalar constant.

In our case, where the structures are quadrics described by 10 parameters (reducible 
to 9 by eliminating the scale factor), the size of the array poses several problems:
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• the array will exceed the RAM capacity of most computers. Quantifying each 
parameter into just 10 bins and using four-byte long integer format leads to 
a 40GB array;

• the time required to fi ll the array by having each data point „vote” for all 
quadrics it can potentially belong to is also considerable, due both to the large 
number of such quadrics and the complexity of determining them. According 
to Shapiro and Stockman [6], the computational complexity of the Hough 
transform is O(Mm-2), where m is the number of parameters and M is the 
number of discrete values each of them can assume.

The RANSAC algorithm does not use such exponentially-growing data structures, 
and its computational cost depends on the number of samples that need to be considered 
to ensure a suffi cient probability of fi nding one that only consists of inliers.

This probability Γ is given by the formula [1]:

 Γ = 1 – (1 – (1 - ε)p)s 

where:
ε – the fraction of outliers in the population,
s – the number of samples taken,
p – the number of features in each sample.

For a given required Γ, the required number of samples is

 s=ln(1 –Γ)/ln (1 – (1 - ε)p) 

In our case, where a Γ of 0.95 was acceptable and ε was typically near 0.7, a few 
hundred thousand iterations yielded satisfactory results. As each iteration involved 
checking a few tens of thousands of points, the overall computing time was orders of 
magnitude less than in the case of the Hough approach.

3. Using RANSAC on large data sets.

The volume of data (tens of thousands of points) obtained from a typical 3D 
scanner makes it impractical to process with the original RANSAC algorithm as 
a single set. Storing the whole scan in a core-memory array proved impossible (on 
a contemporary PC-class computer), and running the algorithm on a set stored in 
a disk fi le would be prohibitively time-consuming, because RANSAC, by defi nition, 
accesses data in random order.
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A modifi ed version of the algorithm was developed, relying on the assumption that 
points belonging to a feature will tend to occur close to each other, and therefore little 
is risked by splitting the full data set into square windows and applying RANSAC to 
one such window at a time.

By „square windows” we mean subsets cut out from the 3D set by squares in the 
XY plane.

The modifi ed algorithm proceeds in two stages. In the fi rst stage, each window 
is submitted to the RANSAC algorithm and quadrics are identifi ed among its points. 
In the second stage, the quadrics are compared to each other and merged (along with 
their supporting point sets) if they are similar enough.

3.1. Stage 1 – Search for quadrics in windows.

Defi ne numbered set QS={QS[i]} of quadrics, initially 
empty.
Defi ne numbered set T={T[i]} of point fi les, also initially 
empty.
N = 0;
for each square window W
  mark all points in W as unused
  for each unused point P in W
   if P lies on any quadric QS[i] in QS
    mark P as used and add it to T[i]
   endif
  endfor
  itercount = 0;
  do
   apply RANSAC to the unused points in W
   if a quadric is found
    N++;
    add the quadric to QS as QS[N]
     store its points in a fi le and add the 

fi le to T as T[N]
    mark the points as used
   endif
   itercount++;
   until ( (itercount>itermax) OR (fewer than 10 unused 

points remain) )
endfor 
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In fact, sometimes RANSAC algorithm gives quadrics equation with Q and P 
parameters close to 0. In such situation we cannot use the quadric, so the RANSAC 
algorithm is used in the loop (break if the Q or P parameters signifi cantly different 
from zero, or if the number of iterations reach the maximum).

3.2. Stage 2 – integration of quadrics

N = number of quadrics in Qs
mark all quadrics in QS as unused
for i = 1 to N
  if QS[i] unused
   for j = i+1 to N
    if distance(QS[j], QS[i]) < upsilon
     mark QS[j] as used
      fuse T[j] into T[i] (i.e. Add points 

of T[j] toT[i] and make T[j] empty)
    endif
   endfor
  endif
endfor

Where distance(QS[j], QS[i]) is defi ned as a weighted difference 
between parameters of the quadrics. The biggest weight is associated with R parameter, 
as associated with position of the quadric (parallel quadrics differ by R).

4. Results and conclusions

The algorithm was tested using scans of the dining room in the Caro Villa 
(Museum in Gliwice). A typical scan used for our experiments consists of 38016000 
points (grid size: 9600x3960). To reduce number of the points we use only mean 
position for a given neighbourhood (in tests the neighbourhood was set to 4x4, that 
reduces the number of points to 2 376 000).

Results of the algorithm depend on the data and parameters. The main parameter is 
an acceptable distance between analysed point and the found quadric. The parameter 
determines size of the found surfaces. In presented example the parameter was set to 
0.0025 (the parameter depends on the input data). Size of the used window was set 
to 90 x 90. 
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In the fi rst stage we found 299 surfaces (consisting between 210 and 20512 
points). Some of the found surfaces are presented on fi g. 4. 

Fig. 4. The found quadric (black) in part of the scan (grey). 
(The view was generated by Geomagic Studio 10®.)

There are some problems with the output: number of found quadrics (found in 
small windows), artifi cial surfaces.

4.1. Quadrics integration

We have too many surfaces in the fi rst stage of the algorithm and found surfaces 
are small (see fi g. 4). The surfaces may be integrated, but the comparison criteria 
are not-trivial choices. The objects in human made environment are not only built 
using primitives, but also contains many parallel surfaces – in result, the position of a 
surface (given by R parameter) is the most important for comparison.

We presented one wall of the analysed dining room in Caro Villa on fi g. 5. The 
quadrics of the wall were integrated using weighted square error (parameters Q and 
P are multiplied by 0.9, while R parameter is multiplied by 1.9). The threshold was 
set to 0.1.
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Fig. 5. A set of quadrics integrated into one wall. One of them is black. 
(The view was generated by Geomagic Studio 10®.)

The “wall” presented on the fi g. 5 consists of twelve quadrics, with the biggest 
error 0.047. We found 85 ‘integrated surfaces’ (but most of them are single quadrics 
found in the fi rst stage with not found equivalents).

4.2. Artifi cial surfaces

Some of the surfaces are artifi cial planes made by points on the scanning plane. 
The artifi cial planes can be easily removed – the planes consists of central point of 
the scan (0, 0, 0) that means R=0.

5. Usage and future works

Segmentation of 3D scans is used for many purposes. We are using 3D 
scans segmentation for building semantic maps, adaptive scanning and fi nding 
correspondence between scans.
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5.1. Semantic map

The semantic map represents the environment describing parts using labels – e.g. 
a group of integrated quadrics (see fi g. 5) should be described as ‘wall’. Other planes 
in the scan should be labelled as: wall, fl oor, roof. To set a proper label for a part 
of environment we need: type of the quadric (e.g. ‘plane’), position (altitude) and 
orientation (‘vertical’, ‘horizontal’, etc.).

5.2. Adaptive scanning

Considering quality of scans of cultural heritage objects, we observe that parts of 
the same object differ in quality [12]. Using a 3D scanner we are facing additional 
dilemma: using higher density of scanning gives us more points and causes problem 
with analysis of the scan. We may analyse distances between points and quadrics – 
if the distance is small, the surface is well suited and the part of the environment is 
described with proper density of points; if the distance is higher we need additional 
scanning process with higher density for a part of the environment.

5.3. Correspondence between scans

Finding correspondence between scans is an important problem in scan registration 
and integration tasks. The number of found quadrics is smaller than number of points, 
and we may reduce complexity of the algorithm using only quadrics of the same type 
in process of fi nding correspondence.

5.4. Future works

We are planning modify criteria for quadrics integration and add new criteria for 
the best quadric parameters for a set of points.
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Wykorzystanie algorytmu RANSAC dla segmentacji chmur punktów 3D

Streszczenie

Artykuł prezentuje metodę segmentacji chmury punktów 3D. Segmentacja znaj-
duje w chmurze (kracie) punktów kwadryki. Źródłem danych są chmury punktów 
uzyskane przy pomocy skanera FARO LS. Skany wykonane przy wykorzystaniu tego 
skanera charakteryzują się zapisem punktów w tablicy (stąd określenie ‘krata’ punk-
tów), przy czym jej rozmiary są znaczne – w eksperymentach wykorzystano kratę 
liczącą 9600x3960, co daje 38 016 000 punktów, podkreślając znaczenie czynnika 
złożoności pamięciowej algorytmów. Przedstawione rozwiązanie uwzględnia ten pro-
blem wywołując czasochłonny algorytm RANSAC jedynie dla wycinków analizowa-
nej sceny, a następnie wykorzystuje uzyskane rezultaty do dalszej analizy. W artykule 
zaprezentowano szczegółowo algorytm RANSAC i zasady analizy wycinków skanu.

Dane wejściowe dla algorytmu reprezentują scenę utworzoną przez człowieka 
(wnętrze pomieszczenia), co oznacza pojawianie się wielu płaszczyzn i innych pro-
stych obiektów geometrycznych (np. wycinków walca). Prezentowane rozwiązanie 
pozwala na odnalezienie w scenie kwadryk, rozwiązanie takie pozwala objąć wiele 
kształtów tworzonych przez człowieka.

W przeprowadzonych eksperymentach analizowano skan jadalni Willi Caro 
– dziewiętnastowiecznej willi, będącej jedną z siedzib Muzeum w Gliwicach. Wybór 
takiego przedmiotu eksperymentów jest powiązany z jednym z docelowych zasto-
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sowań – skanowaniem obiektów dziedzictwa kulturowego celem dokonania ich 
inwentaryzacji architektonicznej. Wyznaczenie kwadryk opisujących fragmenty skanu 
pozwala dobrać dokładność skanowania (zwiększenie dokładności dla wybranych 
fragmentów – detali artystycznych) w zależności od złożoności powierzchni. Ilustra-
cje 1-3 prezentują analizowany skan, ilustracja nr 4 przedstawia punkty przypisane 
do kwadryk (wszystkich znalezionych przez oprogramowanie), a nr 5 zintegrowane 
kwadryki dla jednej ze ścian jadalni.

W wyniku analizy znaleziono 299 kwadryk (o rozmiarach od 210 do 20512), 
które po integracji utworzyły 85 zintegrowanych powierzchni (wiele z nich to jednak 
pojedyncze kwadryki z pierwszego etapu przedstawiania, dla których nie znaleziono 
odpowiedników).


