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Abstract The paper presents the solution to a problem of determin-
ing the heat flux density and the heat transfer coefficient, on the basis of
temperature measurement at three locations in the flat sensor, with the as-
sumption that the heat conductivity of the sensor material is temperature
dependent. Three different methods for determining the heat flux and heat
transfer coefficient, with their practical applications, are presented. The
uncertainties in the determined values are also estimated.
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Nomenclature

a, b – coefficients
C, D – constants
fi – i-th measured temperature, ◦C
Fj – j-th equality limitation
L – thickness of the sensor (plate), m
M – number of control volumes
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M1 – number of node, in which the first temperature sensor was
mounted

N – number of temperature measuring points
q – heat flux density, W/m2

S – sum of squares, K2

T – temperature, ◦C
Tf – exact temperatures, ◦C
x – coordinate, m
xi – location of the i-th temperature sensor
zi – i-th determined parameter
h – heat transfer coefficient, W/(m2K)
∆x = L/(M − 1) – thickness of the control volume, m
k – thermal conductivity, W/(m K)

Greek symbols

βi – i-th Lagrange multiplicator
σ – standard deviation

1 Introduction

In the model tests, conducted at temperature close to the ambient tem-
perature, there are numerous measurement techniques used to determine
the heat transfer coefficient [1–7]. The most popular ones are: the thin-
film naphthalene mass-transfer technique [1–2], the electrochemical method
[3–4] and methods using liquid crystals [5–7]. In tests conducted in higher
temperatures, e.g. in steam boilers, industrial furnaces or in experimen-
tal tests of fluid boiling, most often the conductometric probes are used
[8–9]. On the basis of temperature measurement conducted at points of
various coordinates, the heat flux density and the heat transfer coefficient
are determined.

In this paper, the problem of determining the heat flux q and heat trans-
fer coefficient h, on the basis of temperature measurement at three locations
in the flat plate is presented, with the assumption that the material of which
the sensor is made is temperature dependent. Three different methods of
determining the heat flux q and h, with their practical applications, are
presented. The uncertainties in the determined values are also estimated.
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2 Formulation of the problem

The measurement device presented in Fig. 1 was used for determination of
the heat transfer coefficient on the surface of the solid body on which the
liquid boiling takes place or over which the fluid flows [8–9]. The copper
block is heated from the bottom with the use of the resistance heater made
of chrome-nickel wire. The side surfaces of the copper block are thermally
insulated, thus the heat flow is one dimensional. The heat transfer coeffi-
cient h on the surface of the block is determined from the simple formula:

h =
q

(Ts − Tf )
, (1)

where: h – heat transfer coefficient on the surface of the block, Ts – tem-
perature of the surface of the block, Tf – bulk temperature of the fluid or
gas, q – heat flux density.

In order to determine the heat flux density, the temperature of the block
has to be measured by 2 different thermocouples, located at different posi-
tions. For the apparatus presented in Fig. 1, the temperature was measured
at 2 points of the coordinates: (L−x3) = 2.54 mm and (L−x2) = 7.44 mm
(Fig. 2). This allows to determine the heat flux density q. Considering
that the heat flux density on the entire height of the block is constant, and
assuming that the thermal conductivity k of the copper block is constant,
the heat flux density can be easily calculated from the formula:

q =
k (f2 − f3)

x3 − x2
, (2)

where: f2 = f(x2) – temperature measured at point x2, f3 = f(x3) –
temperature measured at point x3 (Fig. 2).

For the device presented in Fig. 1 x3 − x2 = 7.44 − 2.54 = 4.9 mm.
In addition, to check the determined value of q, the temperature is mea-
sured at the point of the coordinate (L − x1) = 12.3 mm. This is easy to
arrange, as the temperature distribution along the height of the block is
linear. Additionally in order to improve the accuracy of calculations, the
third measuring point can be used for determination of the values of q and
h. Since the number of the measuring data points is greater than the num-
ber of the unknown parameters, the problem becomes overdetermined and
the values of q and h can be determined more precisely.

The overdetermined inverse heat conduction problems are also encoun-
tered in experimental determination of metal thermal conductivity. Fig-
ure 1b depicts a simple device used to measure thermal conductivity [11].
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Figure 1. Schematics of devices for measuring heat transfer coefficient (a) and for mea-
suring thermal conductivity of metals (b).
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It consists of a hot plate as a heat source. In contact with the hot plate is
a 25 mm diameter rod made of stainless steel of known thermal conductivity
that has thermocouples attached for obtaining temperature readings. Rest-
ing on the stainless steel is a 25 mm diameter aluminium rod of unknown
thermal conductivity that also contains thermocouples [11]. However, it is
necessary that the thermal conductivity of stainless steel must be known.
The least squares method may be used to determine the heat flow in the
axial direction, thermal conductivities of upper and lower rod, surface tem-
peratures of both rods at the contact, and thermal resistance of the contact
between two rods.

In this paper, a more general problem of determining the values of q and
h, is considered when the number of the measurement data N is equal or
greater than 2 and the thermal conductivity k is temperature dependant.

Infinitely long plate or rod, which is thermally insulated on the side
surface (Fig. 2) is heated with the heat flux q. On the top surface, x = L
the heat is absorbed by a liquid having temperature Tf . On the basis
of temperature measurement in N ≥ 2 locations (in this case N = 3), the
heat flux q and the heat transfer coefficient h were determined. The thermal
conductivity k of the sensor material, that is the plate or the rod, depends
on temperature T .

Figure 2. Locations of thermocouples in the sensor.

The steady-state heat conduction equation has the following form:

dq

dx
= 0 , (3)
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where

q = −k (T )
dT

dx
. (4)

The temperatures at N internal locations are known from measurement:

T
∣∣∣
x=x1

= f1 ,

T
∣∣∣
x=x2

= f2 , (5)

................

T
∣∣∣
x=xN

= fN .

The heat flux density q and the heat transfer coefficient h, appearing in
Eq. (1) are sought from expressions:

−k
dT

dx

∣∣∣
x=0

= q , (6)

−k
dT

dx

∣∣∣
x=L

= h
(
T

∣∣∣
x=L

− Tf

)
. (7)

The number of unknowns is 2, thus it is lower or equal to the number of
the measured data N ≥ 2. Thus, the problem is overdetermined and will
be solved using the weighed least squares method:

S =
N∑

i=1

(Ti − fi)
2

σ2
i

→ min , (8)

where σi is the standard temperature deviation fi measured at the point xi.
Because of the weight coefficients wi = σ−2

i in Eq. (8), the thermocouples
(xi, fi), which have the biggest great uncertainty are mostly ignored and
do not worsen the quality of the approximation. The problem of the least
squares (8) can be solved using several methods, depending on the method
used for solving Eq. (3); that is, it is solved differently when the exact
analytical solution exists and differently when the temperature distribution
T (x) is determined numerically.
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3 Solving the inverse problem

The density of the heat flux q and the heat transfer coefficient h will be de-
termined using three different methods. In the first one, the T (x) function
will be determined analytically and in two next methods, the temperature
distribution T (x) will be determined discretely, as a result of the numeri-
cal solution.

3.1 Method I – Analytical determination of temperature
distribution

Taking into consideration that the heat flux density is constant, q = const.,
and assuming the linear dependency of the conductivity k on temperature

k (T ) = a + bT , (9)

where a and b are constants and temperature T is expressed in ◦C, Eq. (4)
can be solved analytically.

After substituting (10) to (4) and after integration we obtain

qx = −
(

aT +
1
2
bT 2

)
+ C , (10)

where C is the integration constant. From condition:

T
∣∣∣
x=L

=
q

h
+ Tf (11)

we obtain
C = qL + a

( q

h
+ Tf

)
+

b

2

( q

h
+ Tf

)2
. (12)

After considering Eq. (13) in Eq. (11) and solving the quadratic equation
with regard to T , we obtain

T (x) = −a

b
+

√(a

b

)2 − 2q
b

(x − L) +
2a
b

( q

h
+ Tf

)
+

( q

h
+ Tf

)2
. (13)

The temperature distribution T (x) is a non-linear function of q and h.
The values of q and h, for which the sum S as determined from Eq. (8)
reaches the minimum, will be determined using the Levenberg-Marquardt
method [10,15].
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For the thermal conductivity independent of temperature, that is when
k = a, then from Eq. (11) we obtain

qx = −aT + C = −kT + C . (14)

From which it results

T = −qx

k
+ D . (15)

After substituting (16) to (8) we obtain

S =
N∑

i=1

(− qxi
k + D − fi

)2

σ2
i

→ min . (16)

The necessary conditions of the existence of the minimum of the sum of
squares S are:

∂S
∂q = 0 ,

∂S
∂D = 0 ,

(17)

from which the following system of equations is obtained:

q
k2

N∑
i=1

x2
i

σ2
i
− D

k

N∑
i=1

xi

σ2
i

= − 1
k

N∑
i=1

fixi

σ2
i

,

− q
k

N∑
i=1

xi

σ2
i

+ D
N∑

i=1

1
σ2

i
=

N∑
i=1

fi

σ2
i

.

(18)

After solving the system of equations (17) q and D are obtained. The heat
transfer coefficient h is calculated from Eq. (1), and the surface temperature
Ts is calculated from formulation (16), taking x = L.

3.2 Numerical determination of temperature distribution

The control volume method was used to determine the temperature distri-
bution. The division of the wall into control volumes is presented in Fig. 3.
The problem of determining q and h will be solved using two different
methods: the Lagrange multipliers method and the Levenberg-Marquardt
method.



Measurement of heat flux density and heat transfer coefficient 11

Figure 3. Division of the sensor into control volumes.

3.2.1 Method II – The Lagrange multiplipliers method

Assuming that the plate 0 ≤ x ≤ L is divided into M > N control
volumes and N temperature measurement points are situated in nodes
M1, ...,MN = M1 + N − 1 of the coordinates x1, ..., xN , the tempera-
ture distribution will be searched firstly in the x1 ≤ x ≤ xN zone and
subsequently, using the extrapolation algorithm, the temperatures in zones
0 ≤ x ≤ x1 and xN ≤ x ≤ L will be determined. Next, on the basis of
the determined temperature distribution, the heat transfer coefficient h and
the heat flux density q will be calculated. Searched temperatures in nodes
M1, ...,MN should additionally be in compliance with the heat conduction
equation (3), which means that for the used control volume method, the
heat balance equations for every control volume in the x1 ≤ x ≤ xN zone:

Fi =
k (Ti−1) + k (Ti)

2
Ti−1 − Ti

∆x
+

k (Ti) + k (Ti+1)
2

Ti+1 − Ti

∆x
= 0 , (19)

i = M1 + 1, ...,M1 + N − 2 .
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Thus, the stated conditions constitute the optimisation problem (8) with
equality constraints given by Eq. (18). This problem will be solved using the
Lagrange multipliers method, according to which, the minimised function
assumed the following form:

S =
M1+N−1∑

i=M1

(Ti − fi)
2

σ2
i

+
M1+N−2∑
i=M1+1

βiFi → min . (20)

The minimised function S, Eq. (19), is non linear with respect to the
searched temperatures TM1, ..., TM1+N−1. One of the methods, which can
be applied to solve such a problem is the Gauss-Newton method [8,10].

Another method is the determination of the set of normal equations

∂S

∂Ti
= 0 , i = M1, ...,M1 + N − 1 , (21)

which, together with the equality constraints equations

Fj = 0 , j = M1 + 1, ...,M1 + N − 2 , (22)

provide a set of non-linear algebraic equations, which can be solved using
the Newton-Raphson method. As a solution, the set of N temperatures Ti

and a set of (N −2) Lagrange multipliers are obtained. For three measuring
points presented in Fig. 3 (M1 = 2, N = 3) the sum in Eq. (19) is given by:

S =
4∑

i=2

(Ti − fi)
2

σ2
i

+ (23)

+β1

[
k (T2) + k (T3)

2
T2 − T3

∆x
+

k (T4) + k (T3)
2

T4 − T3

∆x

]
→ min .

The normal equation set (20) assumes the form:

2 (T2 − f2)
σ2

2

+ β1

[
∂ k (T2)

∂T2

T2 − T3

2 (∆x)
+

k (T2) + k (T3)
2 (∆x)

]
= 0 ,

2 (T3 − f3)
σ2

3

+ β1

[
∂ k (T3)

∂T3

T2 − 2T3 + T4

2 (∆x)
− k (T2) + 2k (T3) + k (T4)

2 (∆x)

]
= 0 ,

(24)
2 (T4 − f4)

σ2
4

+ β1

[
∂ k (T4)

∂T4

T4 − T3

2 (∆x)
+

k (T4) + k (T3)
2 (∆x)

]
= 0 .
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In this case we have only one constraint Eq. (21), i.e. the heat balance
equation for the node 3 (Fig. 3)

k (T2) + k (T3)
2

T2 − T3

∆x
+

k (T4) + k (T3)
2

T4 − T3

∆x
= 0 . (25)

By solving the set of Eqs. (24)–(25) using the Newton-Raphson method,
the temperatures T2, T3, T4 and the multiplier β1 were obtained. In order to
determine the temperature field and subsequently q and h, the extrapolation
of the temperature distribution from domain x1 ≤ x ≤ xN (Fig. 2) towards
the edges x = 0 and x = L was performed. For this case, from the heat
balance equation for node 2 (Fig. 3), one obtains:

k (T1) + k (T2)
2

T1 − T2

∆x
+

k (T2) + k (T3)
2

T3 − T2

∆x
= 0 . (26)

Thus, using a simple iteration method, the T1 is determined

T
(k+1)
1 = T2 +

k (T2) + k (T3)

k
(
T

(k)
1

)
+ k (T2)

(T2 − T3) , k = 0, 1, 2, ... , (27)

and T
(0)
1 = T2 can be assumed as a first approximation in (26). After a few

iterations the solution, satisfying the condition
∣∣∣∣∣
T

(k+1)
1 − T

(k)
1

T
(k+1)
1

∣∣∣∣∣ < ε , (28)

can be obtained, where ε is the assumed tolerance of the calculations.
The T5 can be determined in a similar way. From the heat balance

equation for node 4, the following equation is obtained:

k (T3) + k (T4)
2

T3 − T4

∆x
+

k (T5) + k (T4)
2

T5 − T4

∆x
= 0 , (29)

from which, using the simple iteration method, the T5 temperature is de-
termined

T
(k+1)
5 = T4 +

k (T3) + k (T4)

k
(
T

(k)
5

)
+ k (T4)

(T4 − T3) , k = 0, 1, 2, ... , (30)

where T
(0)
5 = T4 can be assumed as a first approximation in (29).
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Knowing temperatures in all 5 nodes (Fig. 3), the heat flux density q

q =
k (T1) + k (T2)

2
T1 − T2

∆x
(31)

and the heat transfer coefficient h can be determined

h =
k (T4) + k (T5)

2
T4 − T5

∆x

1
T5 − Tcz

. (32)

3.2.2 Method III – The implementation of the Levenberg-Marqu-
ardt method

The practical implementation of the method described in Section 3.1 can
be difficult for two-dimensional cases, because the extrapolation outside
the inverse zone requires that the temperature should be measured inside
the body, along the closed curve. If the temperature measurement points
are distributed within the analysed zone, not within the closed curve, then
more appropriate would be to apply the least squares method, described
below. The values of q and h, are assumed to be unknowns, as in the
first method and the minimum of the function (8) is searched for using the
Levenberg-Marquardt method [10,15]. The temperature distribution at the
k-th iteration step, for the given values of q(k) and h(k) is determined using
the control volume method, from the following set of equations:

q(k) +
k (T1) + k (T2)

2 (∆x)
(T2 − T1) = 0 ,

k (Ti−1) + k (Ti)
2

Ti−1 − Ti

∆x
+

k (Ti) + k (Ti+1)
2

Ti+1 − Ti

∆x
= 0, i = 2, ...,M−1,

(33)
k (TM−1) + k (TM )

2
TM−1 − TM

∆x
+ h(k) (Tf − TM ) = 0 ,

where M is the number of control volumes. For the division presented in
Fig. 3 we have M = 5.

For every iteration step, the non-linear set of algebraic equations is
solved using the Gauss-Seidel method. The values of h and q are determined
using the Levenberg-Marquardt method [10,15], in such a way, that the
temperatures TM1, ..., TM1+N−1, determined from the set of equations (32)
satisfy the condition:

S =
M1+N−1∑

i=M1

(Ti − fi)2

σ2
i

→ min . (34)
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The advantage of this method of determining q and h on the basis of mea-
sured temperatures fM1, ..., fM1+N−1 is the possibility to consider any type
of dependency of heat conductivity k on T , not only linear Eq. (10) and
high precision of q and h determination. Contrary to methods I and II, the
temperature distribution from the zone of the direct solution is not extrap-
olated to the zone of the inverse solution. The described method can be
used for the two- and three-dimensional problems for the interval approxi-
mation of changes of q and h at the boundary. For this case, the number of
determined components of q and h can be significant.

4 Calculating uncertainty of measurement of q and h

Assuming that z1 = q and z2 = h only depend on the precision of the
temperature measurement fM1, ..., fM1+N−1 and assuming that there are
no errors in xi coordinates of the thermocouples mounting points, the σzi

standard deviation can be calculated in accordance to the error propagation
rule [13–15]

σzi =

√√√√M1+N−1∑
j=M1

(
∂zi

∂fj

)2

σ2
fj

, (35)

where σfj
is standard deviation of fj, which is the measure of temperature

measurement uncertainty. Partial derivatives ∂zi/∂fj will be approximated
by central differences

∂zi

∂fj
=

zi (fM1, fM1+1, ..., fM1+j + δ, ..., fM1+N−1)
2δ

− (36)

zi (fM1, fM1+1, ..., fM1+j − δ, ..., fM1+N−1)
2δ

,

where δ is a small positive number.

5 Example of calculations

All three, described above methods of measuring q and h will be tested
for the probe used for measuring the heat flux density [8] of the thickness
0.016 m. The thermal conductivity of the material of the probe is given
by Eq. (10), with a = 14.65 W/(mK) and b = 0.0144 W/(mK ◦C). The
temperature probes (thermocouples) were installed in 3 locations: x1 =
0.004 m, x2 = 0.008 m and x3 = 0.012 m.
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The “exact measurement data” will be calculated assuming: q = 274 800
W/m2, h = 2400 W/m2K and Tf = 15 ◦C. The temperature distribu-
tion over the thickness of the plate and the “non-exact measurement data”
were presented in Tab. 1. The results of the calculations were presented in
Tabs. 1 and 2.

Table 1. Exact temperature distribution over the thickness of the measurement plate and
the results of calculations.

x [m]
Exact
temperatures
Ti,e [◦C]

Measuring
data
fi [◦C]

wi = σ−2
i

[◦C2]
Method I
Ti [◦C]

Method II
Ti [◦C]

Method III
Ti [◦C]

0.000 370.43 370.99 370.99 370.99
0.001 356.61 357.17
0.002 342.65 343.21
0.003 328.54 329.10
0.004 314.29 315.30 1 314.84 314.84 314.84
0.005 299.88 300.43
0.006 285.31 285.86
0.007 270.58 271.12
0.008 255.68 252.70 0.25 256.22 256.22 256.22
0.009 240.60 241.13
0.010 225.33 225.87
0.011 209.88 210.41
0.012 194.23 195.70 0.4444 194.76 194.76 194.76
0.013 178.38 178.90
0.014 162.31 162.83
0.015 146.02 146.54
0.016 129.50 130.01 130.01 130.01

Sum S 3.702 3.702 3.702

Table 2. Determined values of heat flux q and heat transfer coefficient k and other results
of calculations.

Exact data Method I Method II Method III

q [W/m2] 274 800 274 973.09 274 973.09 274 964.40
h [W/m2K] 2 400 2 390.76 2 390.76 2 390.55
σq [W/m2] 4 024.669 4 022.730 4 027.383
σα [W/m2K] 82.650 82.815 82.681
T1 − T1,e [◦C] 0.55 0.55 0.55
T2 − T2,e [◦C] 0.54 0.54 0.54
T3 − T3,e [◦C] 0.53 0.53 0.53
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The analysis of the obtained results shows that all of them are identical
for all methods. The temperature distribution on the thickness of the sensor
(plate), determined using the first of the described methods was presented
in Fig. 4. The agreement of the temperature distribution, determined using
the least squares method with the exact distribution presented in Tab. 1 is
very high.

Figure 4. Temperature distribution in the probe: 1–experimental data, 2–exact tem-
perature distribution (Tab. 1), 3–temperature distribution obtained by the
least squares method, where temperature is calculated using analytical expres-
sion (14).

6 Conclusions

From the presented three methods of determination of heat flux density q
and heat transfer coefficient h, the third method, in which the tempera-
ture distribution in the analysed zone is determined using the Gauss-Seidel
method and the unknown parameters are determined using the Levenberg-
Marquardt method was proven to be the most versatile. This method
of identification of the boundary conditions can be successfully used for
solving multi-dimensional, steady-state and dynamic problems; for much
greater number of searched parameters than two. Additional advantage
of this method is its good convergence, even for inaccurate approximation
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of the initial values of the searched parameters. Standard deviations for
the obtained values can be then determined using the Gauss rule of error
propagation.
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