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Abstract The reason for undertaking this study was to determine the
possible involvement of natural convection in the global heat transfer, that
occurs in the heated steel rods bed. This problem is related to the set-
ting of the effective thermal conductivity of the bars bed. This value is
one of the boundary conditions for heating modeling of steel rods bundles
during heat treatment. The aim of this study was to determine for which
geometry of the bed bars, there will be no free convection. To analyze the
problem the Rayleigh criterion was used. It was assumed that for the value
of the number Ra < 1700 convection in the bed bars does not occur. For
analysis, the results of measurements of the temperature distribution in the
unidirectionally heated beds of bars were used. It has been shown, that for
obtained, during the test, differences of temperature between the surfaces
of adjacent rods, convection can occur only when the diameter of the rod
exceeds 18 mm.
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Nomenclature

d – diameter, m
F – cross-sectional area of the gap, m2

g – gravitational acceleration, m/s2
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Gr – Grashof number
l – characteristic dimension along the mass forces action direction, m
L – gap perimeter, m
Pr – Prandtl number
Ra – Rayleigh number
t – temperature, oC
T – absolute temperature, K

Greek symbols
β – volume coefficient of expansion, 1/K
ν – kinematic viscosity, m2/s.

Subscripts
a – average
B – bar
C – cell
h – hydraulic
rd – radiative
S – square
tr – true
T – triangle

1 Introduction

Steel bars belong to basic metallurgical products obtained from the rolling
process. They find wide application both as finished products and as a semi-
finished products to be further processed. For special applications, bars of
strictly specified mechanical properties are used, which are obtained via
heat or thermochemical treatment [1]. In industrial mass processes, bars to
be heat treated are loaded into the furnace in the form of packed bundles
of a cross-section shape similar to circular [2]. The view of such a bundle
is shown in Fig. 1. This is, on the one hand, dictated by transport con-
siderations and, on the other hand, will allow the furnace heating chamber
space to be effectively used. As can be observed (Fig. 1), in the transverse
direction the bar bundle constitutes an inhomogeneous system which can
be treated as porous material of a grainy structure. As a consequence, a
complex heat flow occurs in the cross-section of such a medium during heat-
ing. In a general case, the following heat transfer mechanisms are involved
here: conduction in the bar cross-section, conduction in the medium fill-
ing the gaps (pores) formed between the bars, contact conduction at the
bar contact location, radiation between bar surfaces, and convection in the
gaseous medium. The above-described regime of heat flow within the bun-
dle region causes the thermal properties of the whole bundle to deviate
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substantially from those of the bars themselves. This causes complications
in the computation of the process of heating of this type of charge.

Figure 1. View of a packed bar bundle showing its porous structure.

The situation described above causes the thermal properties of a bar bundle
to be expressed using the effective thermal conductivity, thanks to which
the complex heat flow occurring in the porous material is treated as pure
conduction, similarly as in homogeneous material [3]. The determination
of the optimal time of heating a bundle of bars during heat treatment re-
quires the knowledge of the behaviour of the effective thermal conductivity
coefficient coefficient within the entire temperature range in which the pro-
cess is conducted. This information can be obtained from the theoretical
analyses of the heat exchange mechanisms occurring in the region of the
medium under consideration. Particular difficulties are encountered in the
mathematical description of convective heat transfer, because in these case
the motion of fluid must be considered.

When examining a packed bar bundle it is assumed that its porosity is of
a closed type. In such a situation, the heat flow associated with fluid motion
has the character of natural convection within a limited space. A starting
point for the theoretical analysis of this problem are the laws of conserva-
tion of mass, momentum and energy, which are expressed by appropriate
differential equations for continuity, fluid motion and heat transfer [4,5].
The analytical solution of these equations is only possible by approximate
methods, whereby results are obtained in the form of discrete distributions
of the values of particular parameters at selected points of the region under
consideration [6]. In the case of natural convection in an enclosed space,
wall boundary layers form at the region edges, which strongly influence the
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motion of fluid within the region. The interrelation between the flow in the
interior and in the wall boundary layers, as observed in this case, makes the
theoretical analysis of the problem quite difficult [4–6].

The relevant literature provides several examples of theoretical and ex-
perimental analyses of the problems of natural convection in an enclosed
space. The reported studies concern generally the space of a simple ge-
ometry and simple boundary conditions. Theoretical analyses of natural
convection between parallel vertical surfaces and in rectangular spaces have
shown that the main parameters decisive to the motion of fluid are: surface
temperature difference (T ), distance between the surfaces, the height-to-
width proportion of the region, and the value of Rayleigh number (Ra)
which, for natural convection, is a criterial number.

Depending on the value of the Ra number, three flow regimes can be
distinguished. The first of these regimes occurs when the Ra number value
is less than 1700; the heat transfer within the fluid region takes place in
this case solely by conduction. This situation is confirmed by rectilinear
arrangements of isotherms in the fluid, being characteristic of this state.
The second flow regime occurs with Ra number values fall roughly within
the range from 1700 to 3000. A characteristic feature of this state, which
is referred to in literature as transitory, is the appearance of wall boundary
layers. The flow field in this case is characterized by constant temperature
values in the horizontal direction and a nearly linear temperature increase
in the vertical direction. The considerable share of convection in the heat
transfer is indicated by the curvilinear shape of isotherms in the majority
of the fluid region. The third flow regime, called the wall boundary state,
occurs with Ra number values greater than 3000. In this flow regime, the
occurrence of developed wall boundary layers is observed. The thicknesses
of these layers are, however, small compared to the overall fluid layer thick-
ness. In the space limited by the parallel vertical surfaces, the thickness of
the wall boundary layer on the warmer wall increases in the upward direc-
tion, while on the cooler wall — in the downward direction. After exceeding
the critical value of Ra = 47000, the fluid flow in the gap changes from lam-
inar to turbulent. The formation of turbulent pulsations is observed here,
whose intensity increases with increasing Ra number. These pulsations oc-
cur primarily in the interior of the region.

The purpose of the presented analysis was to determine the maximum
bar diameter for which, in a packed flat bed composed of these bars, no
natural convection will occur.
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2 Research methodology

Subjected to analysis were two geometrical bar arrangements: covered and
partitioned, whose schematic diagrams are shown in Fig. 2. It was assumed
that the beds had a temperature gradient directed vertically upwards, and
the fluid filling the gaps between the bars was air. For such assumptions,
convection in bed gaps would occur when the following condition was sat-
isfied namely Ra ≥ 1700 .

Figure 2. Bar beds taken for the analysis: a) a bed with a partitioned layer arrangement
b) a bed with a covered layer arrangement.

Writing the Rayleigh number of the product of two other criterial num-
bers, namely the Grashof number (Gr) and the Prandtl number (Pr)

Ra = GrPr =
βgl3

ν2
∆tPr =

βgl3

ν2
∆t

ν

a
, (1)

where ∆t is the temperature difference of bars surfaces in an adjacent layers
of the bed. We obtain the following condition

βgl3

ν2
∆t

ν

a
≥ 1700 . (2)

For air which, according to the assumption, fills the bed gaps, the value of
the Prandtl number does not depend on the temperature and equals 0.7 [7].
In addition, it is assumed that the volume coefficient of expansion is equal
to

β = 1/Ta , (3)

where Ta denotes the average gas temperature in the absolute temperature
scale. The condition (2) can be therefore written in the following form:

0.7
gl3

Taν2
∆t ≥ 1700 . (4)
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If the space of the gap under consideration had a cylindrical shape, then its
characteristic dimension would be the diameter d of the bar. In that case,
considering the gap diameter, the convective motion of the fluid will occur
after the following condition has been satisfied:

d ≥ 3

√
1700ν2Ta

0.7g∆t
. (5)

The value of the diameter, as calculated from relationship (5) can be called
the limiting diameter, as only after exceeding this particular value will the
convective air movements come to occur in the region under analysis. Due
to the fact that the gaps in bar beds do not have a cylindrical shape, the
hydraulic mean diameter dh should be used, defined by the equation

dh =
4F
L

. (6)

The aim of the conducted analysis requires, therefore, that the relation-
ship between the bar diameter and the hydraulic diameter of the gap be
determined for the beds under consideration. The shapes of beds for the
partitioned and the covered beds of bars are demonstrated in Fig. 3. The
presented arrangements constitute elementary heat exchange cells for par-

Figure 3. Schematic diagrams of elementary cells: a) for the partitioned bed – C1 cell;
b) for the covered bed – C2 cell.

ticular geometric cases. In the further discussion, the cell for the partitioned



Analysis of the occurrence of natural convection. . . 77

arrangement will be denoted with the symbol C1, and the cell for the cov-
ered arrangement, with C2. According to the assumption made previously
on the temperature field in the beds, the temperature of the bottom bars
(t2) is higher than the temperature of the top bars (t1). It is in this case
that the convective motion of the fluid will start occurring in the gap region.

For the C1 cell, the gap area (FC1) is calculated by the subtracting the
area (FB−C1) of the part cross-sections bars contained in the equilateral tri-
angle with the side equal to the bar diameter from the area of this triangle
(FT ).

FC1 = FT − FB−C1 , (7)

where
FT = 0.433d2

B , (8)

FB−C1 = 0.5
πd2

B

4
=

πd2
B

8
= 0.392d2

B , (9)

so
FC1 = 0.04d2

B , (10)

where dB is the bar diameter. The gap perimeter for the C1 cell is:

LC1 = 0.5πdB = 1.57dB . (11)

Hence, the following relationship exists between the bar diameter dB and
the gap hydraulic diameter dhC1 for the C1 cell:

dh−C1 =
4 · 0.04d2

B

1.57dB
= 0.1dB . (12)

To calculate the gap area for the C2 cell, the surface area of bars occurring
within the square of a side length dB is to be subtracted from the area of
this square

FC2 = FS − FB−C2 , (13)

where
FS = d2

B , (14)

and

FB−C2 =
πd2

B

4
= 0.785d2

B , (15)

so
FC2 = 0.215d2

B . (16)
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The gap perimeter in the C2 cell is

LC2 = πdB . (17)

For the C2 cell, the relationship between the bar diameter dB and the gap
hydraulic diameter dh−C2 is as follows:

dh−C2 =
4 · 0.215d2

B

3.14dB
= 0.27dB . (18)

By substituting Eqs. (12) and (18) in relationship (5), direct formulas for
the limiting bar diameter are obtained. These take on the following forms:

dB−C1 = 10 3

√
1700ν2Ta

0.7g∆t
for the partitioned bed bundle , (19)

and

dB−C2 = 3.7 3

√
1700ν2Ta

0.7g∆t
and for the covered bed bundle , (20)

where
∆t = t2 − t1 . (21)

As follows from relationships (19) and (20), the limiting diameter for the
C1 cell is greater 2.7 than that for the C2 cell.

3 Computation results

To carry out computation, the value of the temperature difference (∆t)
between the bar surfaces limiting the considered gaps must be assumed. It
is essential at this point to know how this parameter behaves with increasing
temperature under real bar heating conditions. Not having this information
available, we performed preliminary computations for four constant values
of the parameter ∆t (10, 50, 100 and 200 oC).

Another quantity that influences the computation outcome is the kine-
matic viscosity of the medium filling the gap. For air, information on the
variation of kinematic viscosity as a function of temperature was taken from
literature [8]. Based on these values, the limiting diameters were computed
for a temperature from 0 to 1000 oC. The computation results are shown in
Fig. 4.
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Figure 4. Results of the preliminary computation of the limiting bar diameter: a) for the
C1 cell; b) for the C2 cell.

As can be observed, the value of the limiting bar diameter for both cells
increases nearly linearly as a function of air temperature. Moreover, the
value of the dB−C parameter is strongly influenced by the temperature
difference between the gap limiting surfaces. Therefore, from the point
of view of reliability and precision of computation, the knowledge of the
behaviour of the actual temperature field in the region of the bar bed as it
is heated will be necessary. This knowledge can only be acquired by carrying
out appropriate experimental tests. To this end, an experimental research
was carried out, which consisted in recording the variations of temperature
at selected points of appropriately prepared beds of bars as they were heated
in an electric laboratory oven. Two bar beds were tested, each of them being
120 mm wide and 350 mm long, and built of four layers of 20 mm diameter
bars, as shown in Fig. 5. One bed was made up of a bar laid in a covered
manner, while the other was a bar arranged in a partitioned manner. The
construction of the oven enabled a single-dimension temperature field to be
obtained within the charges being heated, with the temperature gradient
being oriented vertically.

Temperature measurements were taken on the surfaces of bars lying
between the second and the third layers at points indicated in Fig. 6. C-type
0.5 mm-diameter jacket thermocouples were used for the measurements.

The experiment was carried out for three samples, and the averaged
measurement result is shown in Fig. 7. Figure 7a represents variations in
the average temperature of gaps as a function of heating time. In the first
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Figure 5. View showing bar beds subjected to heating: a) a covered bundle; b) a parti-
tioned bundle.

Figure 6. Temperature measurement points at bar surfaces: a) for the partitioned bed;
b) for the covered bed.

phase of the process, the value of this parameter increases almost linearly
for both charges. In the subsequent part, because of the equalization of
the temperature field within the charge, the average temperatures started
approaching asymptotically the ultimate oven temperature, which in the
tests under consideration was 850 oC. Figure 7b represents variations in
the temperature differences within charge gaps (cells) as a function of the
average cell temperature. As can be seen from the shape of the lines in
this diagram, the results for both cases exhibit a nearly linear behaviour.
Using the least squares method, regression functions were determined for
the charged tested to describe the relationship between the temperature
difference within the gaps and the average temperature. On this basis, the
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Figure 7. Results of experimental tests: a) variation of the average temperatures of the
cells C1 and C2 as a function of time; b) variations of the temperature differ-
ences as a function of the average temperature of the cells under consideration.

following relationships were obtained:

for the covered bundle: ∆t1 = −0.110t − 109.83 , (22)

for the partitioned bundle: ∆t2 = −0.107t − 96.23 . (23)

These are decreasing functions, as the temperature differences decrease as
the charge temperature increases. This results from the fact that the tem-
perature field within the charge equalizes as the heating progresses.

Using the empirical relationships (22) and (23), the limiting bar diame-
ter values for the cells C1 and C2 were computed for the temperature range
from 0 to 900 oC. The results of these computations are shown in Fig. 8.
The line in this diagram represents an exponential function. The regression
functions for individual cells assume here the following forms:

for the covered bundle: dC1 = 61.772e0.0031t , (24)

for the partitioned bundle: dC2 = 21.366e0.0031t . (25)

From the obtained results it can be inferred that in the case of heating
a bundle of bars in a partitioned arrangement the natural convection will
never occur, if the bar diameter is less than 54 mm. For the covered bundle
this value is 18 mm. For example, for a temperature of 200 oC, the limiting
diameter values will be, respectively:

the partitioned bundle dC1 = 127 mm,
the covered bundle dC2 = 43 mm.
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Figure 8. Temperature dependence of the limiting bar diameters values for the cells C1
and C2.

So, if a bundle composed of 130 mm-diameter bars is subjected to heat-
ing, convection within the gaps will only occur in the initial period of the
process up to the point when the charge temperature reaches a level of
approx. 200 oC. The annealing heat treatment of steel bars is conducted
at a temperature of about 800 oC. It can be seen from the obtained re-
sults that, in the entire temperature range of this process, the convection
will occur in the bundle gaps, if the bar diameter is slightly greater than
200 mm (for the covered bundle). Most often, however, bars in bundles are
subjected to heat treatment for a diameter range from 5 to 25 mm [2,9]. In
such a situation, when analyzing the heat transfer within the bundle, the
convection of the gaseous medium in the gaps formed between the bars can
be neglected.

4 Summary

On the basis of the performed tests and computations it has been demon-
strated that during heating of bars in the form of bundles, for specific con-
ditions of bar diameters and temperature differences, the convective motion
of gas in the gaps will not occur. The shape of gaps, which is dependent on
the bar arrangement, is also important here.

Thanks to this, in the analysis of heat transfer in a bed of bars, should be
taken into account only the phenomena associated with heat conduction and
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radiation. It should be noted, that the heat transfer in this case concerns
both phases of the bed and contact conduction which take place in the
contact spots of the bars.
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