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The analysis of gradient algorithm effectiveness
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STANISŁAW ŁOPATA∗

PAWEŁ OCŁOŃ

Cracow University of Technology, Division of Power Engineering,
31-864 Kraków, al. Jana Pawła II 37, Poland

Abstract The analysis of effectiveness of the gradient algorithm for the
two-dimension steady state heat transfer problems is being performed. The
three gradient algorithms – the BCG (biconjugate gradient algorithm), the
BICGSTAB (biconjugate gradient stabilized algorithm), and the CGS (con-
jugate gradient squared algorithm) are implemented in a computer code.
Because the first type boundary conditions are imposed, it is possible to
compare the results with the analytical solution. Computations are carried
out for different numerical grid densities. Therefore it is possible to investi-
gate how the grid density influences the efficiency of the gradient algorithms.
The total computational time, residual drop and the iteration time for the
gradient algorithms are additionally compared with the performance of the
SOR (successive over-relaxation) method.
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Nomenclature

a – width of the square edge, m
A – coefficient matrix of the system
A∗ – coefficient matrix of the dual system
b – given constants of the system
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b∗ – given constants of the dual system
dx – width of control volume, m
dy – height of control volume, m
d – conjugate search direction vector
imax – maximal number of iterations
l – length of the rod, m
n – number of Fourier series terms
N – number of nodes on the edge
Ntotal – total number of the nodes in the computational domain
q – auxiliary vector necessary to compute the conjugate search direction

vector d in the CGS algorithm
Qi,j – heat flow rate transferred between the control volumes i and j, W
r – residual vector
r∗ – residual vector of the dual system
rmax – maximal element of the residual vector
s – residual vector without stabilization in the BICGSTAB algorithm
Ti – temperature in the control volume i, K
TSB – temperature at the side and bottom edges, K
TU – temperature at the uppermost edge, K
u – auxiliary vector necessary to compute the conjugate search direction

vector d in the CGS algorithm
x – vector of the unknowns of the system
x∗ – vector of the unknowns of the dual system
xi – the x vector after i iterations
xk

i – value of the i-th element of the vector x, the k-th iteration

Greek symbols

α – line search parameter
β – Gram-Schmidt constant
δ – convergence criterion value, K
λ – thermal conductivity, W/(m K)
ω – stabilization parameter of the BICGSTAB algorithm

1 Introduction

Nowadays, with the rapid increase in the computational power it is possible
to use numerical methods for large scale engineering problems. In the design
offices, the commercial software using the Finite Element Method [1–3] and
the Control Volume Method [4] is applied to optimize the heat performance
of devices. For these two methods the computational domain is divided into
small elements. The heat balance equation is established for each element
and finally the large system of equations is solved for the whole structure in
order to examine e.g. the temperature or the heat flux distribution inside
the domain.
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The iterative methods for solving the large systems of equations are
applied in the majority of the numerical codes. They guarantee a quicker
way to achieve a convergence level than the direct methods like e.g. the
Gauss elimination one. The most effective iterative techniques are proba-
bly the gradient methods [5–6]. For heat transfer problems, especially in
the cases when the mixed second and third type boundary conditions oc-
cur, the matrix of the system of equations is unsymmetrical. Therefore
in the work three, utilized for both symmetrical and non-symmetrical ma-
trices, algorithms are tested: the BCG (biconjugate gradients algorithm),
the BICGSTAB (biconjugate gradients stabilized algorithm) and the CGS
(conjugate gradients squared algorithm).

In order to ensure that the computations are correct, the solution is
compared with the analytical one. The two dimensional steady conduction
in the infinitely long rod with square cross section is analyzed. The bound-
ary conditions are of the first type. The computations are carried out using
the Control Volume Method.

The three computational cases are carried out for 50.1, 100 and 360
thousands of nodes. The total computational time, the iteration number
and the average computational time per iteration are investigated to find
which algorithm is the most effective one. Moreover, the residual drop in
a function of subsequent iterations is followed to examine the algorithm
behavior. The results are compared to the widely used SOR algorithm.

2 Control volume method

The boundary conditions for the computational case are presented in Fig. 1.
The temperature of the sides and the bottom TSB equals 800 K and on the
upper edge of the rod TU equals 60 K.

The temperature inside the control volumes is unknown. In order to
obtain the temperatures in the interior nodes, it is necessary to solve the
system of heat balance equation constructed for the inside nodes. The
discretization scheme is shown in Fig. 2. For the interior node i the heat
balance equation can be written as:

Qi−N,i + Qi+N,i + Qi+1,i + Qi−1,i = 0 . (1)
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Figure 1. Boundary conditions. Figure 2. Discretization scheme.

Using the Fourier’s law, Eq. (1) is presented in the form:

λ

dy
dx l (Ti−N − Ti) +

λ

dy
dx l (Ti+N − Ti)+

+
λ

dx
dy l (Ti+1 − Ti) +

λ

dx
dy l (Ti−1 − Ti) = 0 . (2)

Denoting the terms:

Rx =
λ

dx
dy , Ry =

λ

dy
dx , (3)

Eq. (2) is simplified to the form:

Ry (Ti−N − T )+Ry (Ti+N − Ti)+Rx (Ti+1 − Ti)+Rx (Ti−1 − Ti) = 0 (4)

Denoting diag = −2(Rx + Ry) for the all interior nodes shown in Fig. 2 the
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system of equations to solve A · x = b is composed as below:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

diag Rx Ry

Rx diag Rx Ry

Rx diag Ry

Ry diag Rx Ry

Ry Rx diag Rx Ry

Ry Rx diag Ry

Ry diag Rx

Ry Rx diag Rx

Ry Rx diag

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T7

T8

T9

T12

T13

T14

T17

T18

T19

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−T2Ry − T6Rx

−T3Ry

−T4Ry − T10Rx

−T11Rx

0
−T15Rx

−T16Ry − T22Rx

−T23Ry

−T20Rx − T24Ry

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The empty fields in the matrix A denote 0. The analogical system of equa-
tions for the dense mesh is built up using the code written in the C++

language. The dimension of the rod square cross section and the number of
nodes used for computations are presented in Tab. 1.

Table 1. Computational cases.

Computational case a [m] N Ntotal

1 1 224 50176

2 1 317 100489

3 1 600 360000

The systems of equations for the computational cases presented in Tab. 1
are solved using the gradient methods. The background of the used algo-
rithms is presented in the following section.
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3 Iterative gradient algorithms

3.1 Conjugate gradient algorithm

The basic idea of conjugate gradient algorithms (CG) is to minimize the
quadratic form (see Fig. 3) given by the equation:

f(x) =
1
2
· xT · A · x − bT · x + c . (5)

The gradient f ′(x)is defined as:

f ′(x) =
[ ∂

∂x1
f(x),

∂

∂x2
f(x), ....,

∂

∂xn
f(x)

]T
. (6)

If the matrix A is symmetric then:

f ′(x) = A · x − b . (7)

Setting f ′(x) = 0, the extreme of the quadratic form is reached. If the
matrix is positive definite and symmetric, then the extreme is a minimum.
Therefore A · x − b = 0 can be solved by finding the x that minimizes
f(x). In the case of unsymmetrical matrix, the solution of the system
0.5(AT + A) · x = b is found. The matrix 0.5(AT + A) is symmetric.

Figure 3. The quadratic form f(x), and
line search procedure.

Figure 4. The procedure of searching the
minimum of quadratic form.
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The gradient algorithm presented in Fig. 4 starts with the arbitrary
chosen vector x0. Then in the steps 1 and 2, the x approaches the bottom
of the quadratic form f(x), reaching finally the minimum in step 3. The
residual ri found from the formula ri = b−A ·xi informs about the direction
of the steepest descent.

The i-th step can be expressed as:

xi+1 = xi + αi · di . (8)

Premultiplying (8) by A and adding b leads to:

ri+1 = ri − αi · A · di , (9)

where αi is the line search parameter given by:

αi =
rT
i · ri

dT
i · A · di

, (10)

and d denotes the conjugate search direction. The parameter αi is chosen
in order to minimalize the function f(x) along the search direction d0. This
procedure is called the line search.

It can be observed in Fig. 4, that the search directions are orthogonal one
to another. It is a quick way to find the minimum of f(x). On the basis of
the knowledge about ri the A-orthogonal search directions can be generated
by the Gram-Schmidt procedure. Two vectors di and dj are A-orthogonal
(conjugate) when:

dT
i · A · dT

j = 0 . (11)

The conjugation of d0 and d1 vectors (see Fig. 5) implicates, that they are
the orthogonal in the stretched space. It can be observed in Fig. 6. The
sections of the paraboloid in the stretched space (the quadratic form) are
circular, therefore for orthogonal directions di as in Fig. 6, the x moves
always in the right way – to the center of the section, reaching the mini-
mum finally. The A – conjugation is a mathematical trick to introduce the
residuals ri calculated from Eq. (9) to the Gram-Schmidt procedure.

The final formula for the Gram Schmidt conjugation parameter β, neces-
sary to find the A-orthogonal search directions, can be written in the form:

βi =
rT
i+1 · ri+1

rT
i · ri

. (12)
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Figure 5. The A-orthogonal (conjugate)
direction vectors.

Figure 6. The orthogonal direction vec-
tors.

The orthogonal search directions are obtained from the Gram-Schmidt de-
pendence:

di+1 = ri+1 + βi · di . (13)

More detailed information about the derivation of the formula (8)–(13)
may be found in [5].

3.2 Biconjugate gradient algorithm — BCG and its varia-
tions

The algorithm is the version of the general CG algorithm [5], described
above. The advantage of the BCG is that it works fine with the nonsym-
metrical matrices. Implicitly, the algorithm solves not only the original
system A · x − b but also the dual linear systemAT · x∗ − b∗. This dual
system is often ignored in the later parts of the algorithm.

The BCG algorithm has two variations: the CGS and the BICGSTAB
which e.g. in the heat transfer problems gain faster convergence. The con-
jugate gradients algorithm, biconjugate gradients algorithm, conjugate gra-
dients squared algorithm and biconjugate gradients stabilized algorithm are
presented in Tab. 2 [6]. These algorithms are applied in the computer code.
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Table 2. Gradient algorithms.

Conjugate gradient al-
gorithm (CG)

Biconjugate gradient
algorithm (BCG)

Conjugate gradient
squared algorithm
(CGS)

Biconjugate gradient
stabilized algorithm
(BICGSTAB)

r0 = b − A · x0

d0 = r0

i = 0
Do until convergence
and i< imax

αi =
rT

i ·ri

dT
i ·A·di

xi+1 = xi + αi · di

ri+1 = ri − αi · A · di

βi =
rT

i+1·ri+1

rT
i ·ri

di+1 = ri+1 + βi · di

i = i + 1
Loop

r0 = b − A · x0

rT
0 · r∗0 �= 0

d∗0 = r∗0 , d0 = r0

i = 0
Do until convergence
and i< imax

αi =
rT

i ·ri

dT
i ·A·di

xi+1 = xi + αi · di

ri+1 = ri − αi · A · di

r∗i+1 = r∗i −αi ·AT · d∗i
βi =

rT
i+1·ri+1

rT
i ·ri

di+1 = ri+1 + βi · di

d∗i+1 = r∗i+1 + βi · d∗i
i = i + 1
Loop

d0 = r0 = b − A · x0

r∗0 = r0

u0 = r0, d0 = r0

i = 0
Do until convergence
and i< imax

αi =
rT

i ·ri

dT
i ·A·di

qi = ui − αi · A · di

xi+1 = xi + αi · (ui +
+qi)
ri+1 = ri−αi ·A ·(ui +
+qi)

βi =
rT

i+1·r∗
0

rT
i ·r∗

0
ui+1 = ri+1 + βi · qi

di+1 = ui+1 +βi · (qj +
+βi · di)
i = i + 1
Loop

r0 = b − A · x0

p0 = r0

i = 0
Do until convergence
and i< imax

αi =
rT

i ·ri

dT
i ·A·di

sj = rj − αj · A · dj

ωj =
sT

j ·A·sj

(sT
j ·A)2

xj+1 = xj + αj · dj +
+Sωj · sj

rj+1 = sj − ωj · A · sj

βi =
rT

i+1·r∗
0

rT
i ·r∗

0
· (αj/sj)

dj+1 = rj+1+βj ·(dj −
−ωj · A · dj)
i = i + 1
Loop

4 Comparison of the gradient algorithms

4.1 Comparison between numerical and analytical results

As mentioned before the results of numerical computations are compared
with the theoretical solution. Investigated case is the one of the few 2D heat
conduction problems where the analytical solution is possible. According to
Incropera et al. [7], it is possible to compute the temperature distribution
T (x, y) in the cross section of the rod, using the dependence:

T (x, y) = (TU − TSB)
2
π

∞∑
n=1

(−1)n+1 + 1
n

sin
(nπx

a

) sin
(nπy

a

)
sin (nπ)

+ TSB .

(14)
The comparison of the isotherms obtained using the analytical and nu-

merical solution is presented in Fig 7. The temperature contour plot is
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Figure 7. The isotherms – numerical and
analytical solution.

Figure 8. The contour plot of temperature
distribution.

presented in Fig. 8. The computations are carried out for N = 224. In
the first step the components of vector x values are assumed as 0 K for
each method.

The numerical computations are carried out with the convergence cri-
terion:

δ = rmax = 0.01 . (15)

The δ is equal to the maximum residual. The analytical solution is com-
puted for n = 80. In Fig. 7 it is possible to observe that the numerical
solution is consistent with the analytical one.

5 The comparison between the gradient algorithms
and the SOR (successive over — relaxation)

The well known SOR algorithm [8] is presented below:

xk+1
i = (1 − ω)xk

i +
ω

Aii

⎛
⎝bi −

∑
j>i

Aijx
k
j−

∑
j<i

Aijx
k
j )

⎞
⎠ . (16)

The computations are stopped when the maximal difference between xk+1
l

and xk
l is less than 0.01 K. After some computational experiments the value

of ω = 1.2 is chosen. This value decreases the number of iterations in
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comparison to the value of ω = 1.0 (Gauss-Seidel) by about 30%. The com-
putations are carried out for this value. The single – thread computations
are carried out using the Intel Core2 Duo T7250 2.0 GHz processor.

In Fig. 9 the total computational time is shown for the three compu-
tational cases, presented in Tab. 1. It is possible to observe that the CGS
algorithm is the fastest one in all the cases. In the first computational
case, the difference between the total computation time for the CGS and
the BICGSTAB algorithms is the smallest and equals 20%. However for
the case no. 3, that is the most practical, because of the largest system of
equations, the CGS algorithm is 2.5 times faster than the BICGSTAB and 4
times faster than BCG. In each computational case, the gradient algorithms
are more efficient than the SOR method, that is indicated in Fig. 9.

Figure 9. The number of iterations. Figure 10. The total computation time.

The number of iterations is presented in Fig. 10. In the computational
case no. 1, the number of iterations for the BICGSTAB and the CGS algo-
rithm is nearly the same. However with the increasing size of the equations
set (case 2 and case 3), the number of iterations for the BICGSTAB is higher
than for the CGS algorithm. In the case 3, the CGS algorithm needs nearly
two times less iterations to achieve convergence than the BICGSTAB. The
BCG needs the highest number of iterations to converge. In the Fig. 10 it is
possible to observe that the number of iterations for the SOR algorithm is
over 100 times higher than for the gradient algorithms. It happens in each
computational case.

The averaged computational time per iteration is presented in the Fig. 11.
The values for the SOR method and the CGS algorithm are the high-
est. The BCG algorithm needs the longest computation time iteration.
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Figure 11. The average computation time for iteration.

The BICGSTAB algorithm is 1.5 times faster than the BCG. The compu-
tation time per iteration for the CGS algorithm and for the SOR method
is two times shorter than for the BCG. It results from the smallest amount
of multiplications of the matrix vector for these algorithms. However, the
residuals for the SOR algorithm drop the slowest. This issue is discussed in
the next subsection.

5.1 The residual drop

The effectiveness of the gradient algorithms is very high because the residual
drop per iteration is much faster than for the SOR method. It can be
observed for all computational cases. The case no. 2 (see Tab. 1) is selected
for the analysis of the residual drop for each method.

In Fig. 12, the residual drop is presented as a function of iterations
for the CGS algorithm. It is possible to observe the relatively slight drop
in the first phase of computations. In the second phase after the single
rapid increase, the residual starts to drop faster. In the last phase of the
computation the residual drop is the highest. For the SOR method (see
Fig. 13) the residual drop at the beginning of the computation is very high;
however during the whole computation procedure it is nearly constant. In
comparison to the CGS algorithm, the average drop per iteration is over
one hundred times smaller.

For the BICGSTAB algorithm (see Fig. 14) it is possible to observe that
the convergence path is not as smooth as for the CGS method. The sharp
increases and decreases of residuals are observed. The algorithm finds the
solution after relatively small number of iterations – 612.



The analysis of gradient algorithm effectiveness. . . 49

Figure 12. The residuals drop for CGS al-
gorithm (N = 317).

Figure 13. The residuals drop for CGS al-
gorithm (N = 317).

Figure 14. The residuals drop for BICG-
STAB algorithm (N = 317).

Figure 15. The residuals drop for BCG al-
gorithm (N = 317).

The convergence path for the BCG algorithm, presented in Fig. 15, is
the smoothest from the all presented gradient algorithms. However, the
algorithm needs the highest number of iterations to achieve the desired
convergence level.

6 Conclusions and outlook

The paper demonstrates the advantages of using the gradient algorithms
during the numerical heat transfer computations. These iterative algorithms
are very efficient for heat transfer problems especially for the large systems
of equations. The performance of the SOR (successive over relaxation) is
exceeded over 100 times. The behavior of the three gradient algorithms –
the BCG (biconjugate gradients algorithm), the BICGSTAB (biconjugate
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gradients stabilized algorithm) and the CGS (conjugate gradients squared
algorithm) was investigated. The CGS algorithm is the most efficient one
for the two-dimensional heat transfer conduction problems with first type
boundary conditions.
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