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Reduction of dynamic error in measurements
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Abstract Under steady-state conditions when fluid temperature is con-
stant, temperature measurement can be accomplished with high degree of
accuracy owing to the absence of damping and time lag. However, when
fluid temperature varies rapidly, for example, during start-up, appreciable
differences occur between the actual and measured fluid temperature. These
differences occur because it takes time for heat to transfer through the heavy
thermometer pocket to the thermocouple. In this paper, a method for de-
terminig transient fluid temperature based on the first-order thermometer
model is presented. Fluid temperature is determined using a thermometer,
which is suddenly immersed into boiling water. Next, the time constant
is defined as a function of fluid velocity for four sheated thermocouples
with different diameters. To demonstrate the applicability of the presented
method to actual data where air velocity varies, the temperature of air is
estimated based on measurements carried out by three thermocouples with
different outer diameters. Lastly, the time constant is presented as a func-
tion of fluid velocity and outer diameter of thermocouple.

Keywords: Temperature measurement; Transient conditions; First-order model; Time
constant; Uncertainty analysis

Nomenclature

a – constant, 1/s
At – outer surface area of the thermocouple, m2

b – constant, (m s)−1/2

c – average specific heat of the thermocouple, J/(kg K)
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dt – outer diameter of thermometer, mm
f(t) – temperature indicated by the thermometer, oC
mt – thermocouple mass, kg
s – complex variable
∆t – time step, s
T0 – initial thermometer temperature, oC
Tf – fluid temperature, oC
T (s) – Laplace transform of the thermometer temperature
Tf (s) – Laplace transform of the fluid temperature
u – unit-step response of the thermometer
w – fluid velocity, m/s

Greek symbols

αt – heat transfer coefficient on the outer surface of the thermocou-
ple, W/(m2K)

τ – time constant of the thermometer in the first order model, s

1 Introduction

Most of the studies on temperature measurements concentrate on steady-
state measurements of the fluid temperature [1–9]. Only the unit-step
response of thermometers is considered to estimate the dynamic error of
the temperature measurement. Little attention is paid to measurements of
transient fluid temperature, despite the great practical significance of the
problem [10–12]. It is very difficult to measure the transient temperature
of steam or flue gases in thermal power stations. Massive housings and low
heat transfer coefficients cause the measured temperature to differ signifi-
cantly from the actual temperature of the fluid. Some particularly heavy
thermometers have time constants of three minutes or more, thus requiring
about 15 min for a single measurement. On the other hand, some ther-
mometer designs include more than one time constant in order to describe
the transient response of a temperature sensor immersed in a thermowell.
Measuring the temperature of a medium in a controlled process may re-
quire having two or three time constants that characterise the transient
thermometer response.

The problem of dynamic errors in temperature measurements of a su-
perheated steam becomes particularly important when superheated steam
temperature control systems use injection coolers (spray attemperators).
Due to the large inertia of the thermometer, measurement of the transient
temperature of the fluid can be inaccurate, thus adversely affecting the
automatic control of the superheated steam system. A similar problem is
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encountered in flue gas temperature measurements, since the thermometer
time constant and time delay are large.

In this paper, a method of determining the transient temperature of
the flowing fluid on the basis of thermometer temperature time changes is
presented. In this method, the thermometer is considered to be the first-
order inertia device. A local polynomial approximation based on nine points
is used for the approximation of temperature changes. This assures that the
first derivative of this function, which represents how the thermometer tem-
perature changes with time, will be very accurate. The temperature time
history when the fluid temperature increases step-wise is also determined
using the proposed method.

2 Mathematical models of thermometers

Typically, thermometers are modelled as elements with lumped thermal
capacity. Such a model assumes that temperature of a thermometer is only
a function of time and neglects temperature differences that occur within
the thermometer itself. Temperature changes of the thermometer in time
T (t) can be described by an ordinary first-order differential equation (i.e.
first-order thermometer model)

τ
dT (t)

dt
+ T (t) = Tf (t) , (1)

where τ = mtc/(αtAt) and the initial condition is:

T (0) = T0 = 0 . (2)

For structurally complex thermometers that measure the temperature of
a fluid under high pressure, the accuracy of the first order model (1) is
inadequate [13].

The initial problem (1)–(2) was solved using the Laplace transformation.
The operator transmittance G(s) then assumes the following form:

G (s) =
T (s)
Tf (s)

=
1

τs + 1
. (3)

For the step increase of the fluid temperature from T0 = 0 oC to the constant
value Tf , the Laplace transform of the fluid temperature assumes the form
Tf (s) = Tf/s and the transmittance formula can be simplified to:

T (s)
Tf

=
1

s (τs + 1)
. (4)
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After writing Eq. (4) in the form:

T (s)
Tf

=
1
s
− 1(

s + 1
τ

) (5)

it is easy to find the inverse Laplace transformation and determine the
thermometer temperature as a function of time:

u (t) =
T (t) − T0

Tf − T0
= 1 − exp

(
− t

τ

)
. (6)

In this study, the time constant τ in Eq. (6) will be estimated from experi-
mental data. The fluid temperature can then be determined on the basis of
measurement histories from the thermometer temperature T (t) and known
time constant τ . T (t) and its the first-order time derivative can be smoothed
using the formulas [3]:

T (t) ≈ 1
693

[−63f (t − 4∆t) + 42f (t − 3∆t) + 117f (t − 2∆t)+
+162f (t − ∆t) + 177f (t) + 162f (t + ∆t) +
+117f (t + 2∆t) + 42f (t + 3∆t) − 63f (t + 4∆t)

]
,

(7)

T ′ (t) =
dT (t)

dt
≈ 1

1188∆t

[
86f (t − 4∆t) − 142f (t − 3∆t)−

−193f (t − 2∆t) − 126f (t − ∆t)+
+126f (t + ∆t) + 193f (t + 2∆t)+
+142f (t + 3∆t) − 86f (t + 4∆t)

]
,

(8)

where f(t) denotes the temperature indicated by the thermometer, and ∆t
is a time step. This smoothing eliminates, at least in part, the influence of
random errors in the thermometer temperature measurements T (t) on the
determined fluid temperature Tf (t). If temperature measurement histories
are not overly noisy, the first-order derivative can be approximated by the
central difference formula

T ′ (t) ≈ f (t + ∆t) − f (t − ∆t)
2∆t

. (9)

Equation (1) can also be used for determining fluid temperature Tf (t) when
the time constant of the thermocouple τ is a function of fluid velocity w. Af-
ter substituting the time constant τ(w) into Eq. (1), we can determine fluid
temperature Tf (t) for different fluid velocities using the proposed method.
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3 Experimental determination of time constants

The method of least squares is used to determine the time constant τ in
Eq. (6). The value for the time constant is found by minimising the func-
tion S:

S =
N∑

i=1

[um (ti) − u (ti)]2 = min , (10)

where u(ti) is the approximating function given by Eq. (6), and N denotes
the number of measurements (ti, um(ti)). Here, the sum of the squares of
the deviations of the measured values um(ti) from the fitted values u(ti)
is minimised. Once the time constant τ has been determined, it can be
substituted into Eq. (10) to find the value for Smin.

The uncertainties in the calculated time constant τ are estimated using
the mean square error [14–16]:

SN =

√
Smin

N − m
, (11)

where m is the number of time constants (i.e. m = 1 for Eq. (6)). Based
on the calculated mean square error SN , which is an approximation of the
standard deviation, the uncertainties in the determined time constants can
be calculated using the formulas given in the TableCurve 2D software [16].

4 Determining the fluid temperature on the basis
of time changes in the thermometer temperature

A sheathed thermocouple with outer diameter 1.5 mm at the ambient tem-
perature was suddenly immersed into hot water at saturation temperature;
the results are presented in Fig. 1. The thermometer temperature data was
collected using the Hottinger-Baldwin Messtechnik data acquisition system.
The measured temperature changes were approximated using Eq. (6), and
the time constant τ in Eq. (6) was determined using the TableCurve 2D
code [16]. The estimated value of the time constant and the uncertainty at
the 95% confidence level is τ = 1.54 ± 0.09 s.

First, the transient fluid temperature Tf (t) was calculated using Eq. (1)
together with Eqs. (7) and (8). Then, the raw temperature data was used.
The first-order time derivative dT/dt in Eq. (1) was also calculated using the
central difference quotient of Eq. (9). The results shown in Fig. 1 indicate
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that the central difference approximation of the time derivative in Eq. (1)
leads to less accurate results, since it is more sensitive to random errors in
the experimental data.

Figure 1. Fluid and thermometer temperature changes determined from the first-order
Eq. (1) for the sheathed thermocouple with outer diameter 1.5 mm.

5 Time constant as a function of fluid velocity and
outer diameter of thermocouple

The thermocouple time constant τ for various air velocities w were deter-
mined in an open benchtop wind tunnel (Fig. 2). The WT4401-S benchtop
wind tunnel is designed to give uniform flow rate over a 100 mm × 100 mm
cross section [17]. The variations of the thermocouple time constants τ with
the fluid velocity for the sheathed thermocouples with the outer diameter of
0.5 mm, 1.0 mm, 1.5 mm and 3.0 mm are shown in Fig. 3. The experimen-
tal data collected for the four thermocouple diameters of 0.5 mm, 1.0 mm,
1.5 mm, and 3.0 mm, as presented in Fig. 3, were approximated by the least
squares method. The following function was thus obtained:

τ =
1

a + b
√

w
, (12)

where τ is expressed in s, and w in m/s.
The best estimates for the constants a and b, with uncertainty at the

95% confidence level, for the thermocouples with the following outer diam-
eters are:
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Figure 2. Benchtop wind tunnel used for determining the thermocouple time constant.

• dt = 0.5 mm
a = 0.004337 ± 0.000622 1/s, b = 0.022239 ± 0.001103 (m s)−1/2;

• dt = 1.0 mm
a = 0.020974 ± 0.006372 1/s, b = 0.103870 ± 0.011240 (m s)−1/2;

• dt = 1.5 mm
a = 0.040425 ± 0.003301 1/s, b = 0.056850 ± 0.004479 (m s)−1/2;

• dt = 3.0 mm
a = 0.128220 ± 0.035716 1/s, b = 0.220641 ± 0.051122 (m s)−1/2.

The time constant of the thermocouple τ = mtc/ (αtAt) depends strongly
on the heat transfer coefficient αt on the outer thermometer surface, which
in turn is a function of the air velocity [18]. When the velocity and temper-
ature of air stream change in time, the velocity-dependent time constant in
Eq. (12) can be used in Eq. (1) to estimate the air temperature based on
the temperature readings from the sheathed thermocouples.

To prove the utility of the above method in determining transient tem-
perature, the temperature of the fluid in the open wind tunnel (Fig. 4)
was measured by K-type sheathed thermocouples with outer diameters of
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Figure 3. Time constants τ of sheathed thermocouples with outer diameters of 0.5 mm,
1.0 mm, 1.5 mm, and 3.0 mm as a function of air velocity w with 95% confidence
interval limits.

0.5 mm, 1.0 mm, and 1.5 mm. Air in the tunnel was heated by a heat
exchanger and its velocity was also altered. The thermocouples measured
the temperature behind the heat exchanger and were placed very close to-
gether (i.e. they measured the same temperature, but did not influence each
other). Variation in the air velocity was measured by the vane anemometer
FV A915 S220. Both the velocity and temperature data were collected us-
ing the Ahlborn ALMEMO 5990-0 data acquisition system.

The comparison of the computed temperatures with the measured tem-
peratures, when the time constants of the thermocouples are known, shows
that the above method provides decent results (Fig. 5). The results are very
accurate, especially for the thermocouples with outer diameters of 0.5 mm
and 1.0 mm. In the case of the thermocouple with outer diameter 1.5 mm,
there is a small difference between its computed temperature and the other
computed temperatures. This difference is due to a large value of the time
constant τ for the 1.5 mm thermocouple.
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Figure 4. Diagram of open wind tunnel [19]: A – heat exchanger, B – fan, C – chamber,
D – air channel, E – water outlet pipe, F – hot water feeding pipe.

Based on the computed time constants determined for various velocities
for thermocouples with outer diameters of 0.5 mm, 1.0 mm, 1.5 mm, and
3.0 mm, one universal function can be obtained. Data were approximated
using the method of least squares by the following function:

τ =
a − bdt − c ln w + d (lnw)2

1 − edt + fd2
t − gd3

t + h ln w
, (13)

where τ is expressed in s, dt in mm and w in m/s. The best estimates
for the constants a, b, c, d, e, f , g and h, with uncertainty at the 95%
confidence level are: a = 0.997 ± 0.729, b = -0.00797 ± 0.84119, c = -0.316
± 0.337, d = 0.0269 ± 0.1092, e = -1.76 ± 0.37, f= 1.07 ± 0.34, g = -0.196
± 0.076, h = 0.00192 ± 0.02757.

Equation (13) was determined using the TableCurve 3D software [20],
with a time constant coefficient of determination r2 of 0.997. The function
τ = f(dt, w) and its related experimental data are presented in Fig. 6.

6 Conclusions

The method presented in this paper for measuring the transient temper-
ature of a fluid can be used for the on-line monitoring of fluid tempera-
ture change with time. This method, where the thermometer is modelled
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Figure 5. Temperature of the air measured by the thermocouples with outer diameters
of 0.5 mm, 1.0 mm, and 1.5 mm and temperature calculated by Eq. (1) when
the velocity of the air was changed.

using the ordinary first-order differential equation, is appropriate for ther-
mometers that have small time constants. In such cases, the delay of the
thermometer is small in comparison to the changes of the temperature of
the fluid. When the delay of the thermometer is big, considering the ther-
mometer as a second-order inertia device is more appropriate. Substantial
stability and accuracy of the computed actual fluid temperature from the
measured thermometer temperature can be achieved by using a 9-point dig-
ital filter. The technique proposed in this paper can also be used when the
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Figure 6. Time constant τ as a function of the fluid velocity w and the outer diameter
of the thermocouple dt.

thermometer time constant is a function of fluid velocity. A comparison
of the computed temperatures of air, whose velocity was varied, based on
measurements by three thermocouples with different outer diameters, gave
confidence to the accuracy of the presented method.
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