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Optimization of idealized ORC in domestic
combined heat and power generation
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Abstract Organic Rankine cycle (ORC) is used, amongst the others,
in geothermal facilities, in waste heat recovery or in domestic combined
heat and power (CHP) generation. The paper presents optimization of an
idealized ORC equivalent of the Carnot cycle with non-zero temperature
difference in heat exchangers and with energy dissipation caused by the
viscous fluid flow. In this analysis the amount of heat outgoing from the
ORC is given. Such a case corresponds to the application of an ORC in
domestic CHP. This assumption is different from the most of ORC models
where the incoming amount of heat is given.
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Nomenclature

A – heat transfer area, m2,
c – thermal conductance of the heat exchanger, W/K
k – overall heat transfer coefficient, W/(m2K)
Q̇ – heat flow rate in the heat exchanger, W
S, s – entropy, J/K and specific entropy, J/(kgK)
T – temperature, K or oC
Ẇ – work rate, W
x, y – ratio (ordinary and modified) of thermal conductances
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Greek symbols

α, β, γ – coefficients

Subscripts

H,L – high and low
HC, LC – high and low in the internal Carnot cycle
L1 – unit conductance of the low heat exchanger
N – net output work
∗ – reduced (and dimensionless).

1 Introduction

Domestic combined heat and power (CHP) generation is a way of distributed
electric energy production [1]. Own design of the prototype of domestic
CHP is carried out at the Institute of Fluid-Flow Machinery. In this pro-
totype the heat from the domestic boiler feeds the ORC installation where
mechanical/electrical work is produced. Heat rejected from the ORC is used
in the domestic heating system. To design this prototype many engineer-
ing or more theoretical and general models have been considered. Two of
them are the models of an endoreversible heat engine. The first one is the
well known Curzon-Ahlborn heat engine [2–4]. The second, presented here
realistic model, includes also the energy dissipation. The presented direct
optimization for maximum output work is equivalent to entropy generation
minimization principle described in [5]. An example of the ORC working
with ethanol is shown in Fig. 1. Our analysis differs from the similar one
carried out by Bejan in [2], where the incoming amount of heat is fixed.
As described in [2] the ORC may be represented by the Carnot cycle with the
temperatures THC and TLC equal to the average high and low temperatures
of the ORC:
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1

S2 − S3

⎛
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TLC =
1
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2∫
3

TdS . (1)

The temperatures TH and TL of higher and lower reservoirs are calculated
in the same manner.
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Figure 1. An example of the ORC working with ethanol.

It is assumed in further calculation that there is no heat leak to the
ambient (an adiabatic case) and part of the work produced in the turbine
feeds the pump. Because the ORC is a heat source for the domestic heating
system, the outgoing amount of heat, QL, from the ORC is assumed to be
given. This assumption is different from the most of ORC models where
the incoming amount of heat, QH , is given.

2 Model 1 — an endoreversible Carnot cycle
without energy dissipation

This model is the classical Curzon-Ahlborn heat engine with finite tem-
perature differences in the hot and cold heat exchangers connected to the
internally reversible (endoreversible) Carnot cycle (Fig. 2). However there
is no energy dissipation in this model. The high and low temperatures,
TH , TL, of the reservoirs and the heat rate, QL, are established and given.
The further assumption of fixed total heat transfer area of both exchangers
makes possible determination of the optimal ratio of the heat transfer areas
AH and AL for maximum work production.

Heat flow rates in the heat exchangers are given by

Q̇H = cH(TH − THC), Q̇L = cL(TLC − TL) , (2)
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Figure 2. An endoreversible Carnot cycle with finite temperature differences in both heat
exchangers without work dissipation.

with thermal conductances

cH = kHAH , cL = kLAL , (3)

where kH and kL are the overall heat transfer coefficients of the evaporator
and condenser.

The reversible Carnot cycle is described by

THC

TLC
=

Q̇H

Q̇L

and Ẇ = Q̇H − Q̇L (since Q̇HC = Q̇H and Q̇LC = Q̇L) .

(4)
Introduction of the thermal conductance ratio, x, unit and reduced thermal
conductances cL1, c∗L of the cold heat exchanger, maximum output work
WMAX (for THC = TH and TLC = TL) defined as

x =
cH

cL
, cL1 =

Q̇L

TH − TL
, c∗L =

cL

cL1
, ẆMAX =

(
TH

TL
− 1

)
Q̇L , (5)

gives the formula for the output work as a function of two dimensionless
variables x and c∗L

Ẇ =
x · (c∗L − 1) − 1

1 + x
(
1 + c∗L

Q̇L

ẆMAX

) Q̇L . (6)
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Since Ẇ ≥ 0 there are two conditions for x and c∗L:

x ≥ 1
c∗L − 1

, c∗L > 1 . (7)

The second condition is always satisfied because is equivalent to TH > TLC

and TLC > TL.
In a real situation the constraint of limited total heat transfer area

should be introduced. It is assumed that the sum of heat transfer areas of
both heat exchangers is established and given [2], and both heat transfer
coefficients are equal:

AH + AL = A , kH = kL = k . (8)

These construction assumptions give

kAH + kAL = kA , (9)

what is written as
cH + cL = c . (10)

Addition of thermal conductances cH and cL does not make physical sense
because the heat flows QH and QL are not parallel. It represents the con-
straint of total heat transfer area only. These construction assumptions lead
to the interpretation of x and c∗L as the ratios of the heat transfer areas and
the reduced heat transfer area of the cold heat exchanger respectively:

x =
AH

AL
, c∗L =

c∗

x + 1
, (11)

where c∗ = c
cL1

is the reduced, dimensionless sum of thermal conductances.
The domain of positive work is shown in Fig. 3 with the hyperbolas of

zero work and of an exemplary constraint c∗ = 5. These lines are described
by

xW=0 =
1

c∗L − 1
, xc∗=const =

c∗

c∗L
− 1 . (12)

Combination of (6) and (11) gives the final formula for the output work

Ẇ =
x

(
c∗

x+1 − 1
)
− 1

1 + x
(
1 + c∗

x+1
Q̇L

ẆMAX

)Q̇L . (13)
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Figure 3. The domain of positive output work in the x − c∗L plane and the line of an
exemplary constraint c∗ = 5.

The optimal value of x for the maximum output work comes from the
condition

dẆ

dx
=

c∗
(
1 + Q̇L

ẆMAX

)
(1 − x)[

1 + x
(
1 + c∗

x+1
Q̇L

ẆMAX

)]2
(1 + x)

Q̇L = 0 . (14)

It gives the optimal ratio of heat transfer areas

x = 1 (15)

what means cH = cL and then AH = AL (both heat transfer areas are
equal). This result is identical to the result obtained in [2] on the assumption
that QH = const.

3 Model 2 — endoreversible Carnot cycle with en-
ergy dissipation

The second model is an extension of the first one. It is assumed that there
are two sources of dissipated work WHC and WLC . The first source comes
from work loss in the pump, in the turbine and from pressure drop in the hot
heat exchanger (evaporator). The second one comes from analogous pres-
sure drop in the cold heat exchanger (condenser) (Fig. 4). Both dissipated
work flow rates WHC and WLC are assumed to be known.
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Figure 4. An endoreversible Carnot cycle with finite temperature differences in both heat
exchangers with two ways of work dissipation.

The net output work is less than the output work from the endoreversible
Carnot cycle by the amount of dissipated work:

ẆN = Ẇ − ẆHC − ẆLC . (16)

Dissipated work WHC supplies the cycle so the heat flow QHC is bigger
than the flow QH ,

Q̇HC = Q̇H + ẆHC . (17)

On the other hand, dissipated work WLC does not supply the cycle but is
rejected through the cold heat exchanger (condenser),

Q̇L = Q̇LC + ẆLC . (18)

Combination of these three above formulae and the second one from (20)
gives the result satisfying the law of conservation of energy

ẆN = Q̇H − Q̇L . (19)

The reversible Carnot cycle is described by

THC

TLC
=

Q̇HC

Q̇LC

and Ẇ = Q̇HC − Q̇LC . (20)
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The formulae for cH , cL, their ratio x, and reduced thermal conductivity
cL* are the same as in model 1. The formula for unit thermal conductivity
cL1 is slightly different:

cL1 =
Q̇L

TH
1
α − TL

, where α =
(
1 +

ẆHC

Q̇L

)
/
(
1 − ẆLC

Q̇L

)
. (21)

Coefficient α = 1 where no dissipation exists (WHC = 0 and WLC = 0) and
α > 1 where any kind of dissipation exists (WHC > 0 or WLC > 0).

Maximum net output work is similar to the maximum work in the pre-
vious model. It is assumed again that THC = TH and TLC = TL, but work
dissipation still takes place:

ẆNMAX =
(

TH

TL
− 1

)
Q̇L − TH

TL
ẆLC − ẆHC . (22)

The variable y = xα may be called the modified ratio x.
The formula for the output net work is a function of two dimensionless

variables y and c∗L

ẆN =
y(c∗L − 1) − 1

1 + y
(
β + c∗L

Q̇L

ẆNMAX

)Q̇L where β =
1

1 + ẆHC

Q̇L

(0 < β ≤ 1) .

(23)
Since ẆN ≥ 0 there are two conditions for y and c∗L again

y ≥ 1
c∗L − 1

, c∗L > 1. (24)

The conditions (23) for y and c∗L have the same form as the conditions (6)
for x and c∗L shown in Fig. 3. The same constraint of limited total heat
transfer area is assumed again. The reduced heat transfer area of the cold
heat exchanger is then equal to

c∗L =
c∗

x + 1
=

αc∗

y + α
. (25)

Combination of (23) and (24) gives the final formula for net output work

ẆN =
y

(
αc∗
y+α − 1

)
− 1

1 + y
(
β + αc∗

y+α
Q̇L

ẆNMAX

)Q̇L . (26)
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The optimal value of y for the maximum net output work comes from

dẆN

dy
= 0 . (27)

This condition leads to the quadratic equation for y

[c∗α(β + γ) + (1− β)]y2 + 2α(1 − β)y + α2[(1− β)− c∗(1 + γ)] = 0 , (28)

where γ = Q̇L

ẆNMAX
. The positive solution for y gives the optimal value of

ratio x

x =
−(1 − β) +

√
c∗[c∗α(β + γ) + (1 − β)](1 + γ) − c∗α(β + γ)(1 − β)

c∗α(β + γ) + (1 − β)
.

(29)

4 Results

There are two simple cases of the formula (28) for the optimal heat transfer
area ratio x:

1. Lack of work dissipation; WHC = 0 and WLC = 0.
The condition WHC = 0 means β = 1 and together with the condition
WLC = 0 they give α = 1. Introducing these values in (28) gives

x = 1 . (30)

The result is the same as obtained in the model 1 (without dissipation)
as expected.

2. Lack of dissipation; WHC=0 and nonzero dissipation WLC > 0.
The condition WHC = 0 gives β = 1 but the condition WLC > 0 gives
α > 1. Introducing β = 1 in (28) gives the optimal ratio x

x =
1√
α

. (31)

It means that 0 < x < 1 if α > 1. In other words cH < cL and then
AH < AL. The heat transfer area of the hot heat exchanger is smaller then
the area of the cold one.

Comparison of the model with energy dissipation to direct simulations
of the corresponding ORC acknowledges correctness of the endoreversible
approach with energy dissipation.
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5 Conclusions

• The results of presented endoreversible models are in good agreement
with the results of direct simulations of the corresponding ORC’s.

• The second endoreversible model with energy dissipation is more real-
istic and reflects main features of the ORC. It makes this model useful
for theoretical investigation applied to domestic CHP.

• Introduction of energy dissipation sources allows for more realistic
determination of power generation and efficiency of the ORC.

Acknowledgements This work has partially been funded from the Na-
tional Project POIG.01.01.02-00-016/08 “Model agroenergy complexes as
an example of distributed cogeneration based on local renewable energy
sources.”

Received 8 July 2013

References
[1] Mikielewicz J.: Micro heat and power plants working in organic Rankine cycle.

Polish Journal of Environmental Studies 19(2010), 3, 499–505.

[2] Bejan A.: Advanced Engineering Thermodynamics. Wiley, New York 1988, 404–
426.

[3] Hoffmann K.H.: An introduction to endoreversible thermodynamics. Atti
dell’Accademia Peloritana dei Pericolanti Classe di Scienze Fisiche, Matematiche
e Naturali 86(2008), Supplement 1.

[4] Bejan A.: Thermodynamic optimization of inanimate and animate flow systems.
In: Thermodynamic Optimization of Complex Energy Systems (A. Bejan and E.
Mamut, Eds.). Kluwer Academic Publishers, Dordrecht 1999, 45–60.

[5] Mikielewicz J.: Role of thermodynamics in science and engineering. Arch. Ther-
modyn. 25(2004), 2, 3–19.


